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Abstract: The conventional drug discovery approach is an expensive and time-consuming process,
but its limitations have been overcome with the help of mathematical modeling and computational
drug design approaches. Previously, finding a small molecular candidate as a drug against a disease
was very costly and required a long time to screen a compound against a specific target. The
development of novel targets and small molecular candidates against different diseases including
emerging and reemerging diseases remains a major concern and necessitates the development of
novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational
and mathematical modeling approaches for drug development are advantageous due to their fastest
predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques
utilize different computer programs as well as mathematics formulas to comprehend the interaction
of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have
several limitations, but CADD utilizes novel methods that require little time and accurately predict
a compound against a specific disease with minimal cost. Therefore, this review aims to provide
a brief insight into the mathematical modeling and computational approaches for identifying a
novel target and small molecular candidates for curing a specific disease. The comprehensive
review mainly focuses on biological target prediction, structure-based and ligand-based drug design
methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure–
activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA
approaches along with valuable database resources and tools for identifying novel targets and
therapeutics against a disease. This review will help researchers in a way that may open the road for
the development of effective drugs and preventative measures against a disease in the future as early
as possible.

Keywords: mathematical modeling; CADD; QSAR; MM-GBSA; MM-PBSA; pharmacophore modeling;
MD simulation; biological activity; drug design
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1. Introduction

A drug is a type of natural or synthetic chemical that is used to prevent, treat, or
diagnose disease [1]. It can be able to alter the function of a biological system or target from
the molecular to the cellular level. Drug discovery helps to determine new therapeutic
candidates by using different computational, experimental, and clinical models. The
integrated approaches led to the identification of novel drugs not only from plants but also
from other chemical sources [2]. Although various therapeutic compounds originating
from plant products are highly regarded, synthetic chemistry and biotechnology products
account for the majority of medications in the current medical system [3]. The subject of
drug development is exceedingly difficult and needs proper infrastructure and laboratory
resources. Unfortunately, the traditional strategy of discovering new drug compounds is a
time-consuming process that can take up to 10–15 years and can cost up to USD 2.558 billion
to bring a therapeutic to market [4]. This is a multistage and complex process that begins
with the identification of an appropriate drug target, followed by drug target validation,
hit-to-lead identification, and lead molecule optimization, as well as preclinical and clinical
research [5]. Despite the huge financial and time commitments required for medication
development, clinical trial success is just 13%, with a high drug attrition rate [6].

A mathematical model is a powerful representation of a biological system that uses
mathematical ideas and language to produce an accurate description of the system of
principles [7]. The model helps in determining the operation process as well as anticipating
certain influencing factors and enables the simulation of complex biological processes that
generate hypotheses and suggest experiments [8]. The model also known as forecasting
modeling is now frequently used to guide drug development at the industrial level. For
example, simulation is the more direct approach that utilizes a mathematical model and
predicts system behavior under given conditions [9]. Mathematical model-based biological
complex system analysis has high productivity and low cost. The process generates novel
lead compounds that undergo clinical trials and reach the market [10]. Most of the major
obstacles that arose during the conventional drug design and discovery process may be
overcome by employing mathematical models [11]. These models are now being utilized
in in silico research to describe various pharmacological properties of potential medicinal
drugs [12]. For example, the FDA’s Center for Drug Evaluation and Research (CDER) uses
modeling and computer simulations at various phases of drug discovery [13].

Currently, CADD has proven to be a useful and powerful strategy in the manufacture
of various medicines [14]. The approach has assisted in overcoming the drawbacks of a
time-consuming and expensive procedure in drug research and development [15]. In the
latest drug design process, the in silico approach is more important than before. CADD
methods such as pharmacophore modeling, virtual screening, molecular docking, and
dynamic simulation are frequently applied to identify, develop, and evaluate medicinal
properties as well as comparable physiological activity of substances [16]. To quantify the
binding efficiency and toxicity of a compound in the classical drug development process,
massive in vitro and in vivo trials are required [17]. CADD techniques include a molecular
docking methodology that can effectively categorize a large number of molecules with
higher binding effectiveness [18]. The method can be used to identify the interaction
between a ligand and a receptor at the atomic scale, which helps to identify the binding
position of a molecular to a target protein and subsequently provides an idea about the
biochemical process [19]. The technique also provides information regarding the target
behavior and predicts how a protein (enzyme) interacts with small molecules (ligands)
at the binding site of target proteins and facilitates the evaluation of the biological activ-
ity of a molecular candidate [20]. Additionally, the CADD approaches include different
pharmacology properties analysis tools that can evaluate a compound’s pharmacokinetic
(PK) parameters such as bioavailability, toxicity, and effectiveness within a short period.
Furthermore, the CADD approaches also include molecular dynamics (MD) simulation
techniques that can determine a ligand’s binding stability towards its receptor, which is
more suitable and accurate [21]. This review summarizes the challenges associated with
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target identification in complex biological systems, the benefits of using mathematical ap-
proaches, and the ways in which computational models can help consolidate and interpret
favorable drug candidates against a specific target as well as disease.

