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Advances in genome engineering technologies havemade the precise control over genome sequence and regulation possible

across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new

opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that

includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we

review the recent advances of the most widely adopted genome engineering platforms and their application to functional

genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for

genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current

and potential future applications of these tools, as well as their current limitations and areas for future advances.

Genomic research has the potential to dramatically improve
medicine, agriculture, biotechnology, and our fundamental un-
derstanding of living systems. Recent advances have generated ex-
tensive annotation of genomic and epigenomic regulatory
modules within chromatin (Bernstein et al. 2010; The ENCODE
Project Consortium 2012; Roadmap Epigenomics Consortium
et al. 2015), as well as an understanding of genomic topological ar-
chitecture (Dekker et al. 2013; Pombo and Dillon 2015). However,
the roles of these numerous genes, regulatory elements, epigenetic
marks, and topological domains in determining overall cell func-
tion remain incompletely understood. The recent development
of genome engineering technologies has enabled precise interro-
gation of the function of these genomic features and their causal
role in gene regulation. Additionally, these tools are facilitating
the translation of this genomic information into tangible benefits
for biotechnology, agriculture, and human therapeutics. In this
Perspective, we discuss the recent advances to themost commonly
used genome engineering technologies, including synthetic zinc
finger (ZF) proteins, transcription activator-like effectors (TALEs),
and CRISPR/Cas9 targeting systems, and their application in a
new era of functional genomics.

Genome engineering technologies

Cys2-His2 ZF domains arenaturally occurring proteinmotifswhich
typically recognize three base pairs within the major groove of
DNA (Pavletich and Pabo 1991; Wolfe et al. 2000). These modular
ZF domains can be arrayed such that synthetic ZF DNA-binding
proteins (DBPs) target a specific series of DNA triplets at unique ge-
nomic addresses (Fig. 1A; Liu et al. 1997; Gersbach et al. 2014).
TALE proteins are components of plant pathogens that bind host
DNA to facilitate virulence (Kay et al. 2007; Romer et al. 2007).
TALEs consist of repeated DNA-binding domains containing re-
peat variable diresidues (RVDs), each of which recognizes a single
nucleotide in target DNA (Boch et al. 2009; Moscou and

Bogdanove 2009). Similar to ZFs, individual TALE RVDs can be
linked in series to localize TALEs to target loci (Fig. 1B; Christian
et al. 2010; Morbitzer et al. 2010; Cermak et al. 2011; Miller et al.
2011; Zhang et al. 2011). Clustered regularly interspaced short pal-
indromic repeat (CRISPR) arrays and CRISPR-associated (Cas) pro-
teins are components of bacterial and archaeal adaptive immune
systems (Barrangou et al. 2007; Makarova et al. 2011). Unlike ZFs
and TALEs, in which protein moieties dictate DNA recognition,
CRISPR/Cas systems utilize RNA-mediated Watson-Crick bonding
for recognition of nucleic acids.

Prokaryotes harboring type II CRISPR/Cas systems tran-
scribe CRISPR-RNAs (crRNAs) that hybridize with trans-acti-
vating crRNAs (tracrRNAs) that complex with the Cas9 nuclease
(Brouns et al. 2008; Deltcheva et al. 2011; Jinek et al. 2012;
Doudna and Charpentier 2014). A single crRNA-tracrRNA chime-
ra, known as a guide RNA (gRNA), can be designed for simplified
use in engineered systems (Jinek et al. 2012). The gRNA binds to
and directs the Cas9 protein to DNA through regions of crRNA
complementarity (termed “protospacer” sequences). A stringent
prerequisite to protospacer hybridization is the presence of a pro-
tospacer adjacent motif (PAM) in the target DNA, which flanks
the region of protospacer complementarity (Fig. 1C; Mojica et al.
2009; Anders et al. 2014; Sternberg et al. 2014; Kleinstiver et al.
2015). Interactions between the PAM-proximal “seed” nucleotides
in the target site and the complementary gRNA sequence are also
critical drivers of Cas9 targeting. The orthogonality of various pro-
karyotic Cas9 proteins with differing PAM requirements can be ex-
ploited for multiplex genome engineering efforts (Esvelt et al.
2013; Ran et al. 2015).

Engineered targeting of eukaryotic genomes with ZFs, TALEs,
and type II CRISPR/Cas systems has established these technologies
as useful resources for present and future genome engineering en-
deavors. Although each of these systems has been successfully in-
corporated into diverse genome engineering strategies, they each
have unique benefits and limitations that depend upon the partic-
ular application (Gaj et al. 2013; Carroll 2014). Other genome
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engineering technologies, such as meganucleases and their fusion
to TALE proteins (Boissel et al. 2014; Stoddard 2014) have also
been successfully applied to gene editing in eukaryotes, but have
been less widely adopted in the context of functional genomics
due to the complexity involved in engineering meganucleases tar-
geted to new sequences.

