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MOTIVATION The ability to reliably engineer a cell type or tissue of interest is a critical goal of stem cell
biology, regenerative medicine, and therapeutic development. In recent years, significant technical ad-
vances in genome editing, next-generation sequencing (NGS), and high-throughput cloning have enabled
the development of robust tools for gene regulatory network perturbation and their subsequent readout.
Nonetheless, no study has integrated this diverse toolkit into a facile workflow for generation of unique
cellular identities. The STAMPScreen pipeline, presented here, integrates computational and experimental
methods to identify, construct, and induce key regulatory factors in a streamlined and replicable manner.
SUMMARY
With the recent advancements in genome editing, next-generation sequencing (NGS), and scalable cloning
techniques, scientists can now conduct genetic screens at unprecedented levels of scale and precision.With
such a multitude of technologies, there is a need for a simple yet comprehensive pipeline to enable system-
atic mammalian genetic screening. In this study, we develop unique algorithms for target identification and a
toxin-less Gateway cloning tool, termed MegaGate, for library cloning which, when combined with existing
genetic perturbation methods and NGS-coupled readouts, enable versatile engineering of relevant mamma-
lian cell lines. Our integrated pipeline for sequencing-based target ascertainment and modular perturbation
screening (STAMPScreen) can thus be utilized for a host of cell state engineering applications.
INTRODUCTION

Recent technological advancements in large-scale cloning,

genome editing, and next-generation sequencing (NGS) have

enabled scientists to perform genetic screens at unprece-

dented levels of scale and precision. Previous studies have

leveraged these tools for the interrogation of fundamental bio-

logical processes that underpin mammalian development,

physiology, and pathology. Studies such as genome-wide

CRISPR screens for identifying chemotherapeutic drug targets

(Wei et al., 2019), single-cell profiling of the entire human em-

bryo developmental trajectory (Cao et al., 2020; Domcke

et al., 2020), and characterization of the effect of transcription

factor (TF) overexpression in the context of human induced

pluripotent stem cell (hiPSC) differentiation for nearly all human

TFs (Ng et al., 2020) demonstrate the value of pairing effective

gene engineering tools with NGS-coupled readouts. However,

despite these technological advances, there is not yet a

straightforward, unified pipeline for gene target identification,

perturbation tool selection, library cloning, and readout assess-
Cell Repo
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ment, which can effectively serve as an end-to-end workflow

for mammalian genetic screening.

As publicly available gene expression and chromatin accessi-

bility datasets have drastically increased in quality and abun-

dance, new in silico tools have becomemore effective at predict-

ing screening targets (Jung et al., 2021; Rackham et al., 2016;

Schlitt and Brazma, 2007). However, many of these tools require

multiple types of data that might not be available, and they are

mostly limited to cell differentiation projects. To expand the

scope and the feasibility of computational target prediction, ver-

satile tools are required that can be applied to any cell engineer-

ing screen and can effectively analyze different types of data to

accurately infer gene targets.

With theadventofgenome-editing toolsand themajordecrease

in the cost of NGS, there now exist readily available tools for the

large-scale perturbation of mammalian genomes, such as

CRISPR single-guide RNA (sgRNA) libraries and the cDNA

hORFeome,which enable researchers to target nearly any human

gene for functional characterization (Mardis, 2011; Rual, 2004).

However, the recent development of robust gene perturbation
rts Methods 1, 100082, October 25, 2021 ª 2021 The Author(s). 1
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Figure 1. STAMPScreen schematic workflow

Schematic representation of the STAMPScreen pipeline, highlighting in silico target ascertainment, screening tool selection, library cloning, and NGS-coupled

screening readout. STAMPScreen generates data that feed into iterative cycles of the workflow.
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technologies has created a need for systematic studies that

evaluate and compare the performance of these tools in relevant

human cell lines, to allow researchers to select the appropriate

tool for their specific application. In addition, common genetic

tools, such as cDNA overexpression have so far been difficult to

apply at scale due to hurdles inmolecular cloning, thereby limiting

their utility.

Considering the technological and scientific advancements in

each of these areas of biology and their inherent limitations and

applicability to different biological systems, there is a need for a

salient, efficient pipeline that provides an integrated solution for

systematic mammalian genetic screening studies. This article

seeks to directly address this gap in the literature through the

development of target identification and library cloning tools,

which can be combined with NGS-coupled readouts for cellular

engineering of relevant mammalian cells. Using these tools, we

developed an all-in-one integrated pipeline for sequencing-

based target ascertainment and modular perturbation screening

(STAMPScreen) (Figure 1).

RESULTS

In silico methods for gene target identification
The rapid improvement of NGS technologies has led to a

decrease in the cost of sequencing and a subsequent increase
2 Cell Reports Methods 1, 100082, October 25, 2021
in the amount of biological data generated from different cell

types under various conditions. These data serve as a powerful

resource for hypothesis-generating studies, especially for pro-

jects aimed at cell engineering. However, a major bottleneck in

this area of biology has been the lack of accurate tools that

can analyze different types of large datasets and extract accu-

rate information for cell engineering target identification. Here,

we present two different methods for predicting phenotype con-

version perturbations from bulk and single-cell RNA sequencing

(RNA-seq) data.

Differential gene expression analysis (DGEA) has been the

most widely used method for identifying statistically significant

transcriptomic changes between treatment samples and con-

trols (Love et al., 2014; Robinson et al., 2009). While DGEA has

helped identify causal genes for various transcriptomic changes

and performs adequately in a well-controlled study with a

defined intervention, the method prioritizes factors overex-

pressed at specific stages, thus inferring correlation rather

than causality, and it loses its predictive power when applied

to more drastic gene expression perturbations. More recently,

gene regulatory network (GRN)-based approaches, such as

CellOracle and IRENE, have been developed to identify factors

that increase cell conversion efficiencies by integrating RNA-

seq and chromatin accessibility single-cell data (Jung et al.,

2021; Kamimoto et al., 2020). However, these methods require
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access to both transcriptomic and epigenomic single-cell data-

sets that may not be readily available for cell types of interest. In

addition, network analysis of gene essentiality have been con-

ducted, but to this point have been limited to CRISPR screening

data (Jiang et al., 2015). To address the shortcomings of these

frameworks, we present two complementary target ascertain-

ment methods that use genetic and protein networks to accu-

rately infer targets for cell engineering screens.

DEG network analysis

Using a similar approach to Rackham et al. (2016), we developed

a differentially expressed gene (DEG) network scoring method

utilizing transcriptomic data from a starting cell state and a target

cell state. In our method, we first performed a DGEA to deter-

mine significant gene expression changes, and then we gener-

ated a DEG score for each gene by combining the traditional

DEG metrics (fold-change, p value) with cell phenotype informa-

tion (correlation with desired phenotype). To infer phenotype

causality as well as identify DEGs with small changes but poten-

tial large effects, we added a layer of protein network connectiv-

ity to our DEG scoring. Using the STRING interaction database

(Szklarczyk et al., 2014), we traversed each DEG’s protein

network across three layers and calculated a score that com-

bines its DEG score with the degree of connectivity. The resulting

list preferentially ranks DEGs with large significant changes be-

tween the two cell states that are also highly connected to other

highly differentially expressed DEGs (Figure 2A). We validated

our method using RNA-seq data from differently aged human

primary fibroblasts (Fleischer et al., 2018) to identify causal aging

genes. Our analysis shows that the DEG network scoring

method generates a ranked list of targets that has a significantly

high enrichment of known experimentally validated aging genes,

unlike plain DGEA or ranking based on common metrics

(Figure 2B).

GRN centrality analysis

While our DEG network analysis approach addresses the short-

comings of traditional DGEA, it is inherently dependent on the

availability of protein interaction data and not highly sensitive

to small intermediary transcriptomic changes across time-series

data. To provide an alternative tool that overcomes these limita-

tions, we sought to develop a unique algorithm by combining

time-series transcriptomic data with graph theory-based cen-

trality analysis. To do this, we utilized stochastic gradient boost-

ing machines to train GRNs and calculated the PageRank of

each genetic factor post network construction and graph prun-

ing (Moerman et al., 2018; Page et al., 1999). Our simple pipeline

requires a normalized fold-change representation for each gene

at different stages of the cell state conversion and generates a

graphical representation of ranked factors with the highest

global importance (Figure 2C). We validated our pipeline using

existing RNA-seq datasets of neuronal stem cell, myoblast,

and melanocyte differentiation (Burke et al., 2020; Choi et al.,

2020; Liu et al., 2019). Our results demonstrate that the algorithm

can effectively identify known experimentally validated causal

regulators within the predicted top factors (Figure 2D).