2. Target Identification

The early stages of drug discovery probably start with target selection and later move
to lead optimization. In the process of potential disease, target discovery is dependent on a
variety of resources, involving academic studies, clinical investigations, and the business
sector. The pharmaceutical industry, as well as numerous research organizations, use the
designated target to locate molecules for developing authorized treatments [22]. Several
preliminary stages are involved in this procedure. Throughout the process of target identi-
fication and validation, researchers search for chemicals to disrupt a particular biological
path that is connected to a certain illness [23]. These compounds can be found in nature,
identified through high-throughput screening of large compound libraries, or synthesized
as analogs of other drugs that have been proven to be effective against a specific disease.
The initial stages in target classification and identification are to determine the function of
a possible therapeutic target (which may be a gene or protein) and its involvement in the
illness [24]. The molecular processes addressed by the objective are characterized by the
following target identification. A good target must always be productive, safe, suitable,
and druggable, and it must fulfill clinical and financial requirements. Target identification
may be divided into two types: the system biology approach and the molecular biology
approach. The system biology approach is a technique that involves studying diseases
in complete organisms and selecting targets based on data from clinical trials and in vivo
animal research [25]. The molecular biology method, which is at the heart of today’s target
identification efforts, aims to find “druggable” targets whose activity may be influenced
by associations with molecules, proteins, and sometimes antibodies. Since the biological
factors involved in human diseases are so complicated, the foremost essential issue in target
identification is not only identifying, optimizing, and choosing trustworthy “druggable”
targets, but also truly comprehending the cell membrane associations that identify disease
patterns, developing predictive models, and building biological mechanisms for human
diseases [26]. For example, G-protein-coupled receptors (GPCRs) and protein kinases are
highly “druggable” targets that were identified throughout the molecular biology-based
methods [27].

Network-based drug discovery, a field that utilizes information in drug–protein and
protein–disease networks, may also be used to study target identification [28]. This strat-
egy entails a highly collaborative scheme between databases and correlations across ge-
nomics, transcriptomics, proteomics, metabolomics, the study of the microbiome, and
pharmacogenomics, and it is heavily reliant on the development of relevant mathemati-
cal, computational, and systems biology tools that connect pharmacological and genomic
domains and create computational frameworks for drug target discovery [29]. Another
recent network-based application was the combination of large-scale structural genomics
and disease association studies to produce a three-dimensional human interactome, which
resulted in the identification of candidate genes for previously unknown disease-to-gene
associations with proposed molecular mechanisms.

3. Mathematical Models in Drug Design

Mathematical techniques for drug discovery have a high value because of their po-
tential effect and low cost compared to preclinical studies [30]. The employment of mathe-
matical models, as well as computer simulations, has several advantages. It can be very
helpful for systematically determining the relevance of a specific target or pathway for the
overall behavior of the system. First, the inconsistencies between the behavior forecasted
by a mathematical model and the behavior observed in actual trials might point to missing
components, in which the mathematical model allows for a briefer image of a biological
mechanism to develop. Although it is not clear which compounds are absent from the
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system under review, the mathematical model research findings may be used to influence
the construction of additional investigations to address the problem. In addition, mathe-
matical models enable a systematic analysis of system fluctuations triggered by the delivery
of drugs [31]. However, it is difficult to represent real-world systems such as biological
systems in terms of mathematical relationships [32]. Figure 1 shows the process of the use
of a mathematical model in the drug design process.
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Figure 1. A schematic representation of a mathematical model, including experimental design,
experimental data analysis, model optimization, and model validation, used in modern drug de-
sign approaches.

Pharmacokinetic and pharmacodynamic analyses are the earliest and most widely
used forms of mathematics in drug design. Pharmacokinetics is the study that describes
how drug concentrations change over time, whereas pharmacodynamics explains how
drug effects fluctuate with concentration. Pharmacokinetics depict a possible drug’s concen-
tration in the appropriate organ compartments (e.g., circulating blood). Pharmacodynamic
models relate this concentration to a biomarker that is thought to be linked with a disease
state, often considering the modification of the pharmaceutical target [33].

Cancer research is a good example of how mathematical models are used in drug
discovery. One of the most widely employed mathematical models in cancer treatment
research is integrated into network-based medicine [34]. Network medicine is a discipline
of medicine that explores molecular and physiological links with therapeutic implications.
Infectious diseases, such as malaria, are another instance of a mathematical model appli-
cation in drug innovation [35]. In this situation, mathematical models may be employed
to evaluate the prospective drug’s capacity to destroy the parasite at a different phase of
the disease. Compound pharmacokinetics and compound pharmacodynamics are used
in such models. COVID-19, an infectious viral disease, is the most recent example of how
mathematical models are employed in drug discovery [36].
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4. Target Validation

Target validation demonstrates that a cellular target is actively engaged in a disease
state and that modulating the target is likely to be therapeutic. The use of a multiple-
validation strategy is the most significant criterion for target validation. Pathways are
included in target validation. Drug discovery benefits from research targeted at identifying
targets that govern and regulate activities in living organisms [37]. An examination of
target validity, or if the molecule targets a biological component relevant to the disease,
will be critical to moving any molecule forward. Is the target expressed in the human brain
during the disease process, providing for a therapeutic window? Researchers can better
understand side effect profiles by understanding routes and their relationships. Because
most diseases are the consequence of interactions between several stages and elements,
any modification made at a different stage or in various tissues will result in different
outcomes [38]. As a result, the associated treatments should differ as well. As a result,
identifying the route can show some slight changes between diseases that have similar
symptoms. Finding these distinctions is critical in the drug development process since it
allows scientists to create different compounds for different diseases [39].