Editing genome sequences with programmable

nucleases

Gene targeting based on homologous recombination can intro-
duce exogenous DNA at genomic loci (Smithies et al. 1985;
Thomas et al. 1986). The efficiency of this method is dramatically
enhanced in the presence of double-strand breaks (DSBs) (Rouet
et al. 1994). Cells generally use two distinct pathways to resolve
DSBs (Chapman et al. 2012): homology-directed repair (HDR)

and nonhomologous end joining (NHEJ) (Fig. 1D). DSB resolution
through NHEJ occurs by direct ligation of DSB ends or through
microhomology on DSB termini (Lieber 2010). This error-prone
process results in small insertions or deletions (indels) at endoge-
nous loci. The generation of two DSBs flanking a genomic region
can also lead to NHEJ-mediated chromosomal deletions (Lee
et al. 2010; Carlson et al. 2012; Kim et al. 2013; Essletzbichler
et al. 2014) and inversions (Carlson et al. 2012; Lee et al. 2012;
Xiao et al. 2013). Programmable nucleases can also be used to cre-
ate NHEJ-mediated translocations in vivo (Brunet et al. 2009;
Maddalo et al. 2014). HDRuses regions of homologousDNAon sis-
ter chromatids or exogenous DNA to repair DSBs. In contrast to
NHEJ, HDR is a high-fidelity process leading to largely error-free
correction at DSB sites. HDR can lead to specified incorporation
of sequences that are rationally designed into donor DNA tem-
plates. In many instances, this is advantageous over NHEJ, in
which DSB resolution is unpredictable. However, NHEJ is active
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Figure 1. Zinc finger, TALE, and Cas9-gRNA platforms for editing genomic sequence and regulatory states. Individual zinc finger domains (A) and TALE
repeats (B) that recognize unique triplets or single base pairs, respectively, can be arrayed in engineered proteins to target specific genomic sequences. (C)
Cas9 in complexwith a chimeric guide RNA (gRNA) can recognize a specific genomic address through complementarity between the protospacer segment
of the gRNA and target DNA. The formation of this complex is dependent upon the presence of a protospacer adjacent motif (PAM). The RuvC and HNH
nuclease domains of Cas9 cleave genomic DNA that matches the protospacer (i.e., the noncomplementary strand) and genomic DNA with complemen-
tarity to the protospacer (i.e., the complementary strand), respectively (indicated by black triangles). (D) Zinc fingers and TALEs fused to nuclease domains
or Cas9 in complex with a gRNA can cleave targeted sequences to generate double-strand breaks (DSBs). DSB resolution through nonhomologous end
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null Cas9 (dCas9) platforms can also be fused to diverse effector domains to modify endogenous gene regulation and epigenetic states: (TSS) transcription
start site; (GOI) gene of interest.
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throughout the cell cycle and is the predominantDSB repairmech-
anism, whereas HDR occurs less frequently and is significantly
down-regulated outside of S and G2 cell cycle phases. Therefore re-
cent efforts have focused on promoting HDR by inhibition of
NHEJ events to afford more precise genome editing (Chu et al.
2015; Maruyama et al. 2015).

Because NHEJ andHDR can be used to incorporate specific se-
quence changes into genomes, the capability to induceDSBs at tar-
get loci holds great potential for genome engineering (Carroll
2014; Kim and Kim 2014). Although ZFs and TALEs do not intrin-
sically cleave target DNA, they can be directly fused to the catalytic
domain of the type II restriction endonuclease FokI (Li et al. 1992)
to create ZF and TALE nucleases (ZFNs and TALENs). Engineering
new DNA-binding specificities into the ZFs and TALEs allows pro-
grammed DSB induction (Kim et al. 1996; Christian et al. 2010).
FokI domains must dimerize to cleave target DNA (Bitinaite et al.
1998; Vanamee et al. 2001), necessitating the engineering of two
ZFN or TALEN monomers for each DSB. Modifications to the
FokI domain have also been created to increase nuclease activity
and specificity (Miller et al. 2007; Szczepek et al. 2007; Guo et al.
2010; Doyon et al. 2011b). Moreover, fusion of the FokI domain
to the nuclease-inactivated Cas9 protein (dCas9) has also been
used to increase the specificity of the CRISPR gene editing system
(Guilinger et al. 2014b; Tsai et al. 2014). Optimizing the length of
the ZF or TALE array can also increase nuclease activity and specif-
icity (Bhakta et al. 2013; Guilinger et al. 2014a).