Compared with traditional DEG approaches, these two methods

generate candidate gene lists enriched for known genes related

to the studied phenotype, showcasing the accuracy of our

methods when applied to complex phenotypes.
Modular perturbation tools
After ascertaining the targets for a desired cell engineering

screen using the previously presented methods, the

STAMPScreen workflow requires the choice of a perturbation

tool. Gene perturbation in mammalian cells can be performed

either at the endogenous locus of a specific target via effector

proteins that activate transcription, such as CRISPR-Cas (Cha-

vez et al., 2016) or exogenously through cDNA expression via

inducible or constitutive promoters (Arnoldo et al., 2014). Both

CRISPR and cDNA technologies have been leveraged in recent

mammalian screens to effectively target genes of interest in an

individual or combinatorial manner (Chavez et al., 2015, 2016;

Konermann et al., 2014; Qi et al., 2013; Horlbeck et al., 2016;

Bikard et al., 2013; Gilbert et al., 2013; Zalatan et al., 2015; Tak

et al., 2017; Zhang et al., 2017; Liu et al., 2019; Yeo et al.,

2018; Shimojima et al., 2020; Parekh et al., 2018).

To generate an integrated pipeline for gene perturbation, we

evaluated existing gene perturbation tools and developed

powerful technologies for cDNA andCRISPR screening. We per-

formed a rigorous evaluation in hiPSCs of the relative perfor-

mance of three popular CRISPRa constructs, twoCRISPRi tools,

and five cDNA overexpression vectors. Finally, we generated

unique tools for dual cDNA and CRISPR screening, which enable

researchers to overexpress genes via cDNA while simulta-

neously expressing sgRNAs to target native genes for suppres-

sion or induction.

CRISPRa performance in hiPSCs

Recent comprehensive comparisons of the three most popular

CRISPRa tools (synergistic activation mediator [SAM], VP64-

based SunTag, and VP64, p65, and RtTa [VPR]; Chavez et al.,

2016; Konermann et al., 2014; Tanenbaum et al., 2014) have

been performed in a variety of cell types, but no study has

compared the three activators in hiPSCs. We therefore evalu-

ated the performance of the three CRISPRa tools for overex-

pressing 47 target genes in the hiPSC line PGP1. On average,

dCas9-VPR induced stronger expression across the tested

genes, when compared with dCas9-SAM and dCas9-SunTag,

while SAM showed modest levels of improvement over SunTag

(Figure 3A). For all three activators, genes with high basal

expression were more difficult to overexpress using any of the

three CRISPRa technologies, in line with previous studies (Fig-

ure S1A) (Chavez et al., 2015). Based on these results, we

conclude that, for CRISPRa screens in hiPSCs, dCas9-VPR is

the optimal tool as compared with dCas9-SAM and dCas9-

SunTag.

CRISPRi performance in hiPSCs

We additionally evaluated the performance of two highly utilized

CRISPRi tools, dCas9-KRAB and dCas9-KRAB-MeCP2, against

12 gene targets in hiPSCs (Yeo et al., 2018). Our results demon-

strate that dCas9-KRAB-MeCP2 induces higher gene knock-

down compared with dCas9-KRAB, in line with previous findings

(Figure 3B). We also observe that the level of repression was lo-

cus dependent, with a knockdown of greater than 95%at certain

loci while others showed minimal change in transcript abun-

dance. The source of this resistance to suppression could be

from poorly functioning sgRNAs, as our study screened only

one sgRNA per target. In addition, local chromatin architecture,

interference from native transcriptional regulators, or insufficient
Cell Reports Methods 1, 100082, October 25, 2021 3



Figure 2. In silico target ascertainment

(A) DEG network target identification pipeline. DGEAwas used to determine significant changes between the starting and target cell state. Using publicly available

protein interaction networks, DEGs are scored based on their connectivity and differential expression levels.

(B) Validation of the DEG network analysis method applied to the fibroblast aging phenotype. The list of all DEGs and top 100 ranked lists based on common

metrics and our network score were tested for enrichment of known aging genes from the GenAge database.

(C) Graph theory-based TF discovery pipeline. Gene regulatory networks are inferred from time-series RNA sequencing data. PageRank with a standard residual

probability of 0.85 was utilized to rank TFs by centrality score.

(D) Prediction of central TFs in known differentiation protocols using graph theory-based TF discovery pipeline. Experimentally validated TFs are indicated,

demonstrating predictive capability of the pipeline.
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Figure 3. Gene perturbation tool evaluation

Systematic comparison of CRISPRa, CRISPRi, and

cDNA function were performed in the hiPSC line

PGP1. Analysis was performed using qRT-PCR with

duplicates and the DDCq method was utilized to

determine relative expression to a no plasmid con-

trol duplicate. For CRISPRa and cDNA (A and C),

cells were harvested 48 h post-transfection; for

CRISPRi (B), cells were harvested at 72 h post-

transfection. Induction using dCas9-VPR, SAM, and

SunTag was performed on 47 gene targets in

hiPSCs, cDNA induction was performed on 17

genes targets, and CRISPRi repression was per-

formed on 12 gene targets. Significance by Mann-

Whitney test. The pink line shows median values,

dashed black lines are 95 CI. For systematic com-

parison of cDNA induction using the PB-TA-ERP2,

XLone, cT3G, cERP2, and cERP2-cT3G vectors

expressing sfGFP (D). Cells were harvested for flow

cytometry after 24 h of doxycycline induction and

screens were performed in duplicate with and

without doxycycline. Geometric mean fluorescent

intensity of all live singlet cells was plotted for each

condition. For demonstration of dual expression

vectors (E) a constitutive mCherry cDNA was ex-

pressed along with a sgRNA targeting a Tet

promoter. This vector was co-nucleofected with

dCas9-KRAB-MeCP2 into an hiPSC line harboring a

Tet-sfGFP under induction. Cells were harvested

96 h later for flow cytometry. Relative expression

was calculated as MFI compared with no plasmid

control. The right panel shows a similar setup but

with a sfGFP cDNA vector under Tet promoter and

an sgRNA targeting an integrated tdTomato

construct. The plasmid was co-nucleofected with

dCas9-VPR and cells were harvested 48 h later for

flow cytometry, relative expression was calculated

as MFI compared with no plasmid control. Calcu-

lated p values are represented as follows: ***p %

0.001, ****p % 0.0001.
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waiting period between knockdown and observation may also

play a role (Yeo et al., 2018). In addition, it may be possible

that genes that lie near the target are likewise affected in their

expression by KRAB silencing. Previous studies have looked at

this possible leakage with no definitive conclusions but, based

on their data, it seems that this is uncommon but warrants further

research (Yeo et al., 2018). Based on our data, we conclude that

dCas9-KRAB-MeCP2 is the optimal CRISPRi tool for gene sup-

pression in hiPSCs.