5. Mathematical and Computational Biology Approaches for Target Validation

Before moving on to the preclinical phases of drug development, mathematical biology
models may create a new desired location and look to comprehensively evaluate the goal
early in the investigation [40]. This target space can be wider than what is now considered
a prospective target by using a less reductionist approach. Target validation will be a
continual process if mathematical biology techniques are used from the beginning [41].
Preclinical target verification will be viewed as a bundle that comprises the following
factors: A suitable target might be demonstrated to alter illness and play a significant role
in the pathological process early in the phase of drug development. It includes a mechanism
investigation of the target’s activity in a system, as well as an early investigation of the
target’s modifications and consequences in clinical samples.

6. Protein Structure Prediction

Proteins are vital molecules that are involved in a variety of biological activities.
Protein structure prediction or modeling is critical since a protein’s activity is largely
determined by its three-dimensional structure. Furthermore, a protein’s 3D structure is de-
termined by its amino acid composition. Experiments using X-ray crystallography or NMR
spectroscopy to resolve protein structure are time-consuming, expensive, and complex [42].
Consequently, theoretical knowledge of protein structure, dynamics, and folding has been
used to construct a model from amino acid sequences due to the improvement of computer
methods and computational tools. The approaches for predicting protein structure may be
divided into three categories (Figure 2): (a) homology modeling; (b) threading; (c) ab initio
methods (de novo).

The most effective computer technique for protein structure prediction is homology
modeling, which involves predicting an unknown structure using a similar known protein
structure as a framework [43]. An ideal therapeutic simulation of a protein may be built
by assigning a structure based on sequence alignment and then creating the model and
minimizing energy. Despite homology modeling’s predictive potential and utility, some
issues remain. Firstly, the amounts of target-template architectural conservation and
alignment precision are key indicators of the model’s quality. If the identity of the template
sequence is below 20%, around 50% of residues inside the layout are likely to be misaligned.
Another concern includes that homology modeling systems should develop innovative
ways to manage the expanding number of existing protein molecules. To date, different
homology modeling tools has been developed and the most frequent use tools use for the
modeling has been listed in Table 1.
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Threading a sequence throughout a fold involves a precise adjustment of the pro-
tein’s amino acid sequence with the folding motif’s corresponding amino acid residue
residues. The main goal of this technique is to determine the most possible fold from a
given sequence or to find appropriate sequences that might fold into a certain structure.
Threading performance is characterized by the number of useable folds whose structures
are determined precisely towards the atomic level [44]. Threading processes, which use
approaches for aligning sequences with 3D shapes to determine the proper folding of a
given sequence from a range of possibilities, were used to make the predictions.

In absence of an experimentally solved structure of a similar/homologous protein,
ab initio (de novo) protein structure prediction is a technique for evaluating the three-
dimensional structure, when an experimentally solved structure of a similar/homologous
protein is not present. The energy function guides the construction of protein structure
in this strategy. The ab initio (from scratch) methodologies are based on first-principles
physics and chemistry regulations, as well as the premise that a protein’s natural structure
always remains at the lowest energy level [45]. However, the precision of ab initio modeling
is poor, and performance is generally limited to tiny proteins (120 residues).

Table 1. Summary of the most widely recognized homology modeling tools use in drug development.

No Name Application Availability Reference

1. I-TASSER Reassembling fragment structure
via threading

https://zhanggroup.org/I-TASSER/ [46]

2. SWISS-MODEL Segment assembly/local similarity https://swissmodel.expasy.org/ [47]

3. ESyPred3D 3D modeling, template identification,
and alignment

https://www.unamur.be/sciences/biologie/
urbm/bioinfo/esypred/

[48]

4. HH-suite Template detection, alignment,
3D modeling

https://arquivo.pt/wayback/201605140831
49/http:/toolkit.tuebingen.mpg.de/hhpred

[49]

5. RaptorX Protein 3D modeling, remote homology
discovery, and binding site prediction

http://raptorx.uchicago.edu/ [50]

6. FoldX Protein design and energy calculations https://foldxsuite.crg.eu/ [51]

7. ROBETTA Rosetta homology modeling and
fragment assembly from scratch with
Ginzu domain prediction

http://robetta.bakerlab.org/ [52]

https://zhanggroup.org/I-TASSER/
https://swissmodel.expasy.org/
https://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/
https://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/
https://arquivo.pt/wayback/20160514083149/http:/toolkit.tuebingen.mpg.de/hhpred
https://arquivo.pt/wayback/20160514083149/http:/toolkit.tuebingen.mpg.de/hhpred
http://raptorx.uchicago.edu/
https://foldxsuite.crg.eu/
http://robetta.bakerlab.org/


Molecules 2022, 27, 4169 7 of 21

Table 1. Cont.