As an alternative to introducing DSBs and inducing DNA re-
pair pathways, catalytic domains of site-specific recombinases
can also be fused to synthetic ZFs (Akopian et al. 2003) and
TALEs (Mercer et al. 2012) to excise genomic DNA segments or in-
tegrate exogenous DNA at targeted genomic sites (Gordley et al.
2009; Gersbach et al. 2011). CRISPR/Cas-based recombinase fu-
sions have not yet been reported but may also prove useful.
Additionally, transposases catalyze the rearrangement of endoge-
nous elements and have been used for artificial genomemanipula-
tion (Ivics et al. 2009). Targeting of transposase activity with ZF,
TALE, or CRISPR/Cas scaffolds is also an active area of research
(Yant et al. 2007; Voigt et al. 2012; Galvan et al. 2014). Important-
ly, targeted recombination or transposition may reduce cellular
toxicity relative to the introduction of DSBs and their subsequent
resolution through NHEJ or HDR. These alternate mechanisms to
genome engineering may also increase efficiencies by decoupling
editing from endogenous DNA repair mechanisms.

Synthetic regulation of transcription

In addition to the editing of DNA sequences, these genome engi-
neering technologies can be used to manipulate endogenous
gene expression. Early work with an engineered ZF protein directly
fused to the herpes simplex viral VP16 transactivator demonstrat-
ed proof-of-principle of targeted transcriptional activation by in-
ducing the expression of an extrachromosomal transgene in
human cells (Liu et al. 1997). Subsequent studies showed that tan-
dem repeats of VP16 were evenmore robust transcriptional activa-
tors than VP16 alonewhen linked to ZFs (Beerli et al. 1998), TALEs
(Zhang et al. 2011), and nuclease-null deactivated Cas9 (dCas9)
(Fig. 1E; Gilbert et al. 2013; Konermann et al. 2013; Maeder et al.
2013b; Mali et al. 2013a; Perez-Pinera et al. 2013a). Tetrameric
VP16 domains (termed “VP64”) have exhibited the most wide-
spread application as transcriptional activationdomains, although
larger multimers of VP16 have also been reported (Cheng et al.
2013). VP16 domains recruit cellular cofactors, such as compo-

nents of the basal transcriptional machinery and chromatin
remodelers (Hirai et al. 2010). Other transcriptional activation do-
mains function similarly and have also been used in engineered
transcription factors (Kim et al. 1997; Liu et al. 2001; Bikard
et al. 2013; Anthony et al. 2014; Chavez et al. 2015; Konermann
et al. 2015). Synergistic effects among multiple activators have
been frequently observed with this class of activation domains,
both when these effectors are localized in high density at adjacent
sequences (Maeder et al. 2013b,c; Mali et al. 2013a; Perez-Pinera
et al. 2013a,b) and when combined in cis as multimolecular com-
plexes (Cheng et al. 2013; Chakraborty et al. 2014; Gao et al. 2014;
Tanenbaum et al. 2014; Konermann et al. 2015). This synergy is
likely related to enhanced subunit recruitment and/or effective de-
creases in cofactor dissociation rates at targeted loci.

Synthetic DBPs can also function as programmable transcrip-
tional repressors. Localization of dCas9 near transcription start
sites (TSSs) can repress active gene expression (Bikard et al. 2013;
Qi et al. 2013). However, when fused to repressive domains, such
as the KRAB domain (Margolin et al. 1994), the inhibitory effect
of ZFs (Beerli et al. 1998), TALEs (Cong et al. 2012), or dCas9
(Gilbert et al. 2013) on transcription is markedly enhanced.
Transcriptional repression by thesemethods is often accompanied
by changes in chromatin structure (Groner et al. 2010; Kearns et al.
2015), which is likely a reflection of secondary KRAB-mediated re-
cruitment of chromatin remodelers (Ying et al. 2015). Other do-
mains have also been used for programmed transcriptional
repression (Beerli et al. 1998; Snowden et al. 2002; Cong et al.
2012; Mahfouz et al. 2012; Gilbert et al. 2013; Konermann et al.
2013). In contrast to artificial gene activationwith effectors and re-
cruited cofactors, repression using synthetic DBPs has not been ob-
served to function synergistically. In addition, the degree of
repression by different tools varies dramatically, even within the
same DNA-targeting platform and when targeting sequences in
close proximity. Additional work is needed to characterize the fac-
tors that determine the potency of gene repression,which could be
related to variable targeting affinities, interactions with endoge-
nous factors, and/or local chromatin architecture.