cDNA overexpression performance in hiPSCs and

primary human fibroblasts

To compare the expression dynamics of CRISPRa and cDNA

overexpression, we tested constitutive expression of 17 open

reading frames (ORFs) in hiPSCs that we previously targeted

using CRISPRa. Overall, cDNA overexpression demonstrated

higher induction levels compared with CRISPRa, but similar to

CRISPRa showed minimal overexpression for genes with

higher basal expression (Figures 3C and S1B). In addition, we

compared two common doxycycline-inducible plasmids, XLone

(Randolph et al., 2017) and PB-TA-ERP2 (Kim et al., 2016), and
found that XLone-based expression had low background (signal

in the absence of doxycycline) and low inducibility (signal in the

presence of doxycycline), while PB-TA-EPR2 showed high back-

ground and high inducibility in both hiPSCs and primary normal

human fibroblasts (NHDFs) (Figures 3D and S2D). To combine

the desirable features of both vectors, we used the XLone

plasmid as a base vector and replaced the blasticidin selection

with puromycin and additionally constructed three modified

plasmids utilizing components of PB-TA-ERP2. We cloned a

minimal cytomegalovirus (CMV) promoter downstream of the

Tet promoter (cT3G), a CMV enhancer upstream of the rtTA-

3G (cERP2), and both together (cERP2-cT3G). We then tested

the performance of the three new vectors in hiPSCs and NHDFs

and show that the CMV promoter enhances induction in both

fibroblasts and hiPSCs and that the CMV enhancer additionally

increases induction in hiPSCs (Figures 3D and S2C). The cT3G

and cERP2-cT3G vectors both exhibit robust inducibility to a

broad range of doxycycline concentrations, and demonstrate

stable, increasing expression for over a week and negligible

silencing after a month (Figures S2A and S2B). We additionally
Cell Reports Methods 1, 100082, October 25, 2021 5
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cloned IRES2 fluorescent constructs mTagBFP2, mCherry, and

mNeonGreen into cT3G and cERP2-cT3G and observed robust

expression of both the primary ORF and fluorescent construct

(Figure S2C). For many genetic studies, high levels of overex-

pression of targets may not be beneficial to address the under-

lying question as this may lead to spurious, non-biologically

relevant results. However, we believe that providing a tunable

vector with a broad range of induction levels allows the user to

best customize their expression to their desired outcome.Where

extensive levels of induction are needed, such as in synthetic dif-

ferentiation screens or polycistronic cassettes like IRES-coupled

fluorescent expression, we believe these vectors perform opti-

mally. In addition, the tunable nature of our vectors demon-

strates strong doxycycline response curves that have linear

ranges of response that can be utilized for precise dosage con-

trol in studies that require it. Based on these findings, we

conclude that cDNA overexpression produces similar or higher

transcript levels than CRISPRa in hiPSCs. We further develop

robust doxycycline-inducible tools for tunable gene expression

in hiPSCs and NHDFs with high induction efficiency and low

background expression.

Dual gene perturbation via cDNA overexpression and

CRISPR

Recent studies have shown that CRISPRa and CRISPRi can

function as potent combinatorial gene perturbation tools,

capable of target overexpression, repression, or both within a

single cell (Zalatan et al., 2015; Lian et al., 2017; Hazelbaker

et al., 2020). To further expand themammalian gene perturbation

toolkit, we aimed to combine cDNA overexpression with the

CRISPRa/i system in the same vector. We designed plasmids

that express both a cDNA construct from an inducible or consti-

tutive promoter and an sgRNA from the human U6 promoter. We

transfected the aforementioned plasmids into a hiPSC cell line

harboring an integrated dCas9-VPR or dCas9-KRAB-MeCP2,

and dual gene induction and dual overexpression and repression

was achieved, showing 10- to 200-fold cDNA induction, 10-fold

CRISPRa induction, and 50% CRISPRi repression (Figure 3E).

Based on our findings, our dual cDNA-CRISPR perturbation

tool will provide a valuable resource for screening studies that

aim to perform both exogenous and endogenous perturbations,

such as cDNA screens paired with genome-wide CRISPRi

libraries for pathway analysis.

Library cloning
Having decided on a gene target list and perturbation tool, the

next step in our proposed STAMPScreen workflow consists of

generating a viable screening library. For CRISPR studies,

sgRNA cloning through Golden Gate reactions are efficient and

scalable, having enabled many genome-wide CRISPR screens

(Vad-Nielsen et al., 2016; Engler et al., 2008). However, molecu-

lar cloning of cDNA, particularly at library scale into barcoded

vectors, has proved to be cumbersome and difficult with existing

technologies such as Golden Gate, Gibson Assembly, or

Gateway cloning (Kirchmaier et al., 2013; Magnani et al., 2006;

Gibson et al., 2009). We therefore developed a powerful method

for cDNA cloning, termedMegaGate, which combines the lack of

sequence bias found in Gateway cloning with the combinatorial

capacity of restriction cloning.
6 Cell Reports Methods 1, 100082, October 25, 2021
MegaGate—A unique toxin-less recombination cloning

tool

MegaGate utilizes the lambda phage recombination technology

of Gateway cloning to shuttle a DNA sequence of interest into a

desired destination vector. Uniquely, our method eliminates the

need for a ccdB toxin cassette by replacing it entirely with re-

striction enzyme recognition sites (Figure 4A). Through recombi-

nase insertion of the cDNA construct and linearization of the

unreacted destination vectors, only the desired vectors propa-

gate in the bacterial transformant pool (Figure 4A). We identified

an optimized set of reaction conditions that regularly demon-

strates 99.8% or greater cloning efficiencies and high positive

colony plating (Figure S3). Moreover, the utilization of the

Gateway att sites makes MegaGate compatible with all existing

pENTR ORF libraries such as the hORFeome and TFome,

enabling it to be readily usable in many labs.

The MegaGate reaction is highly modular, amenable to vol-

ume scaling, isothermal reactions, all-in-one or multi-step re-

action mixtures, differential enzyme recognition sites, and

highly variable insert sizes (Figure S3). In addition, the utiliza-

tion of meganucleases, which have highly rare and specific

recognition sequences, allows the use of a single MegaGate

vector for cloning almost any known coding sequence without

further plasmid or gene modification. Furthermore, we showed

that other restriction enzymes, such as those in the type IIS

family, can also be used in place of meganucleases, making

the cloning strategy highly modular for use in a variety of

cloning applications (Figure S3). In addition, we highlight

MegaGate’s compatibility with the BP Clonase enzyme mix

to clone pENTR ORFs from cDNA PCR inserts (Figure S3).

Based on our findings, MegaGate is a simple and efficient

cDNA cloning tool for the generation of ORF libraries using

pENTR libraries and non-barcoded or barcoded MegaGate

destination vectors.

Validation of MegaGate in single and pooled cloning

To evaluate the performance of MegaGate single gene cloning,

we cloned 200 pENTR genes individually into two different

barcoded MegaGate destination vectors, yielding 100% ORF

capture and 25–200 barcoded transformants per reaction (Fig-

ure S4). For testing pooled cloning, we pooled a total of 948

genes from the hORFeome into 3 pools of 316 pENTR vectors

normalized by size. We then utilized MegaGate to clone the

pools into a pool of barcoded MegaGate destination vectors.

Utilizing amplicon sequencing, we then characterized our initial

pENTR pool and our resulting expression vector pools to deter-

mine the percentage of our plasmids that were converted into

expression vectors and to assign barcodes to each ORF. On

average, we captured 95% of input ORFs (900/948) from the 3

pools, each with 1–500 unique DNA barcodes per gene (Fig-

ure 4B). In addition, our data show that MegaGate demonstrates

a size dependence, with smaller ORFs cloning more efficiently

relative to larger ORFs (Figure 4C). When there is little variance

in insert length, MegaGate cloning generally maintained the

ORF relative abundance, whereby the distribution of ORFs in

the expression pool mirrors that in the pENTR pool (Figure 4C).

Based on the results, MegaGate is an efficient cDNA cloning

tool for generating barcoded ORF libraries, capable of cloning

single or pools of 300+ ORFs at high throughput and low cost.



Figure 4. MegaGate, a toxin-less cDNA cloning method

(A and B) (A) Schematic representation of the MegaGate cloning reaction. (B) Percent ORF capture (pink) measured as the ratio of input genes captured in

expression vectors in a single MegaGate cloning reaction for single genes and pooled groups. Number of barcodes captured per gene (teal) for the single genes

and pools was determined via NGS alignment of destination vector amplicons.

(C–E) Cloning efficiency as a function of ORF length. Cloning efficiency wasmeasured as the relative abundance of the gene in the expression vector pool divided

by the relative abundance of the gene in the pDONOR pool, as measured by NGS counts. Genes are arrayed by length on the x axis.
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Screening and NGS-coupled readouts
Having ascertained the genetic targets for the phenotype of in-

terest, selected a gene perturbation tool, and generated the

screening library for the relevant biological system, our cell con-

version workflow next focuses on optimizing the screening pipe-

line, performing the screen, and analyzing the data. Here, we

present current and relevant methods for these final steps in

the STAMPScreen protocol.