No Name Application Availability Reference

8. BHAGEERATH-H Methods of ab initio folding and
homology are combined

http://www.scfbio-iitd.res.in/bhageerath/
bhageerath_h.jsp

[53]

9. Prime Homology modeling, evaluation, and
refining of the produced model using
the energy function

https://www.schrodinger.com/prime [54]

10. LOMETS Tertiary structure prediction with a
local meta-threading server

https://zhanglab.ccmb.med.umich.edu/ [55]

7. Computer-Aided Drug Design

Computer-aided drug design methods have been applied in the field of drug develop-
ment over the past two decades [56]. Currently, this is seen as one of the best appropriate
alternatives to high-throughput screening, which is routinely used in drug design and
development. CADD may be used for all efforts that have been made throughout the
process of drug development that can be described mathematically and analyzed using
numerical methods [57]. Figure 3 demonstrates the basic CADD approach that may be
utilized interactively with experimental methodologies to find novel drug targets and direct
iterative ligand optimization. Structure-based and ligand-based drug design techniques
are two types of CADD that have been widely used throughout the development of drugs
process to find acceptable lead compounds. The CADD approaches help to expedite the
drug discovery and development process by minimizing the cost and time [58]. However,
if the computer system crashes unexpectedly, the CADD designs might be lost. If proper
precautions are not performed, viruses will infect the computer system.

7.1. Structure-Based Drug Design

Structure-based drug design (SBDD) (or direct techniques) can be used if the target’s
spatial structure is available. Compounds with qualities complementary to the target area
can be created based on the properties and features of the macromolecule’s spatial structure.
X-ray crystallography, NMR, and in silico homology-based prediction approaches can all be
used to determine a protein’s 3D structure. The protein’s binding/active site is discovered
when the three-dimensional structure is understood. Structure-based pharmacophore
modeling, virtual screening (SBVS), molecular docking, and molecular dynamics (MD)
simulations are some of the typical methodologies used in SBDD.

7.1.1. Structure-Based Pharmacophore Modeling

The pharmacophore features are discovered by utilizing the shape of the compli-
cated molecular target [59]. The characteristics are founded on a single X-ray crystallized
target–ligand complex. The pharmacophore characteristics are built using a single ligand
as well as its associations with the specific target protein. The fundamental contrast be-
tween ligand-based and structure-based approaches is the number of ligands utilized to
construct the pharmacophore. The ligand-based technique necessitates at least 30 actives,
whereas the structure-based method necessitates only one ligand and its connection with
the receptor. Furthermore, the pharmacophore technique is derived from an active site of
the ligand. Another method for creating a structure-based pharmacophore is to employ
an APO template in such a way that the active site amino acids are determined and then
develop a feature list based on their interaction properties that may be included in the
pharmacophore [60]. The only drawback is when the list predicts too many features (more
than seven features).

http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
https://www.schrodinger.com/prime
https://zhanglab.ccmb.med.umich.edu/
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7.1.2. Pharmacophore Model Validation

Structure-based pharmacophore modeling can be employed efficiently when there is
inadequate information on ligands that have been empirically proven to inhibit or stim-
ulate the activity of a certain therapeutic target [61]. Validation is required to obtain an
accurate pharmacophore analysis and to analyze the molecular model’s quality. Pharma-
cophore methods focused on appropriate correlation coefficients (R) might be validated in
three main steps: Fisher’s randomization test, test set prediction, and Guner–Henry (GH)
scoring technique.

Fisher’s Randomization Test

Fisher’s randomization approach is critical for establishing a link between structural
and biological functionality in training set molecules [62]. The relevant experimental
data linked with the training dataset are randomly changed to make them statistically
irrelevant. The randomized dataset is then used to construct assumptions using the same
characteristics and variables that were used to develop the original hypothesis. This
randomization approach validated the drug-tested pharmacophore hypothesis by selecting
95% confidence levels, which resulted in 19 random spreadsheets. The randomized dataset
should give equivalent or higher cost values, improved RMSD, and significant correlations
for successful pharmacophore development.

Test Set Prediction

The goal of the pharmacophore method is to anticipate not only the behavior of
molecules in the training dataset, but also the activity of external molecules. The correlation
value between the experimental and forecasted behavior of external molecules that were
excluded from the training dataset was predicted using test set prediction. This metric
determines the predictability of pharmacophores’ stability (free of errors). In this technique,
the behavior of the test set components has a higher correlation coefficient, which has a
95% confidence level [63].

Guner–Henry (GH) Scoring

The basic goal for implementing a decoy set is the validation of a pharmacophore
model to see how effectively it can distinguish the active and inactive compounds. The
validation of the model depends on a scoring function known as the Guner–Henry (GH)
score. The GH score ranges from 0 to 1, where 1 indicates the most optimum model. The
GH score can be calculated based on the following formulas [64]:

%A =
Ha
A

× 100 (1)

%Y =
Ha
Ht

× 100 (2)

EF =
Ha/Ht
A/D

(3)

GH =

(
Ha(3A + Ht)

4HtA

)(
1 − Ht − Ha

D − A

)
(4)

where, D is the number of the compound, A is the number of the active compound, Ht
is the number of hits retrieved, Ha is the active hit, %A is the ratio of actives retrieved,
%Y is the hit relative fraction to the size of the database (hit rate or selectivity), EF is the
enrichment factor, and GH is Guner–Henry score.