Next generation genome engineering:

epigenome editing

The ability to readily toggle epigenetic states holds tremendous
value for basic research and potentially for human therapies.
Efforts aimed at editing the epigenome using synthetic DBPs are
rapidly evolving (Jurkowski et al. 2015). These methods can be
used to provide evidence of the causality of epigenetic marks
such as DNA methylation and histone subunit modifications.
Furthermore chromatin-remodeling domains fused to DBPs have
also expanded our ability tomodulate genomic regulatory regions.
For instance, transcriptional manipulation mediated by synthetic
DBPs has been most well-characterized when targeted to within
300 base pairs of TSSs. However, directed modulation of distal reg-
ulatory elements, such as enhancers, has recently been shown to
be possible, albeit with varying efficacy (Gao et al. 2013, 2014;
Mendenhall et al. 2013; Ji et al. 2014; Frank et al. 2015; Hilton
et al. 2015; Kearns et al. 2015). Enhancers represent dynamic geno-
mic regulatory modules with differential functionality during cell
lineage specification, and perturbation of enhancer function has
been strongly associated with disease (Heinz et al. 2015;
Roadmap Epigenomics Consortium et al. 2015). Similar to other
regions of eukaryotic genomes, enhancers are controlled by
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dynamic epigenetic states, including methylated DNA and post-
translational modification of histone subunits (Shlyueva et al.
2014; Heinz et al. 2015). Thus, epigenome editing tools for manip-
ulating these epigenetic modifications are critical to facilitating
our understanding of the links between gene regulation, develop-
ment, and disease.

High levels of 5-methylcytosine (5mC) at enhancers and pro-
moter regions are frequently correlatedwith transcriptional repres-
sion (Jones 2012; Schübeler 2015). Initial work with designer ZFs
fused to prokaryotic DNAmethyltransferases demonstrated target-
ed methylation of DNA in vitro (Xu and Bestor 1997; McNamara
et al. 2002; Nomura and Barbas 2007; Smith and Ford 2007), on ex-
trachromosomal (Nomura and Barbas 2007) or integrated plasmid
DNA (Smith and Ford 2007), and at endogenous eukaryotic targets
(Carvin et al. 2003). Furthermore, targeting of mammalian DNA
methyltransferases with synthetic DBPs has established that site-
specific DNA methylation at promoters can repress endogenous
gene expression (Li et al. 2007; Rivenbark et al. 2012; Siddique
et al. 2013). Currently, direct and targeted DNAmethyltransferase
activity to endogenous genes has only been applied using engi-
neered ZF and TALE (Bernstein et al. 2015) protein scaffolds,
However, it is probable that similar strategies could be adapted to
CRISPR/Cas platforms.

The targeted demethylation of genomic DNA has also been
used to activate gene expression using artificial DBPs. The TET
family of proteins catalyzes oxidation of 5mC in eukaryotic ge-
nomes, leading to reversion to unmethylated cytosine following
DNA replication (Lu et al. 2015). Direct fusion of the TET1 catalytic
domain to TALEs targeting regions near endogenous human genes
decreased DNA methylation, leading to increased mRNA expres-
sion (Maeder et al. 2013a). In addition, the catalytic domainofmu-
rine TET2, and to a lesser extent TET1, decreasedDNAmethylation
when targeted to human promoter regions by engineered ZF
proteins (Chen et al. 2014). Artificial localization ofmurine thymi-
dineDNAglycosylase, an enzyme involved in cytosine demethyla-
tion (Cortellino et al. 2011) has also been shown to decrease DNA
methylation and augment gene expression from an endogenous
target promoter (Gregory et al. 2013). Collectively, these results
demonstrate that the targeted manipulation of DNA methylation
is possible, and cytosinemethylation is functionally linked to con-
trolling gene expression.

Certain modifications on the histone subunit tails of nucleo-
somes are highly correlated with genomic regulatory activity
(Zhou et al. 2011; Shlyueva et al. 2014; Heinz et al. 2015). In order
to take advantage of this mode of transcriptional regulation and
also to develop tools to better understand its roles in gene regula-
tion, there has been a recent emphasis on targeted perturbation
of histone modifications. Acetylation at lysine residues 27 and 9
of histone subunit H3 (H3K27ac and H3K9ac, respectively) are
generally enriched at loci associated with high transcriptional ac-
tivity such as active promoters and enhancers. A fusion of the ace-
tyltransferase core domain of the human EP300 protein robustly
activated endogenous human genes when targeted to promoter
or enhancer loci using ZFs, TALEs, and dCas9 variants (Hilton
et al. 2015). This activation was accompanied by enrichment for
H3K27ac at a targeted promoter and at a targeted enhancer.
Notably, targeted H3K27 acetylation at the well-characterized hu-
man beta-globin HS2 enhancer using dCas9 fused to the catalytic
core of EP300 also led to H3K27ac enrichment and transcriptional
induction from HS2-responsive promoters. Together, these results
support amodel inwhich acetylation plays a casual role in gene ac-
tivation. Furthermore, this suggests that H3K27ac enrichment at

human enhancers may precede and coordinate distal H3K27ac
deposition. Whether this deposition occurs through physical ge-
nomic contacts and/or other endogenous factors is the subject of
ongoing study. Moreover, the direct manipulation of chromatin
signatures using a chromatin acetyltransferase domain appeared
to bemechanistically distinct from effectors requiring other cofac-
tors for activity, such as VP64 (Hilton et al. 2015). Thus, improve-
ments in these programmable epigenomicmodifiersmay enhance
the synthetic engineering of gene activation.