The two most common integrative gene delivery systems are

the lentiviral (LV) transduction and the PiggyBac (PB) transposon

system (Zufferey et al., 1997; Yusa et al., 2011). Their respective

advantages and disadvantages have been discussed previously

(Vargas et al., 2016), but one important consideration when using
the PB system for screening purposes is the resulting copy num-

ber. While this variable is easily optimized in the LV system

through multiplicity of infection titration, the PB system requires

cell line-specific optimization, since the copy number will be

correlated with the amount of DNA and its delivery efficiency.

Our data suggest that the transgene copy number varies linearly

with the ratio of transposon:transposase within a certain range

where the transposon is not in saturation or ultra limiting, after

which the number of integrations plateaus (Figure 5A). We

selected single-cell clones from hiPSC integrant pools and addi-

tionally showed the copy number varies within a population

following a Poisson distribution (Figure S4).We suggest perform-

ing transposon titration at a fixed amount of transposase to
Cell Reports Methods 1, 100082, October 25, 2021 7



Figure 5. NGS-coupled readouts

(A) PiggyBac integration copy number was

measured using qRT-PCR on genomic DNA. In-

tegrant-specific primers and a single copy gene

RPP30 were used. A 2 3 DCq measurement was

used to determine copy number for n = 2 biological

replicates. Error bars are standard deviation.

(B) Barcode enrichment analysis (Bar-seq) was

performed on hiPSC pools with 54 barcoded gene

insertions and barcoded GFP insertions. RNA was

harvested after FACS 72 h post-induction, and

barcodes were amplified for NGS. Relative abun-

dance was measured as the relative read count of

each gene barcode compared with the total read

count of all barcodes.

(C) Two barcoded genes, GFP and ZGLP1, were

integrated into hiPSCs and induced for 72 h in

duplicate. RNA was harvested and RNA-seq was

performed. DEseq2 was utilized to calculate log2fc

and p values and an exact match kmer was used to

identify the gene barcode.

(D) Forty barcoded genes were integrated into

hiPSCs and induced for 3 days and RNA was har-

vested and converted to cDNA. A primer pool for all

40 genes was used to amplify the 40 targets for NGS

as well as their barcodes in the DOX OFF and DOX

ON pools. Relative gene expression was calculated

as relative read counts normalized to GAPDH for

each pool. Calculated p values are represented as

follows: ****p % 0.0001.
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determine the appropriate ratio for obtaining the desired copy

number in a given biological system.

One of the main advantages of using the STAMPScreen pipe-

line in a given screen is its coupling of phenotype-specific read-

outs with NGS, enabling high-throughput characterization. If a

given cellular phenotype does not have a well-established imag-

ing-based high-throughput assay, targeted RNA sequencing

(TAR-seq) can offer accurate information about a subset of the

cellular transcriptome in a scalable manner (Martin et al.,

2016). For example, a screen for the activation of certain cellular

pathways, where the primary goal is the induction of specific

transcripts, would be an obvious application. Our data show

that, with proper design considerations and reaction optimiza-

tions, up to 70 RNA targets, including vector barcodes, can be

quantified in a single reaction at precision levels comparable

with qPCR (Figure S5). This method allows for the interrogation

of a limited number of transcripts across hundreds of perturba-

tions in a scalable and cost-effective manner.

When considering pooled screens of barcoded vectors,

NGS readout coupling becomes necessary for matching the

perturbation to the observed phenotype. Regardless of

the screening readout (e.g., flow cytometry, targeted

sequencing, scRNA sequencing, combination of flow and

RNA sequencing), a barcode enrichment analysis is required

for pooled screening approaches. Upon isolating a specific
8 Cell Reports Methods 1, 100082, October 25, 2021
cell population and assigning it a signal

value, the associated genetic perturba-

tion can be identified by amplifying and

sequencing barcodes from the gDNA or
RNA of the cells (Bar-seq) (Smith et al., 2009). To demonstrate

Bar-seq utilizing our vectors, we FACS isolated barcoded

GFP-expressing cells from a pool of cells harboring 159 barc-

odes and showed that the GFP-associated barcodes were

significantly enriched in the FACS-positive pool (Figure 5B).

In addition, we overexpressed two genes in separate hiPSC

populations and performed bulk RNA-seq and demonstrated

that we could capture both the whole transcriptome of the

population as well as the gene-associated barcode for RNA-

seq coupled to barcode enrichment analysis (Figure 5C). To

demonstrate TAR-seq coupled to barcode enrichment, we

overexpressed 40 barcoded genes in hiPSC performed TAR-

seq, which showed effective capture of the 40 gene panel

and associated barcodes (Figure 5D). We demonstrate that

our vectors can be effectively integrated into hiPSCs and

read out for coupled barcode enrichment and transcriptomic

characterization via targeted RNA-seq, RNA-seq, or gDNA

Barcode-seq, thus completing the STAMPScreen integrated

workflow.

DISCUSSION

In this study, we present STAMPScreen, a sequencing-based

target ascertainment and modular perturbation screening

method for enabling cellular engineering. Our proposed
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workflow consists of four main parts: target identification, pertur-

bation tool selection, library cloning, and cell screening. We

showcase two unique computational approaches for identifying

candidate genes for a specific phenotypic conversion starting

with transcriptomic data of the initial and target cells. Next, we

present data systematically comparing different genetic pertur-

bation methods and develop vectors for genetic screening. We

then introduce a powerful method for large-scale recombina-

tion-based cloning for library creation. Last, we highlight

screening optimization considerations and NGS-based high-

throughput readout tools for performing library screens in human

cells.

STAMPScreen provides an integrated workflow for cell state

engineering, which can be used for a multitude of biological ap-

plications. We envision that the tools and methods presented in

this article will enable researchers to perform a varied array of

large-scale screens for target overexpression (using cDNA or

CRISPRa), knockdown (using CRISPRi), or dual overexpression

and knockdown (using cDNA and CRISPRi). The modularity of

these systems will enable pathway and GRN studies, differenti-

ation factor screening, drug and complex pathway characteriza-

tions, and mutation modeling. Therefore, we envision that

STAMPScreen will serve as an efficient and high-throughput

workflow for the study and engineering of cellular phenotypes.
Limitations of the study
We present STAMPScreen as a widely applicable method that

can be utilized in its entirety or in sections, based on the user’s

needs. While the method is broadly applicable, there are still lim-

itations that will require further research. Currently, the computa-

tional target identification methods solely utilize RNA-seq data,

which can be limiting when epigenome datasets are available

to help better define the underlying genetic regulation architec-

ture. However, we believe that our methods can be easily adapt-

ed and integrated into additional pipelines for utilization of these

novel data types. In addition, our CRISPR-based experiments

only compare three common CRISPRa tools and two common

CRISPRi tools, thus more research on novel enzymes or gene

perturbation platforms is needed. Furthermore, we believe Meg-

aGate will be a widely utilized tool for cDNA cloning, with near

universal applicability to ORF cloning. Except in extremely rare

instances of an ORF containing one of the described meganu-

clease sites, MegaGate can be utilized without customization.

However, this method of cloning is easily customized and can

be modified to fit nearly any ORF constraint. Finally, we demon-

strate that gene barcodes can be captured alongside transcripts

using TAR-seq and RNA-seq. For lower read depth methods,

such as scRNA-seq, barcodes can be difficult to capture effec-

tively. In these instances, it will be necessary to further PCR-

enrich the barcodes separately to best capture the genes in

each cell. Users may also need to optimize these conditions

for their specific experimental design.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

NEB 5-Alpha New England Biolabs C2987

Chemicals, peptides, and recombinant proteins

LR Clonase II Thermo Fisher 11791020

BP Clonase II Thermo Fisher 11789020

I-SceI (5U/ ul) New England Biolabs R0694

I-CeuI (5U/ ul) New England Biolabs R0699

10X CutSmart Buffer New England Biolabs B7204

T5 Exonuclease New England Biolabs M0663

Gibson Assembly Master Mix New England Biolabs E2611

BsaI-HFV2 New England Biolabs R3733

BsmBI-V2 New England Biolabs R0739

SapI New England Biolabs R0569

ProNex Size-Selective Purification System Promega NG2001

Critical commercial assays

KAPA SYBR Fast universal 2X qPCR Master Mix KAPA Biosystems KK4601

Powerup SYBR Green Master Mix Applied Biosystems A25741

RNAeasy Plus Mini Kit Qiagen 74034

DNAeasy blood and tissue lysis kit Qiagen 69504

SuperScript IV First Strand Synthesis Kit Invitrogen 18091050

KAPA RNA HyperPrep kit with Riboerase KAPA Biosystems KR1351

Qubit dsDNA HS Assay Kit Invitrogen Q32851

Q5 High Fidelity 2X Mastermix New England Biolabs M0492

Qiagen Plasmid Plus Midi Kit Qiagen 12941

QIAprep Spin Miniprep Kit Qiagen 27104

LunaScript RT SuperMix Kit New England Biolabs E3010

KAPA Unique Dual-Indexed Adapter Kit KAPA Biosystems KK8727

Monarch DNA Gel Extraction Kit New England Biolabs T1020

Deposited data

Raw MegaGate pooled cloning NGS data This Paper PRJNA753802

Raw data from BAR-Seq and TAR-Seq NGS This Paper PRJNA753802

Raw data from barcoded ZGLP1 and GFP RNA-Seq This Paper GSE182088

Analyzed data for DEG network Aging genes benchmarking Fleischer et al. (2018) GSE113957