7.1.3. Virtual Screening

The structure-based virtual screening (SBVS) strategy is the most extensively utilized
strategy in in silico drug discovery [65]. SBVS employs evaluating functions to measure the
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force for non-covalent contacts between ligand and biological target, and it tries to predict
the optimum collaboration between two compounds to create a sustainable complex [66].
The benefit of SBVS is that it not only reduces the time but also reduces the expense of
screening millions of small compounds [67]. Because the molecule’s physical presence is
not required, it may be computationally evaluated before being produced. On the other
hand, because of the challenges in calculating the complexity of ligand–receptor binding
interactions, it is hard to precisely anticipate the right binding location, which is one of
SBVS’s shortcomings. Sometimes, it has the potential to produce not only false positives
but also false negatives at the same time. In addition, it has been demonstrated that the
presence of stereochemical and valence errors in the chemical data libraries could also
cause investigators to choose unfeasible compounds

7.1.4. Molecular Docking

The molecular docking approach can be used to illustrate the atomic-level interplay
between small molecules and proteins in an attempt to characterize small-molecule behav-
ior at target protein binding sites and describe basic biochemical mechanisms [68]. Shapes,
electrostatic interactions, hydrogen bonds, and van der Waals and Coulombic interactions
are all taken into consideration during docking [69]. Molecular docking research is possible
between protein and protein, protein and ligand, and protein and nucleotide that can
be performed by using any of the tools listed in Table 2 [70]. A docking score indicates
binding potentiality, and various methods of fitting the ligand into the binding site are
investigated [71]. Flexible-ligand search docking and flexible-protein docking are the two
major forms of molecular docking [72]. In the case of flexible-ligand search docking, three
techniques are generally used, namely the systematic approach, the stochastic method, and
the simulation method, while flexible-protein docking typically uses Monte Carlo (MC) and
molecular dynamics (MD) methods [73]. The methods have many advantages in CADD
approaches, but the lack of confidence in the ability of scoring functions to give accurate
binding energies is one of the major limitations of molecular docking.

Table 2. Summary of the most widely recognized molecular docking software used across the
computational drug design process.

No. Programs Application Accessibility Reference

1. AutoDock It is employed in molecular docking. It predicts
the binding capacity of a tiny chemical and
assigns a target protein to a 3D structure

https://autodock.scripps.edu/ [74]

2. LPCCSU Based on a comprehensive investigation of
interatomic interactions and interface
complementarity

https://oca.weizmann.ac.il/
oca-bin/lpccsu

[75]

3. PatchDock The method performs rigid docking, with
surface variability

https://bioinfo3d.cs.tau.ac.il/
PatchDock/php.php

[76]

4. Hex For docking studies http://hex.loria.fr/ [77]

5. Glide
Schrodinger

Comprehensive molecular modeling and
computer-aided drug development (CADD) tool

https://www.schrodinger.com/ [78]

6. Molecular
operating
environment

Comprehensive molecular modeling and
computer-aided drug development (CADD) tool

https://www.chemcomp.com/ [79]

7. DockingServer A user-friendly web-based interface that
manages all elements of molecular docking.

https://www.dockingserver.
com/web

[80]

8. SwissDock A web service for predicting a protein’s
association with a small molecule ligand.

http://www.swissdock.ch/ [81]

https://autodock.scripps.edu/
https://oca.weizmann.ac.il/oca-bin/lpccsu
https://oca.weizmann.ac.il/oca-bin/lpccsu
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
http://hex.loria.fr/
https://www.schrodinger.com/
https://www.chemcomp.com/
https://www.dockingserver.com/web
https://www.dockingserver.com/web
http://www.swissdock.ch/
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Table 2. Cont.

No. Programs Application Accessibility Reference

9. LeDock A molecular docking program for docking
ligands with protein targets

http://www.lephar.com/
software.htm

[82]

10. MedusaDock 2.0 Fast flexible docking with a discrete rotamer
library of ligands

https://dokhlab.med.psu.edu/
cpi/#/MedusaDock

[83]

11. Molegro Virtual Docker Based on a novel heuristic search method that
integrates differential evolution and a cavity
prediction algorithm

http://molexus.io/molegro-
virtual-docker/

[84]

12. MOLS 2.0 Using mutually orthogonal Latin squares,
induced-fit peptide–protein, and small
molecule–protein docking

https://sourceforge.net/
projects/mols2-0/

[85]

13. ParaDockS Metaheuristics for population-based
molecular docking

http://www.paradocks.at/ [86]

7.2. Ligand-Based Drug Design

Ligand-based drug design is considered an indirect technique because the structure
of the biomolecular target is unknown and cannot be anticipated using approaches such
as homology modeling [87]. The most significant and highly used methods in ligand-
based drug discovery are 3D quantitative structure–activity relationships (3D QSARs)
and pharmacophore modeling, both of which can supply vital knowledge regarding the
nature of connections between drug targets and ligand compounds as well as computer
simulations suitable for lead compound optimization [88]. The most crucial aspects of the
interaction nature are preserved, but the noise of extra information is eliminated.