The acetylation of histone subunit tails can be reversed by his-
tone deacetylases (HDACs). Recent studies have used full proteins
or truncated protein domains with HDAC activity fused to ZFs
(Keung et al. 2014) or TALEs (Konermann et al. 2013) to silence
gene expression. Histone subunits are also dynamically regulated
through methylation and demethylation of lysine residues. The
catalytic regions of histone H3K9 methyltransferases EHMT2
(also known as G9A) and SUV39H1 have been found to repress
transcription and alter chromatin status at targeted promoters
when fused to ZFs (Snowden et al. 2002; Falahi et al. 2013;
Heller et al. 2014) and TALEs (Konermann et al. 2013). Targeted
H3K4 demethylation has also been applied using TALEs or dCas9
fused to the KDM1A protein (also known as LSD1) (Mendenhall
et al. 2013; Kearns et al. 2015), enabling the characterization of
known and putative enhancers.

In addition to modulation of DNA methylation and histone
residues, synthetic DBPs have also been used to manipulate chro-
mosomal architecture. ZFs designed to artificially coordinate geno-
mic looping between the HS2 enhancer of the globin locus control
region and the beta-globin promoter activate gene expression in
mouse cells (Deng et al. 2012) and similar designs can direct differ-
ential gene expression patterns between HS2 and globin genes in
human and mouse cell lines (Deng et al. 2014). These results sug-
gest that the physical interactions between enhancers and promot-
ers can have a causal effect on gene expression. Although
artificially generated chromosomal contacts have not been report-
ed yet using TALEs or dCas9 platforms, similar approaches are like-
ly feasible and would provide useful expansions to the genome
engineering toolbox for rapid characterization of the role of chro-
matin conformation.

Specificity of ZFs, TALEs, and CRISPR/Cas9 systems

Understanding the target specificity of synthetic DBPs is central to
their efficacy as biotechnological tools and therapeutics. Some
studies using artificial ZFs fused to transcriptional effector domains
indicate relatively high specificity for target gene modulation
(Snowden et al. 2003). However, other results suggest widespread
genomic interactionswith these proteins that can lead to off-target
transcriptional dysregulation (Falahi et al. 2013; Grimmer et al.
2014). Surveys of ZF nuclease specificities demonstrate that off-tar-
get effects can be prevalent (Cornu et al. 2008; Pattanayak et al.
2011), although this off-target activity may be mitigated by opti-
mized design tools that minimize confounding factors such as
context-dependent ZF domain effects (Isalan et al. 2001; Maeder
et al. 2008; Sander et al. 2011; Gupta et al. 2012; Persikov et al.
2015).

As the RVDs of each synthetic TALE repeat dictate base-pair
recognition, TALEs can theoretically target any genomic sequence
of interest. However, engineered TALE RVDs exhibit a quantifiable
variance in nucleotide recognition as well as positional effects that
can lead to localization at unintended sequences (Cermak et al.
2011; Miller et al. 2011, 2015; Mali et al. 2013a; Meckler et al.
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2013; Juillerat et al. 2014). Although the frequency of generating
highly active TALE nucleases is typically higher than that of ZF nu-
cleases (Kim and Kim 2014), certain limitations exist, such as ap-
parent difficulty targeting methylated DNA (Valton et al. 2012)
and requirements for thymine bases at 5′ targeting sites (Mak
et al. 2012; Lamb et al. 2013). In addition, the larger size and pro-
clivity for recombination of repetitive sequences in TALE proteins
may present difficulties in certain applications, such as viral deliv-
ery (Holkers et al. 2013), although this issue has been addressed by
optimizing the codon usage of repetitive RVDs (Yang et al. 2013b).
Studies of genome-wide DNA-binding, gene regulation, and chro-
matin remodeling suggest a high level of specificity of TALE-based
transcriptional activators, although binding to off-target sites is
measurable (Polstein et al. 2015).