Analyzed data for GRN network Neural stem cell bench

marking

Burke et al. (2020) PRJNA596331

Analyzed data for GRN network Myoblasts bench marking Choi et al. (2020) GSE129505

Analyzed data for GRN network Melanocyte bench

marking

Reemann et al. (2017) PRJNA492994

Experimental models: cell lines

PGP1 hiPSC Personal Genome Project PGP1 hiPSCs

F3 hiPSC ATCC BXS0116

M1 HDFn ATCC PCS-201-010

M2 HDFa ATCC PCS-201-012

(Continued on next page)

e1 Cell Reports Methods 1, 100082, October 25, 2021



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Copy Number Assessment Primers (Figure 4A) This Paper-Table S1 N/A

qPCR Primers for CRISPRa/I assessment, BAR-Seq

and TAR-Seq (Figures 2A–2C, 4B, and 4D)

This Paper-Table S1 N/A

ORF-BC_Rev: TCTTATCATGTCTGGATCGCGG (For

identifying gene-barcode pairs in Figure 3)

This Paper-Table S1 N/A

Custom Illumina I5 index primers (i501-i508) (For NGS

indexing in Figures 3 and 4)

This Paper-Table S1 N/A

Custom Illumina I7 index primers (i701-i708) (For NGS

indexing in Figure 3 and 4)

This Paper-Table S1 N/A

Recombinant DNA

MegaDestination : PB-cT3G-ERP2-MegaGate This Paper Addgene Deposit 80028

MegaDestination : PB-cT3G-cERP2-MegaGate This Paper Addgene Deposit 80028

MegaDestination : PB-cT3G-cERP2-MegaGate-hU6 This Paper Addgene Deposit 80028

MegaDestination : PB-cT3G-cERP2-MegaGate-IRES2-

mTagBFP2

This Paper Addgene Deposit 80028

MegaDestination : PB-cT3G-cERP2-MegaGate-IRES2-

mCherry

This Paper Addgene Deposit 80028

MegaDestination : PB-cT3G-cERP2-MegaGate-IRES2-

mNeonGreen

This Paper Addgene Deposit 80028

MegaDestination : EF1a- MegaGate This Paper Addgene Deposit 80028

MegaDestination : EF1a- MegaGate-hU6 This Paper Addgene Deposit 80028

dCas9-KRAB Yeo et al. (2018) Addgene 110820

dCas9-KRAB-MeCP2 Yeo et al. (2018) Addgene 110821

SP-dCas9-VPR Chavez et al. (2015) Addgene 63798

PB-SAM Li et al. (2017) Addgene 102559

dCas9-SunTag (2 vector system) Tanenbaum et al. (2014) Addgene 60903 and 60904

PB-CA Woltjen et al. (2009) Addgene 20960

PB-TA-ERP2 Kim et al. (2016) Addgene 80477

XLone-GFP Randolph et al. (2017) Addgene 96930

MegaCassette (Sequence is found and annotated

in MegaDestination vectors. Contains AttR1, I-SceI,

I-CeuI, AttR2):

ACAAGTTTGTACAAAAAAGCTGAACGAGAAACGTAAAATGATA

TAAATATCAATATATTAAATTAGATTTTGCATAAAAAACAGAC

TACATAATACTGTAAAACACAACATATCCAGTCACTATGGC

GACAGAAGAAGTATAGGGATAACAGGGTAATTGTTGTAAG

CGCGCTATGATGGAGGCTATGCCACTAGAATCTGCGTTCGC

TACCTTAGGACCGTTATAGTTAGAAGGAAAGCTCCATCATAG

TGACTGGATATGTTGTGTTTTACAGTATTATGTAGTCTGTT

TTTTATGCAAAATCTAATTTAATATATTGATATTTATATCATT

TTACGTTTCTCGTTCAGCTTTCTTGTACAAAGTGGT

This Paper N/A

Software and algorithms

STAMPScreen Target Ascertainment algorithms This paper https://10.5281/zenodo.5223748

Geneious Prime 2019.2.3 Biomatters Ltd. N/A

DESeq2 v1.32.0 Love et al. (2014) N/A

GraphPad Prism v8.3.1 for MacOS Graph Pad software N/A

STAR v2.5 Dobin et al. (2013) N/A

BBMap v38.90 Bushnell et al. (2017) N/A

FlowJo v10.8 Becton Dickinson & Company N/A

samtools v1.3.1 Li et al. (2017) N/A

Bowtie2 v2.1.0 Langmead and Salzberg (2012) N/A

Cutadapt v1.12 Martin (2011) N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Pranam

Chatterjee, pranam.chatterjee@wyss.harvard.edu.

Materials availability
Plasmids generated in this study have been deposited to Addgene. (Addgene Catalog numbers will be provided upon Addgene QC

clearance).

Data and code availability
All data needed to evaluate the conclusions in the paper are present in the paper and supplementary tables.

d Bulk RNA-Seq data from barcoded cDNA overexpression experiments, NGS data from pooled MegaGate cloning, BAR-Seq,

and TAR-Seq have been deposited at GEO and are publicly available as of the date of publication. Accession numbers are

listed in the key resources table. Any additional raw data reported in the paper will be made available upon request by the

lead contact.

d All original code for computational methods for target identification has been deposited on a Github repository (https://github.

com/pranam16/STAMPScreen/) with corresponding Juptyer notebook tutorials and step by step instructions for seamlessly

running the code for any given RNA-Seq dataset. DOIs are listed in the key resources table.

d Any additional data or information needed to reproduce or reanalyze the data reported in this paper is available upon request

from the lead contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines utilized in this study
PGP1 hiPSC line

d PGP1were obtained from the Personal GenomeProject. This cell line ismale and reprogrammed fromprimary fibroblasts using

Sendai virus-based reprogramming.

d PGP1 cells were utilized between passages 27 to 46 for all experiments.

d Cells were grown at 37 C at 5 CO2 and standard oxygen.

d CellsweremaintainedonCorninghESCqualifiedMatrigel, feeder-free.Cellswerecultured inStemCell TechnologiesmTeSRPlus.

d Cells were passaged every 3-4 days using Accutase and cultured for 24 hours post-seeding in the presence of Y-27632.

F3 hiPSC line (ATCC BXS0116)

d F3 hiPSCs were obtained from ATCC, catalog: ATCC BXS0116. This cell line is female and reprogrammed from LCLs using

Sendai virus-based reprogramming.

d F3 cells were utilized between passages 42 to 56 for all experiments.

d Cells were grown at 37 C at 5 CO2 and standard oxygen.

d CellsweremaintainedonCorninghESCqualifiedMatrigel, feeder-free.Cellswerecultured inStemCell TechnologiesmTeSRPlus.

d Cells were passaged every 3-4 days using Accutase and cultured for 24 hours post-seeding in the presence of Y-27632.