7.2.1. Quantitative Structure–Activity Relationship (QSAR) Models

Structure–activity analysis relationship models depict the overall mathematical rela-
tionship between a collection of chemicals’ structural properties and target response [89].
The QSAR model has been successfully employed to decrease the need for time-consuming,
arduous, and expensive processes in innovative drug development during the last few
decades, and it also performed well in terms of predicting physiochemical properties
(Table 3). Regression techniques, artificial neural networks, principal component analysis
(PCA), and partial least squares (PLS) can be used to determine these correlations. Multiple
linear regression is a frequently used approach for establishing a link between active and
multiple structural features. When a high number of structural features must be taken into
account (for example, grid-based approaches in 3D QSAR), linear regression fails and a
specialized method such as PCA or PLS is needed. The idea of multidimensional QSAR
has been proposed in recent years [90]. Predicting the biological properties of chemical
substances is more beneficial. HQSAR, G-QSAR, MIA-QSAR, and multitarget QSAR are
all part of this process, which has had outstanding success in the new drug process. The
two most essential methodologies suggested for developing pharmacological compounds
are comparative molecular field analysis (CoMFA) and comparative molecular similarity
indices analysis (CoMSIA). However, QSAR modeling has some limitations; for example, if
the number of molecules in the training set is small, the data may not accurately reflect all
of the properties, and therefore it cannot be used to forecast the most active compounds.

http://www.lephar.com/software.htm
http://www.lephar.com/software.htm
https://dokhlab.med.psu.edu/cpi/#/MedusaDock
https://dokhlab.med.psu.edu/cpi/#/MedusaDock
http://molexus.io/molegro-virtual-docker/
http://molexus.io/molegro-virtual-docker/
https://sourceforge.net/projects/mols2-0/
https://sourceforge.net/projects/mols2-0/
http://www.paradocks.at/
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Table 3. A list of techniques and mathematical equations used in QSAR modeling as well as
drug design.

No Techniques Equation Activity Reference

1. K-nearest neighbor Linear Simple [91]

2. Multiple linear regression Linear Simple [92]

3. Partial least squares Linear Performs effectively on data including a big dataset [93]

4. Artificial neural network Nonlinear Works well with nonlinear data [94]

5. Support vector machine Nonlinear A most effective approach for classification and regression [95]

6. Decision tree Nonlinear Extremely interpretable [96]

7. Random forest Nonlinear A better and more reliable estimate [97]

7.2.2. Ligand-Based Pharmacophore Modeling

Pharmacophore mapping is a crucial part of ligand-based drug discovery and de-
velopment [98]. Medication must have functional groups that are arranged in a precise
way to generate a particular biochemical response. The pharmacophore is defined by
this pattern throughout the drug design process. The active molecules in a ligand-based
pharmacophore are loaded in such a manner that their biochemical properties are imposed
as much as feasible. Molecule alignment may be accomplished differently, using rigid
approaches that need knowledge of ligand active conformations not only from the semi-
flexible method but also from flexible methods [99]. The pharmacophore model is made up
of a set of chemical properties (such as H-bond acceptors and donors; charged or ionizable
groups; hydrophobic or aromatic rings; and physical features in terms of length, angles,
and dihedrals) that are shared by a group of mixtures with strong inhibitory mechanisms
and required for their inhibition effect against a specific objective [100]. Most popular
pharmacophore modeling tools invented to date has been represented in Table 4.

Table 4. Summary of the most usually recognized pharmacophore modeling software used in
drug development.

No. Programs Application Accessibility Reference

1. Align-it Pharmacophore alignment http://silicos-it.be/ [101]

2. Catalyst Pharmacophore modeling http://accelrys.com/products/discovery-
studio/pharmacophore.html

[102]

3. MOE Pharmacophore modeling http://www.chemcomp.com/MOE-
Pharmacophore_Discovery.htm

[103]

4. LigandScout Pharmacophore modeling http://www.inteligand.com/ligandscout/ [104]

5. Phase Pharmacophore modeling http://www.schrodinger.com/Phase/ [105]

6. Quasi Pharmacophore modeling http://www.denovopharma.com/page2.asp?
PageID=485

[106]

7. Pharmer Pharmacophore search http://smoothdock.ccbb.pitt.edu/pharmer/ [107]

8. Open3DQSAR Exploration of pharmacophores using
high-throughput chemometric analysis

http://open3dqsar.sourceforge.net/ [108]

9. Pharmagist A website for the discovery of
ligand-based pharmacophores

https://bioinfo3d.cs.tau.ac.il/PharmaGist/ [109]

10. FLAP The fingerprints are characterized by
pharmacophoric properties

https://www.moldiscovery.com/software/flap/ [110]

http://silicos-it.be/
http://accelrys.com/products/discovery-studio/pharmacophore.html
http://accelrys.com/products/discovery-studio/pharmacophore.html
http://www.chemcomp.com/MOE-Pharmacophore_Discovery.htm
http://www.chemcomp.com/MOE-Pharmacophore_Discovery.htm
http://www.inteligand.com/ligandscout/
http://www.schrodinger.com/Phase/
http://www.denovopharma.com/page2.asp?PageID=485
http://www.denovopharma.com/page2.asp?PageID=485
http://smoothdock.ccbb.pitt.edu/pharmer/
http://open3dqsar.sourceforge.net/
https://bioinfo3d.cs.tau.ac.il/PharmaGist/
https://www.moldiscovery.com/software/flap/
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8. Pharmacokinetics Property Analysis