The interaction between Cas9 and a gRNA leads to conforma-
tional changes that activate surveillance for specific target sites by
Cas9 (Jinek et al. 2014; Nishimasu et al. 2014; Jiang and Doudna
2015). However, off-target interactions between dCas9 and geno-
mic DNA have been observed in human cells, even in the absence
of gRNAs (Kuscu et al. 2014; Wu et al. 2014a; O’Geen et al. 2015;
Polstein et al. 2015). Although off-target binding events likely oc-
cur with dCas9-based transcriptional/epigenetic modifiers, assess-
ments of global gene expression suggest that changes are largely
restricted to the intended target sites (Gilbert et al. 2013; Perez-
Pinera et al. 2013a; Hilton et al. 2015; Polstein et al. 2015). Cas9
nucleases have also been found to cause DSBs at unintended sites
(Fu et al. 2013; Hsu et al. 2013; Mali et al. 2013a; Pattanayak et al.
2013), and this activity is currently thought to be related to factors
including gRNA composition, chromatin accessibility, and gRNA

seed/PAM sequence abundance. Several algorithms exist that al-
low researchers to predict potential off-target Streptococcus pyogenes
gRNA binding sites and aid in optimal gRNA design (Hsu et al.
2013; Bae et al. 2014; Cradick et al. 2014; Heigwer et al. 2014;
Singh et al. 2015), However, this is clearly an areawhere significant
future research is needed.

Applications of modern genome engineering

technologies

Gene knockouts

The most established application of modern genome engineering
technologies is the disruption of loci through targeted nuclease ac-
tivity (Fig. 2A; Urnov et al. 2010; Joung and Sander 2013; Hsu et al.
2014; Sander and Joung 2014). Genetic knockouts in eukaryotes
through NHEJ-mediated disruption both in cell culture (Porteus
and Baltimore 2003; Perez et al. 2008; Miller et al. 2011; Cho
et al. 2013; Cong et al. 2013; Jinek et al. 2013; Mali et al. 2013b;
Liao et al. 2015b) and in animals (Bibikova et al. 2002, 2003;
Doyon et al. 2008; Meng et al. 2008; Cui et al. 2011; Wood et al.
2011; Hwang et al. 2013) can lead to complete loss of gene func-
tion. Moreover, genetic knockouts applied to agriculturally
relevant plants and animals using genome engineering methodol-
ogies are poised to revolutionize the nutrition content and the
availability of food crops and livestock (Hsu et al. 2014; Ni et al.
2014; Cyranoski 2015). In addition, these techniques to disrupt ge-
netic information or interrogate gene function offer advantages
over others, such as RNAi, which may have substantial off-target
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effects and incomplete abrogation of mRNA (Shalem et al. 2015).
Deletions of genomic regions are also useful for removing entire
genes or portions of the genome using the concurrent action of
two targeted nucleases flanking the region to be excised (Lee
et al. 2010; Kim et al. 2013; Essletzbichler et al. 2014; Ousterout
et al. 2015b).

The complete and precise deletion of a gene or genetic seg-
mentmayobviate potential confounding factors of gene knockout
with a single nuclease that might still lead to functionally active
truncated or frame-shifted proteins (Shi et al. 2015). Disruption
or deletion of promoter or enhancer regions could also be used
to knockout or diminish gene function, and enhancer elements
have been characterized and validated through such methods
(Bauer et al. 2013; Li et al. 2014; Mansour et al. 2014; Zhou et al.
2014a). Deletion of boundaries between topologically associating
domains can also reveal important mechanistic properties of ge-
nome structure (Nora et al. 2012; Dowen et al. 2014; Crane et al.
2015b; Lupiáñez et al. 2015). However, deletion of genomic se-
quencesmay have disadvantageous pleiotropic effects, such as un-
intended alterations in the native architecture of bystander
regulatory elements.

Gene knock-ins

When appropriate donor DNA repair templates are provided, HDR
can lead to defined integration events such as the inclusion of epi-
tope tags, reporter genes, and regulatory units, such as LoxP sites, at
endogenous loci (Fig. 2B; Hockemeyer et al. 2009, 2011; Doyon
et al. 2011a; Yang et al. 2013a). Thesemethodologies allow for epi-
tope-based detection of proteins and interacting partners for
which high quality or specific antibodies are not available, as
well as tracking of cellular proteins in real time on a single-cell
basis. In addition, conditional alleles are useful in instances in
which genetic knockout results in embryonic lethality or when as-
sessments of gene function at different developmental stages and
lineages are desired. HDR-mediated introduction of natural genet-
ic variation into an isogenic background can also be used to eluci-
date the in vivo contributions of specific regulatory elements and
DNA-interacting proteins. For instance, the targeted alteration of
specific transcription factor binding site motifs in otherwise intact
loci could reveal the functional contribution of transcription fac-
tor binding to regulatory element activity. This approach could
also be extended to dissect cis regulatory modules in which several
transcription factor binding sites are putatively involved in regula-
tory specificity (Hardison and Taylor 2012; Hnisz et al. 2015).