M1 - HDFn M1 line (PCS-201-010)

d M1 line was obtained from ATCC Institute, catalog: PCS-201-010. This primary cell line is male and generated from neonatal

foreskin.

d M1 cells were utilized between passages 10 to 20 for all experiments.

d Cells were grown at 37 C under hypoxic conditions with 5 CO2 and 5 O2

d Cells were maintained in low-glucose DMEM with 15 FBS and 1 pen-strep

d Cells were passaged every 3-4 days using TryplE-express

M2 – HDFa line (PCS-201-012)

d M2 line was obtained from ATCC Institute, catalog: PCS-201-012. This primary cell line is male and generated from adult skin

biopsy.

d M2 cells were utilized between passages 10 to 20 for all experiments.

d Cells were grown at 37 C under hypoxic conditions with 5 CO2 and 5 O2
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d Cells were maintained in low-glucose DMEM with 15 FBS and 1 pen-strep

d Cells were passaged every 3-4 days using TryplE-express

For the PGP1 and F3 hiPSC lines, STR analysis was performed for cell line authentication using bioSYNTHESIS to generate STR

profiles for both cell lines to ensure authenticity. In addition, all cell lines were regularly tested for mycoplasma contamination.

METHOD DETAILS

DEG network target prediction
The network scoring method was adapted from the Mogrify algorithm (Rackham et al., 2016) with modifications for application to

complex phenotypes like aging. RNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) database, aligned

to the hg38 build using STAR aligner (Dobin et al., 2013), and the raw counts were generated using featureCounts (Liao et al.,

2013). DGEA was performed using DESeq2 (Love et al., 2014), and the resulting log-transformed fold change, p value, as well as

the Pearson correlation of the gene expression with the sample age were combined into a DEGscore. Lastly, to generate a ranked

list of candidate genes, we calculated a network score by performing a weighted sum of gene scores over a local gene network con-

structed from STRING, centered on the query gene. The enrichment analysis was performed by performing a hypergeometric test

using the top 100 candidates from each ranked list and the GenAge database of experimentally-validated aging genes (Tacutu

et al., 2017). The full code and corresponding Juptyer notebooks can be found at: https://github.com/pranam16/STAMPScreen/

GRN inference and PageRank target identification
RNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) database, and log2fc values for each aligned gene for

each sample were calculated using the DESeq2 package (Love et al., 2014). Gene regulatory networks were inferred utilizing the

GRNBoost2 algorithm in the Arboreto computational framework (Moerman et al., 2018). PageRankwas calculated for each transcrip-

tion factor in the resulting network via the NetworkX package (NetworkX Developer Team, 2014), and ranked factors were visualized

using Seaborn. The full code and corresponding Juptyer notebooks can be found at: https://github.com/pranam16/STAMPScreen/

sgRNA prediction for CRISPRa and CRISPRi
In order to develop highly predictive CRISPRa and CRISPRi tools deep learning models for sgRNA selection, three separate deep

learning-based architectures were trained for each task: a model with only fully connected layers (a fully connected neural network

- FCNN), a model with convolutional layers (a convolutional neural network - CNN), and one with recurrent long-short term memory

layers (an LSTMmodel). The suite of neural networks was implemented using Keras, a minimalist, highly modular neural networks li-

brary, written in Python (https://keras.io). The Theano library was used as its backend and a Titan GPU was utilized for fast neural

network training. The pandas library (Reback et al., 2021) was utilized to first load and preprocess sgRNA sequences, which were

each encoded as a vector of 20 one-hot vectors: A(1,0,0,0), C(0,1,0,0), G(0,0,1,0), and T(0,0,0,1). Hyperas (https://github.com/

maxpumperla/hyperas) was utilized to optimize the hyperparameters of each model architecture, and mean squared error was

used to select thebestmodel. For theCRISPRamodel, activity scoredataset of 2898 sgRNAs from9CRISPRascreenswere collected

(Horlbeck et al., 2016). A two-layered fully connected layer, with the number of units in the first layer equivalent to the number of se-

quences in the training set and 810 units in the second layer, followed by a final output layer, proved to have the lowest loss value of all

architecture combinations tested. To train an independentCRISPRimodel, data from30CRISPRi screensconsisting of activity scores

for 18,380 sgRNAs was obtained (Horlbeck et al., 2016). A CNN with a single convolutional layer, filter size of 4, employing l2 regula-

rization, dropout, and a sigmoid activation function, demonstrated the most optimal performance for the held out test set. To predict

highly-active sgRNAs using ourmodels for a given transcription factor gene, the hsEPDnewdatabase for the corresponding promoter

sequence was queried (Dreos et al., 2016). Potential sgRNA sequences, possessing a 50–NGG–30 PAM within �550 and �25 bp (for

CRISPRa) and�25 and 500 bp (for CRISPRi) upstream of the TSS, were used as inputs into the optimized activity models for ranking

and downstream experimental testing.

CRISPR tool evaluation in hiPSCs
The PGP1 cell line was utilized for all CRISPRa comparisons. dCas9-VPR, dCas9-SAM, and dCas9-SunTag were procured from

Addgene (Addgene 63,798, 102,559, 60,903 and 60,904) as gifts from the original labs in which they were generated. sgRNAs

were cloned into a common hU6 promoter plasmid. sgRNAs for use with SAM were cloned into a modified sgRNA plasmid that con-

tained the SAM-specific guide RNA scaffold. Experimental methods for assessing CRISPRa performance were as follows:

d Briefly 2 x 105 cells hiPSCswere harvested for transfection using the Lonza 4DNucleofector on setting CM113with P3 reagent.

d 100 fmol of each CRISPRa plasmid were combined with 800 fmol of sgRNA plasmid and transfected in duplicate.

d RNA was harvested from the cells at 48 hr post-transfection using the Qiagen RNAeasy kit.

d cDNA synthesis was then performed using the First Strand Synthesis IV kit.

d RT-qPCRwas then performed on the duplicate control cells which had only the CRISPRa plasmid transfected and not a sgRNA

versus the duplicate wells with a CRISPRa tool and sgRNA targeting one of 47 targets.
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d Cq values for the target gene and the housekeeping geneGAPDHwere obtained in triplicate and averaged and fold changewas

calculated using the DDCq method.

Two sgRNAs were first tested for each of the 47 genes in combination with dCas9-VPR and 16 low performing genes were addi-

tionally tested with a third sgRNA in all three CRISPRa tools. The best performing sgRNAwas then chosen and subsequently used for

testing with all three CRISPRa tools. Nucleofections, RNA harvesting, cDNA synthesis and qPCR were performed for all targets for

each of the three CRISPRa tools at the same time to minimize batch effects.

Similarly, PGP1 cells were utilized for all CRISPRi comparisons. dCas9-KRAB and dCas9-KRAB-MeCP2 were obtained from

Addgene (Plasmids 110,820 and 110,821) as gifts from the original labs in which they were generated. Screening of the CRISPRi tools

was performed in the samemanner as the CRISPRa comparison, detailed above, with the only change being that RNAwas harvested

from cells at 72 hr post-transfection, based on themethods of previous studies. A single sgRNA for each of the 12 targets was utilized

for comparing the two tools.

cDNA vector comparison
17 genes targeted in the CRISPRa screenwere cloned into a PB-CA vector (Addgene, 20,960) usingGateway cloning. Screeningwas

performed in PGP1 hiPSCs and compared to previously generated CRISPRa data. To perform the cDNA expression comparison to

CRISPRa a similar procedure to what is detailed above was performed.

d Briefly, 2 mg of either cDNA vector was nucleofected in duplicate.

d RNA was harvested at 48 hr post nucleofection.

d RT-qPCR was utilized to determine differences in expression of target genes relative to a duplicate control (pMAX-GFP trans-

fection).

For the 5 vector comparison, the following procedure was performed:

d 1 mg of each cDNA vector harboring a sfGFP construct was nucleofected into hiPSCs or HDFs in duplicate.

d Cells were seeded into 1 mg/mL dox media or in no doxycycline media.

d Flow cytometry was performed at 24 hr post-nucleofection and expression was compared to no plasmid control cells.

d Data analysis was performed in FlowJo and mean fluorescent intensity of GFP was graphed using ggplot2.