The term “pharmacokinetics” originated from the Greek words pharmakon (drug)
and kinetikos (movement) and describes the investigation of the dynamic movements of
foreign chemicals (xenobiotics) throughout the body, including absorption, distribution,
biotransformation/metabolism, and excretion (ADME), as shown in Figure 4. It may
simply be defined as the body’s response to xenobiotics that can be evaluated by using
the tools listed in Table 5 [111]. The distribution of therapeutic drugs in an organism
is characterized by ADME, a well-known and recognized pharmacology concept. The
word “pharmacokinetic” refers to the ADME/T between a pharmacological substance in
pharmacology. More than half of all medication candidates fail preclinical trial tests due to
insufficient ADME characteristics [112]. Recent methodologies and improvements in the
drug detection process have led to a large number of potential therapeutic compounds that
are currently undergoing preclinical ADMET evaluation.
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8.1. Absorption

The transfer of medicine from its delivery site into the circulation is referred to as
absorption. Absorption describes how much drugs are absorbed and how much time is
necessary for absorption; the quantity entering the bloodstream in an unmodified state
is known as bioavailability [113]. Multiple variables influence the rate and scope of med-
ication absorption, including administration route, a drug’s formulation and chemical
qualities, and food–drug interactions. There are two fundamental routes for drug absorp-
tion once the medication is present in solution form: active transport and passive diffusion.
Chemical carriers in the membrane bind to drug molecules and transport them through the
membrane to the opposite side, where they are discharged [114]. Because the membrane
plays an active part in this process, it is called active transport. Chemical energy is required,
and molecules can be moved from a low-concentration zone to a higher-concentration
region. During passive diffusion, the membrane plays a passive role in drug absorption;
most medicines pass through the membrane this way. The physicochemical properties of
the drug as well as the intensity of the drug gradient across the membrane impact the rate
of drug transfer.
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8.2. Distribution

The technique of drug distribution is important because it impacts how much medica-
tion enters the active areas, and it measures drug efficacy and toxicity. Drug distribution is
mostly determined by the binding and unbound forms of enzymes and proteins found in
the circulation. The binding of medication with plasma proteins influences its effective dis-
tribution [115]. If less medication binds with plasma proteins, more drugs are distributed
across cell membranes, resulting in better bioavailability. A medication will travel from
the site of absorption to tissues throughout the body, including the brain, fat, and muscle.
Tissues and organs with a large blood supply, such as the heart, liver, and lungs, are one
such location. The center volume of distribution indicates this space. The opposite part has
a lower blood supply. The sum of tissue spaces not included in the core volume is referred
to as the peripheral volume of distribution. The center volume is distributed first, followed
by the peripheral volume. Smaller molecules readily pass through biological membranes
and obtain a much greater percentage of distribution, while bigger molecules struggle to
penetrate the cellular membrane and yet have a lower probability of distribution [116].

8.3. Metabolism

Once a medication enters an organism’s body, the activity of catabolism and anabolism
defined as metabolism begins with the assistance of different enzymes accompanied by
different chemical components and solvent processes [117]. The primary goal of drug
metabolism is simply to convert these drug molecules into further polar, water-soluble
stages or end products that can be easily eliminated from an organism’s body. Drugs can
indeed be metabolized by the processes of oxidation, reduction, hydration, conjugation,
concentration, or isomerization, making the drug easier to eliminate. Although enzymes
are found in many tissues that are engaged in the metabolism process, the liver contains
the largest quantity [118]. Drug metabolism processes vary amongst individuals. Some
people metabolize drugs so fast that bioactive bloodstream concentrations are not achieved;
others’ metabolism is extremely slow, rendering usual dosages toxic.

Table 5. Summary of the most usually recognized ADME analysis tools used in the computational
drug design process.

S. No. Program Description Accessibility Reference

1. ADMETlab ADMET in a systematic manner utilizing the
ADMET database

http://admet.scbdd.com/ [119]

2. eMolTox Molecular toxicity prediction http://xundrug.cn/moltox [120]

3. LIVERTOX Hepatotoxicity prediction https://livertox.nih.gov/ [121]

4. vNN ADMET forecasts https://vnnadmet.bhsai.org [122]

5. PreADMET This online tool calculates the probability of
carcinogenicity as well as poisonous potency

https://preadmet.bmdrc.kr/ [123]

6. QikProp Used to forecast ADMET-related features https://www.schrodinger.com/qikprop [124]

7. SwissADME Estimate physicochemical characteristics and
predict ADME

http://www.swissadme.ch/ [125]

8. DSSTox It is a public database of searchable
distributed structure toxicity

https://comptox.epa.gov/ [126]

9. ChemTree It is used to forecast ADMETox characteristics. https://chemtree.kr/ [127]

10. Metabase It is a low-cost radio analytical LIMs in
ADME/PK research based on Excel

https://www.metabase.com/ [128]