Dynamic regulation of genomic activity and conformation

In addition to nuclease-mediated disruption or deletion, genes and
associated regulatory regions can also be dynamicallymanipulated
using targeted ZF, TALE, or dCas9-based transcription factors or
epigenome editing tools (Fig. 2C). This approach is particularly
useful for avoiding the stochastic and cell-type– and cell-cycle–de-
pendent DNA repair pathways involved in nuclease-mediated ge-
nome editing. Such methods can elucidate potential endogenous
gene function without exogenous overexpression or permanent
sequence disruption. These tools are also especially applicable in
targeting themultitude of putative regulatory regions that contain
epigenetic hallmarks correlated with activity in certain settings,
such as differentially active enhancers (Shlyueva et al. 2014; Farh
et al. 2015; Heinz et al. 2015; Roadmap Epigenomics Consortium
et al. 2015; Leung et al. 2015). For example, recent efforts have
identified signatures, such as DNase hypersensitivity, H3K27ac,

and H3K4 methylation that are associated with active enhancers
and promoters. However, validation of the potential functionality
of these elements is a major scientific bottleneck to our under-
standing of the epigenetics of gene regulation. Selective and target-
ed writing or erasure of appropriate epigenetic modifications can
establish the causality of respective marks in determining gene ex-
pression and may also define their relevance in organismal devel-
opment and in cellular responses to distinct stimuli. Furthermore,
targeted activation or suppression of regulatory loci involved in
lineage specification or reprogramming could have enormous bio-
technological utility (Gao et al. 2013; Chakraborty et al. 2014; Ji
et al. 2014; Chavez et al. 2015). Additionally, programmed looping
to connect distal genomic regions can serve to define the function
of specific genomic contacts (Deng et al. 2014). Ultimately, the
most comprehensive and valuable definitions of regulatory ele-
ment functionality will use several independent approaches, in-
cluding sequence disruption and manipulation of activity across
varied biological contexts.

Genome engineering to model disease

and develop therapeutics

ZFs, TALEs, and the CRISPR/Cas9 system are also important
tools for understanding andmodeling disease. InMendelian disor-
ders, in which single gene products are implicated in disease or de-
velopment, nuclease-aided disruption or deletion can be used to
determine causal relationships between genes and phenotypes
(Soldner et al. 2011; Toscano et al. 2013). In addition, specific
SNPs or corrections can be introduced into coding regions to iden-
tify and validate variants associated with disease (Kiskinis et al.
2014; Wienert et al. 2015). SNPs in noncoding elements, such as
enhancers, are also associated with many diseases; hence, similar
modeling and validation methods outside of coding regions will
also be extremely useful. Notably, genome engineering is unique
in its ability to perturb regulatory elements in their endogenous ge-
nomic context in contrast to other tools, such as RNAi and small
molecules that modulate mRNA and protein activity. Large-scale
genomicmodels of complex diseases, based on genome-wide asso-
ciations, could also be created with these strategies in order to dis-
criminate germane versus immaterial genetic variance (Fig. 3A;
Bauer et al. 2013). Some disease phenotypes are also the result of
fusion proteins generated during aberrant genomic translocations
(Bunting and Nussenzweig 2013). Programmable nucleases could
also be used to insert deleterious fusion proteins at endogenous
loci to quantify causal effects and develop drug targets or to reca-
pitulate chromosomal translocations to mimic disease (Maddalo
et al. 2014).

Programmable DBPs can also be applied for genome-wide
phenotypic screening. This is especially relevant for CRISPR/
Cas9-based screens, owing to the relative ease of multiplexing by
simply using Cas9 in tandem with libraries of gRNAs that can be
synthesized at high throughput (Shalem et al. 2015). Cas9 nucle-
ase-based knockout screens have been recently used in combina-
tion with both positive and negative selection strategies in
mammalian cell lines. These techniques have revealed genes that
are essential for certain cell states and sensitivity to toxins or drugs
(Koike-Yusa et al. 2014; Shalem et al. 2014;Wang et al. 2014; Zhou
et al. 2014b; Chen et al. 2015). In addition, nuclease-inactivated
dCas9-based repressors and activators can be used in loss-of-
function and gain-of-function screens, respectively (Gilbert et al.
2014; Konermann et al. 2015). Importantly, these screening

Functional genomics with genome engineering

Genome Research 1447
www.genome.org



strategies have not only validated previously implicated genes, but
have also identified novel drivers of selected cellular phenotypes.
The relative ease of construction of these screening platforms
should make these technologies broadly useful to numerous re-
search laboratories investigating multiple different pathologies
and phenotypes.