Dual cDNA and CRISPR screening
A superfolder GFP (sfGFP) construct was cloned into the PB-cT3G-MG-cERP2-hU6 plasmid using MegaGate cloning and a sgRNA

targeting a DDX4-tdTomato reporter was inserted using Golden Gate cloning for dual cDNA-CRISPRa testing. A mCherry cDNA was

cloned into PB-EF1a-MG-U6 and a sgRNA targeting the Tet promoter (sgTET) was cloned into the EF1a vector for dual cDNA-

CRISPRi testing. Dual cDNA-CRISPRa screening was performed as follows:

d A F3 hiPSC line harboring a DDX4-TdTomato reporter was utilized.

d 2 x 105/well hiPSCs were harvested and transfected as previously described.

d 1 mg of the PB-cT3G-GFP-hU6-sgDDX4 and 1 mg of PB-cT3G-dCas9-VPR were transfected for the cDNA-CRISPRa test.

d 1000 ng/mL of doxycycline was added to the media each day for 48 hr for cDNA-CRISPRa testing.

d Cells for cDNA-CRISPRa were harvested at 48 hr post-transfection for flow cytometry on the CytoFlex LX for sfGFP and

tdTomato expression.

d Fold induction was determined by division of the Mean Fluorescent Intensity in the experimental samples versus an uninduced

sample and a no plasmid control sample.

Dual cDNA-CRISPRi screening was performed as follows:

d A F3 hiPSC line harboring a stably integrated PB-EF1a-dCas9-KRAB-MeCP2 and a Tet-sfGFP was used for screening

d 1 mg of PB-EF1a-mCherry-sgTET was transfected into an hiPSC line.

d For cDNA-CRISPRi, cells were induced in 1000 ng/mL doxycycline for 108 hr.

d For cDNA-CRISPRi, RNA was harvested at 108 hr post-induction.

d Flow cytometry was performed on the CytoFlex LX for sfGFP and mCherry expression.

d Fold induction of mCherry was determined by division of the Mean Fluorescent Intensity in the experimental samples versus an

uninduced sample and fold suppression of sfGFP was determined by division of the Mean Fluorescent Intensity in the exper-

imental samples versus an a dox induced sample with no plasmid.

MegaGate molecular cloning vector construction
A commonMegaGate backbone plasmidwas created for doxycycline induction based on the XLone-GFP plasmid (Addgene 96,930),

a gift from the original lab in which it was generated. Modifications to this plasmid include switching blasticidin selection for puromy-

cin, the addition of a CMV enhancer driving the EF1a promoter, replacing the minimal RNA Poll II Tet promoter with a minimal CMV
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promoter, replacing GFP with a megagate cassette, and an addition of a DNA barcode region all using Gibson Assembly. This core

vector is termed PB-cT3G-MG-cERP2. Additionally an hU6 promoter and sgRNA scaffold were added to the PB-cT3G-MG-cERP2

plasmid to create the plasmid PB-cT3G-MG-cEPR2-hU6. Additionally, an EF1a MegaGate vector was created by modification of

Addgene 104,543. BsaI and SapI recognition sites were removed and the Tet-On-3G was replaced with a Megagate cassette, in

addition a DNA barcode region was added to make the plasmid we term PB-EF1a-MG. An hU6 promoter and sgRNA scaffold

were added to the PB-EF1a-MG plasmid to make the plasmid PB-EF1a-MG-hU6. sfGFP versions of all plasmids were tested in

hiPSCs and primary human fibroblasts to ensure proper function. The Megagate cassette in each vector is created by synthesis

of a DNA construct containing an attR1 sequence, 15 bp of intervening sequence, an I-SceI recognition site, 45 bp of intervening

sequence, an I-CeuI recognition site, 15 bp of intervening sequence and an attR2 sequence. Additional MegaGate cassettes

were tested that contained other enzyme recognition sites such as BsaI, as well as multiple meganuclease restriction sites.

MegaGate reaction conditions optimization
All MegaGate reaction optimization conditions were performed on the above listed plasmids. The pENTR insert used in the optimi-

zation reactions was a pENTR-sfGFP. For negative control reactions (no insert) the pENTR was replaced with water. The 99.8% effi-

cient MegaGate reaction is performed as follows:

For MegaGate LR reaction assemble on ice:

d 24 fmol or 50 ng of pENTR insert

d 16 fmol or 75ng of MegaDestination vector

d 1 mL of the Gateway LR Clonase II Enzyme mix (Invitrogen 11,791,020)

d 1 mL (5U) of the MegaNuclease I-SceI (NEB R0694)

d 1 mL (5U) of the MegaNuclease I-CeuI (NEB #R0699)

d 5 mL of 10X CutSmart Buffer (NEB B7204).

d Nuclease free water was then utilized to bring the reaction to the desired volume of 50 mL.

For MegaGate BP reaction assemble on ice:

d 16 fmol or 10 ng of AttB flanked PCR insert

d 16 fmol or 75ng of MegaDONOR221 vector

d 2 mL of the Gateway BP Clonase II Enzyme Mix (Invitrogen 11,789,100)

d 1 mL (5U) of the MegaNuclease I-SceI (NEB R0694)

d 1 mL (5U) of the MegaNuclease I-CeuI (NEB R0699)

d 5 mL of 10X CutSmart Buffer (NEB B7204).

d Nuclease free water was then utilized to bring the reaction to the desired volume of 50 mL.

For both the MegaGate LR and MegaGate BP reactions, place MegaGate reaction into thermocycler with the following settings:

d 1 hr at 25�C
d 1 hr at 37�C
d 20 min at 65�C.

2 mL of MegaGate reaction was then transformed into 10 mL of NEB 5-alpha cells and colonies were picked and counted the

following day for sequencing.

In practice, pENTR amounts as low as 10ng and as high as 150ng yielded successful MegaGate LR products. Similarly, PCR inserts

as low as 2ng and as high as 150 ng yielded successful MegaGate BP products. Additional meganuclease was found to lead to negli-

gible increase in efficiency, but decreased meganuclease resulted in lower efficiency. Additionally, lower reaction volumes of 20 mL

were found to likewise decrease reaction efficiency. Splitting the reaction into two separate steps, one with only Gateway components

incubated at 25�C for 1 hr then adding MegaNucleases and CutSmart and incubating at 37�C for 1 hr and 20 min at 65�C was was

shown to slightly increase colony number with the same cloning efficiency. However, for ease of use, we found the all-in-one reaction

to be simpler and sufficient for all cloning reactions. Additionally, isothermal reactions at 25�Cand 37�C, singlemeganuclease reactions

cutting for 1, 2, and 3 hr and scaled down 25 mL were tested and show varying albeit lower efficiencies. Multiple MegaGate destination

vectors and different inserts of varying lengthwere additionally tested to demonstrate that the reaction is efficient acrossORF sizes and

destination vectors, and that the colony number scales linearly down with increase in ORF size. Reaction efficiency was measured as

the total number of positive plate coloniesminus the number of colonies on no-insert plates divided by the total number of positive plate

colonies. Sanger sequencing was performed on 100 colonies per plate to validate reaction efficiency.

MegaGate vector DNA barcoding
For DNA barcoding, a 40,000 +member 20 bp barcode library was used as a PCR template. Primers were utilized that added Golden

Gate enzyme compatibility with the DNA barcode region of the MegaGate destination vectors. A Golden Gate reaction was then per-
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formed between the UMI PCR products and the MegaGate destination vectors. The resulting plasmids were then transformed in

mass onto multiple selection plates. Colonies were then scrapped and midiprepped to obtain the barcoded MegaGate Destination

pool. The resulting barcode distribution in the MegaGate pool was analyzed via NGS using the Illumina MiSeq platform. Briefly, bar-

coded destination plasmids were used as PCR templates and primers amplified the barcode region and added Illumina adaptors.

Resulting reads were then aligned and barcodes identified using the Geneious alignment software package.

Single and pooled MegaGate cloning and NGS readout
For single gene MegaGate cloning, 50 ng of pENTR plasmid was utilized in all 185 MegaGate cloning reactions along with 75 ng of

barcoded MegaGate destination vectors. Colonies were subsequently picked and Sanger sequencing was used to link a specific

DNA barcode with the inserted ORF.

For pooled MegaGate cloning, 300 ORFs were selected from the ORFeome and pooled for transformation. Transformants were

then scraped and midiprepped to yield a pENTR pool. 50 ng of the pENTR pool was then utilized for the MegaGate reaction along

with 75 ng of barcodeMegaGate destination vector. Transformants were then scraped andmidiprepped the following day to yield the

barcoded ORF pool in the expression vector. To determine the resulting cloning efficiency and to assign barcodes to the ORFs,

primers were utilized that bound upstream of the ORF and downstream of the ORF in the pENTR vector. Additional primers were

used that bound a constant region upstream of the inserted gene in the expression vector and the 30 end of the DNA barcode

and Illumina adaptors were added. The pENTR and expression plasmid amplicons were then run on an Illumina MiSeq micro kit.