11. TOPKAT Used in toxicology prediction https://www.toxit.it/en/services/
software/topkat

[129]

http://admet.scbdd.com/
http://xundrug.cn/moltox
https://livertox.nih.gov/
https://vnnadmet.bhsai.org
https://preadmet.bmdrc.kr/
https://www.schrodinger.com/qikprop
http://www.swissadme.ch/
https://comptox.epa.gov/
https://chemtree.kr/
https://www.metabase.com/
https://www.toxit.it/en/services/software/topkat
https://www.toxit.it/en/services/software/topkat


Molecules 2022, 27, 4169 15 of 21

8.4. Excretion

Excretion is the process of removing or eliminating undesirable products or molecules
from an organ system. The liver and kidneys are the principal sites for drug excretion;
however, the skin, lungs, bile, and stomach may also be involved. The components, whether
metabolized or unmetabolized, might be eliminated from the individual’s system. The
total complicated elimination process is performed by the kidneys involving urine and
occasionally sweat.

9. Toxicity Analysis

Toxicity evaluation is an important process before a drug candidate goes through
a clinical trial for improved lead chemical selection [130]. Toxicity is a measurement of
any undesirable or unfavorable molecules or substances that impact the human body
or system. To investigate the toxicity of substances, the traditional drug design process
includes several animal studies, which are time-consuming, expensive, and require ethical
concerns. Computer-aided toxicity tests, as compared to traditional approaches, are quick
and economical ways to remove potentially harmful chemical compounds and minimize
the number of biological experimental procedures [131]. Genotoxicity, carcinogenicity, skin
sensitization, irritation, ecotoxicity, and other endpoints are used to calculate toxicity [132].
Single or multiple dosage studies are used to determine the effects of chemicals on humans,
animals, plants, or the environment. Blockage of human ether-à-go-go-related gene (hERG)
potassium ion channels, for example, is toxic to the heart and can cause serious cardiac
arrhythmia. As a result, early identification of suspected hERG inhibitors or non-inhibitors
may play a critical role in decreasing cardiotoxicity.

10. Molecular Dynamics Simulation

Molecular dynamics (MD) simulation itself is a computer-based simulation approach
that focuses on analyzing the movement of atoms and molecules through a conformational
space. The stability of protein–ligand complexes in a certain artificial environment may be
confirmed via MD modeling. As a result, researchers ran a 50 ns MD simulation to examine
the protein–ligand complexes’ steady-state nature and conformational stability [133]. MD
uses Newton’s second rule of motion to anticipate novel conformations of a molecular sys-
tem by integrating over time the force exerted on the system and the velocities of the atoms
in the system. MD simulation techniques minimize the probability of a molecular system
becoming stuck in a local lowest energy area during a simulation, allowing for complete
conformational space sampling [134]. Consequently, molecular dynamics simulation is
still a better, quicker, more rational, and more broadly accessible process for drug design
using in silico methods [135]. Additionally, the position and velocity of each atom in the
system are caught at every moment in time, which is difficult to do with any experimental
approach. It generally describes the protein’s atomic and molecular characteristics, drug–
target interactions, chemical solvation, and conformational adjustments that a receptor
exhibits under different situations. However, the main limitation is in simulated time,
which at present is in the order of nanoseconds for a large system.

11. MM-GBSA/MM-PBSA

Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) and molecular
mechanics generalized Born surface area (MM/GBSA) are the most renowned methods
for MD snapshots that can calculate a single minimized structure from many structures.
One of the significant advantages is the ability to split complete available energy via
sub-components and separately quantify individual contributions using MM/PB(GB)SA.
This feature is unquestionably beneficial when evaluating various free-energy approaches.
MM/PB(GB)SA may be used in a variety of configurations, including microscopic host
machines to giant protein–protein interactions involving hundreds of molecules [136]. The
whole approach is mostly employed in docking studies that require a rapid assessment of
binding affinities. Docking software and servers use a scoring system that takes binding
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affinity into account when determining the feasible configurations of such ligand inside
a binding pocket. MM/PB(GB)SA may enhance the effectiveness of such scoring meth-
ods [137]. MM/GBSA, for example, was used to increase the effectiveness of molecular
docking software in the Drug Design Data Resource and Grand Challenge 4. A huge dataset
of protein–ligand complexes with non-redundant binding poses was used to predict proper
configurations using MM/GBSA [138]. Recently, MM/GBSA was used to investigate the
effect of nelfinavir stereoisomers on the SARS-CoV-2 main protease [139].

12. Conclusions

Identification and characterization of drug targets and their corresponding active
compounds are largely dependent on mathematical and computational methodologies and
complicated systems biology tools. By using these approaches, chemical and structural
characterization of the molecules is made possible, thus leading to a reduction in the risk
of complications and failure of drug candidates. Traditional experimental studies for de-
signing and developing drugs are expensive and time-consuming processes that can be
optimized by using different mathematical models and computational tools. Therefore,
the use of computational tools and mathematical modeling is increasing day by day for
molecular modeling and therapeutics discovery. However, more mathematical and com-
putational study is necessary to eliminate individual bias in the design and development
of lead compounds. Furthermore, these methodologies have a high impact on the system
biology and drug design and development process, which can help to identify more accu-
rate targets as well as target specific drugs. However, more emphasis should be focused
on the development of new and more accurate tools that can be used to refine the existing
molecular approaches for future drug design processes.
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