STAR aligner was then utilized to identify ORFs in the pENTR and expression plasmid pools to determine the percentage of ORFs

in the pENTR library that were converted into the expression vector. Biopython’s fastQ parser was then utilized to identify barcodes

tomatch to the corresponding ORF in the expression pool (https://github.com/biopython/biopython). Cloning efficiency is calculated

as the TPM normalized abundance of the ORF in the expression pool divided by the TPM normalized abundance of the ORF in the

donor pool, calculated from the NGS counts.

PiggyBac copy number titration
For targeted copy number integration in hiPSCs and NHDFs, we developed a high throughput RT-qPCR readout for average copy

number in a given cell pool. Utilizing qPCR primers amplifying a constant region on the integrated transposon (Table S1) in reference

to the RNASEP gene (RPP30) (Table S1) which is known to have two autosomal copies per human genome, copy number was as-

sessed in human cells. To determine piggyBAC-based integration dynamics the following procedure was performed:

d A super PiggyBac transposase vector vector driven by a CMV promoter (CMV-SPB) was nucleofected at 100 ng per reaction (24

fmol) using the Lonza 4DNucleofector into F3 hiPSCs on setting CM113 in P3 solution andHDFs on setting DS150 in P2 solution.

d A sfGFP vector (PB-cT3G-sfGFP-cERP2) was serially titrated from 400 fmol to 1.2 fmol and co-nucleofected with CMV-SPB.

d Cells were then drug-selected for 13 days on puromycin (400 ng/mL in hiPSCs and 500 ng/mL in NHDFs) using a 3 day ON and

3 day OFF drug selection regimen to ensure pool purity and loss of any unintegrated plasmid.

d RT-qPCR using SYBR Green master mix was then performed after gDNA extraction using the DNAeasy kit.

d 10 ng of input gDNA was used per reaction based on the standard curve, with an anneal temperature of 60�.
d To calculate copy number, the 2DCq+1 method was used, with RNASEP as a reference.

d The resultant value was multiplied by two to account for the two autosomal copies of RPP30.

gDNA barcode enrichment analysis (Bar-Seq)
BAR-Seq was performed using the F3 hiPSC line and an equimolar pooled plasmid library of 40 TFs with three unique barcodes each

and a GFP vector with 9 unique barcodes (129 unique total plasmids) as follows:

d The TF library was co-nucleofected at 4fmol with the super PiggyBac transposase vector at 24 fmol using the Lonza 4D Nu-

cleofector into F3 hiPSCs on setting CM 113 in P3 solution

d Copy number was estimated to average 5 copies per cell using the methods described above.

d The drug selected pure population was then inducedwith doxycycline at 500 ng/mL for two days and an uninduced sample was

used as control.

d The cells were then sorted using a Sony cell sorter (SH800S) based on GFP expression.

d The FACS positive and negative pools were then gDNA extracted using the DNAeasy kit.

d 5 ng of input gDNA was then used to amplify the integrated barcodes using two rounds of PCR. The first round added

illumina R1 and R2 adaptors using primers 1.25 mL of 10 mM BC-NGS-Fwd and BC-NGS-Rev primers. Cycling was done in

a qPCRmachine using KAPA SYBRmix and samples were removed when they reached their Cq to prevent over amplification.

d The cycling conditions were as follows: 95�C-30, Cq-determined x[98�C-10’’; 58�C-20’’; 72�C-30’’].The samples were then

bead purified using Promega Size-Selective beads at 1.75X for a 185 bp product and eluted in 20 mL.

d 1ul of PCR1 input was then used for a second round of PCR amplification with 2X Q5 master mix and 1.25 mL of 10 mM Illumina

index primers.
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d Cycling was done with the following conditions: 98�C-3000, 8x[98�C-5’’; 61�C-20’’; 72�C-5’’], 72�C-20 and the 255bp product

was again bead purified using 1.3X chemistry.

d The indexed samples were then run on NGS using an Illumina MiSeq machine at 20 pM with 10% PhiX spike in.

d The counts of each barcode were then generated using Geneious RNA-Aligner against a reference list of barcodes and normal-

ized by the total counts in the sample to measure relative abundance.

d Data was then plotted using the Prism software.

Targeted RNA-Seq (TAR-Seq)
TAR-Seq was performed using the F3 hiPSC line and an equimolar pooled plasmid library of 40 TFs with three unique barcodes each

and a GFP vector with 9 unique barcodes (129 unique total plasmids) as follows:

d RNA was extracted from doxycycline induced and uninduced pools from the same experiment as the above detailed Bar-Seq.

d For each sample, cDNA was generated from 1 mg total RNA using the NEB Luna RT SuperMix kit with random hexamers.

d The targets of interest were amplified in a 25 mL reaction using the NEB 2x Q5 mastermix with 2 mL 1:10 diluted cDNA, 0.1 mM

final concentration for each primer pair (Table S1),

d the following cycling conditions were used: 98�C-50, 26x[98�C-1’; 60�C-30’’; 68�C-15’’], 72�C-3’.
d The PCR product was gel purified, prepared for NGS using the same workflow as previously detailed in BAR-Seq, and

sequenced on a MiSeq machine at 20 pM with with a 10% PhiX spike in.

d Counts were then generated inGeneious using RNA-Aligner against a reference list of full length CDS sequences and barcodes.

d Counts were then normalized per sample and further normalized to GAPDH in the sample for TAR-Seq analysis to calculate

relative expression.

For the TARSeq validation experiments, the total cell RNA from four different primary NHDF lines was converted to cDNA using the

Thermo SuperScript IV First Strand Synthesis system with random hexamers. The TAR-Seq protocol was then performed as

described above.

RNA-seq and coupled barcode enrichment
The F3 hiPSC line was utilized for the RNA-Seq and barcode capture experiment as follows:

d Cells were nucleofected as described above with 100fmol of a barcoded cDNA vector harboring sfGFP or the gene ZGLP1 and

24 fmol of super piggyBac transposase in duplicate.

d Integrants were purified through puromycin drug selection as detailed above

d The cells were then induced under 1 mg/mL doxycycline for 3 days and RNA was harvested using the Qiagen RNAeasy plus kit.

d RIN scores were determined using a Bioanalyzer and only samples with RIN score greater than 8 were utilized.

d An RNA-Seq cDNA library was constructed using the KAPA Hyper Kit with RiboErase

d RNA-Sequencing was performed on the Next-Seq 500 Illumina platform.

d Reads were processed and aligned to the hg19 build using STAR Aligner

d DEGs were determined using DESeq2.

d Gene barcodes were identified using BBMap.

d DESeq2 results for gene expression log2fc and their matching p values were plotted utilizing the R package ggplot2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Specific quantification and statistical analysis details for each experiment can be found in the figure legends. Statistical analysis was

performed using the software GraphPad. For Figure 1, p values for DEGs are determined by the DESeq2 software package. For Fig-

ure 2 perturbation tool comparisons, n = 2 biological replicates were utilized in which the same hiPSC line was independently nucle-

ofected and screened for each condition. Statistical analysis is performed using the MannWhitney Test with significance determined

at p value less than 0.5 threshold. Indicated values are given as median of the population for each perturbation tool. For dual cDNA-

CRISPR comparisons, n = 3 biological replicates, where replicates are independently nucleofected hiPSCs. Values are presented as

meanwith standard deviations of replicates. For Figure 3MegaGate cloning outcomes, values in Figure 3B are given as themeanwith

standard deviations of cloning efficiency and barcodes captured for the gene. For single gene cloning n = 185 and for pooled

cloning reactions n = 300 where n represents a single cloned gene. For Figure 4 NGS Coupled readouts, copy number was

determined in n = 2 biological replicates for hiPSCs and HDFs. Biological replicates are independent hiPSC and HDF lines that

are independently nucleofected in duplicate, drug selected and screened. Data is plotted as the mean copy number with standard

deviation of the technical replicates across the two biological replicates. For RNA-Seq coupled to barcode enrichment, p value is

determined by the DESeq2 software package. For TAR-Seq, significance is determined by Mann Whitney test and significance

threshold is set at p value less than 0.5. n = 40, where n represents the expression of a single gene in the sample.
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