The advent of modern genome engineering tools has also
stimulated persistent and warranted optimism in the field of
gene therapy. Knockout of pathological genes with Mendelian
phenotypes is possible using ZFs, TALEs, and Cas9 nucleases.
Similar approaches could also be used to correct deleterious copy
number variation. The knockout of portions of genes or reading
frame correction is also a useful strategy for pathologies in which
truncated genetic variants provide amelioration, such as
Duchenne muscular dystrophy (Li et al. 2015a; Ousterout et al.
2015a). Furthermore, as methods for HDR-mediated gene correc-
tion and integration continue to improve, the replacement of
causative SNPs at coding regions and regulatory elements may be-
come routine (Genovese et al. 2014; Crane et al. 2015a; Hoban

et al. 2015). Similarly, targeted addition of exogenous genetic pay-
loads may also become a valuable tool to correct loss-of-function,
provide dosage compensation, or create novel cellular phenotypes
(Li et al. 2011; Genovese et al. 2014). Engineered DBPs may also
have utility as vaccination and immunotherapeutic agents. For in-
stance, targeted disruption of viral entry molecules, such as CCR5
for HIV, have been shown to be efficacious as a prophylactic mea-
sure (Holt et al. 2010; Tebas et al. 2014). Viral loads have also been
decreased using nucleases targeted to other viral genomes
(Kennedy et al. 2014, 2015; Wang and Quake 2014; Liao et al.
2015a). In addition, genome engineering efforts to enhance hu-
man T cell immunotherapy have demonstrated substantial prom-
ise (Provasi et al. 2012; Torikai et al. 2013; Beane et al. 2015) and
may pave the way toward customized patient-specific prophylac-
tics and therapies.

The therapeutic use of ZFs, TALEs, and Cas9 as artificial tran-
scriptional/epigenetic modifiers also has tremendous potential.
The precise genetic repression of detrimental genesmaybe a useful
strategy to mitigate pathology, such as repressing the huntingtin
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gene for Huntington’s disease (Garriga-Canut et al. 2012).
Similarly, targeted activation of aberrantly silenced endogenous
loci may provide therapeutic benefits (Lara et al. 2012). Addition-
ally, the manipulation of irregular epigenetic modifications or ge-
nomic contacts could be useful to prevent or correct disease states.
Notably, in contrast to permanent nuclease-based sequence mod-
ification, synthetic transcriptional or epigenetic modifications are
dynamic, tunable, and reversible. In certain circumstances, limited
durations or transmission of artificial manipulationmay be prefer-
able. Furthermore, the versatility and multiplex capacity of these
genome engineering tools combined with the recent advances in
synthetic eukaryotic genetic circuit designs (Khalil et al. 2012;
Slusarczyk et al. 2012; Esvelt et al. 2013; Farzadfard et al. 2013;
Daringer et al. 2014; Kabadi et al. 2014; Kiani et al. 2014; Nielsen
and Voigt 2014; Nissim et al. 2014; O’Connell et al. 2014; Li
et al. 2015b; Zalatan et al. 2015) may lead to the next generation
of cell therapies (Fig. 3B).

Future outlook

Genome engineering tools have been widely implemented for ed-
iting and understanding eukaryotic genomes. However, techno-
logical improvements are still needed to fulfill the potential of
these technologies. Ideal genome engineering tools would have
completely predictable effects, lack toxicity, be easily designed
and constructed, and be easily deliverable with high efficiency in
vitro and in vivo. Although ZFs, TALEs, and CRISPR/Cas9 plat-
forms have propelled the field of genome engineering, they still
suffer potential limitations in all of these areas. The comprehen-
sive characterization and optimization of targeting specificities
and in vivo delivery parameters of modern genome engineering
tools are arguably the most pressing concerns (Kim and Kim
2014; Cox et al. 2015).

The successful application of genome engineering in diverse
organisms demonstrates that the technologies are effective with
limited negative side effects in vivo, However, the translation of
these tools to clinical settings requires a greater resolution of any
off-target effects than has previously been possible. Some exam-
ples of the possible off-target activity of the ZF, TALE, and Cas9-
based platforms have been published (Perez et al. 2008; Fu et al.
2013; Hsu et al. 2013; Mali et al. 2013a; Pattanayak et al. 2013;
Guilinger et al. 2014a; Kim and Kim 2014). An important recent
advance has been the development of unbiased approaches for de-
tecting off-target effects with a much greater level of sensitivity
than previous methods (Fig. 3C; Gabriel et al. 2011; Frock et al.
2015; Kim et al. 2015; Ran et al. 2015; Tsai et al. 2015). The use
of large sets of negative control gRNAs in high-throughput
CRISPR/Cas9-based screening applications is also enabling repro-
ducible and highly quantitative analyses of off-target gRNA activ-
ity (Gilbert et al. 2014; Sanjana et al. 2014). However, despite the
importance of these advances, their detection limits are still re-
strained by the accuracy of current DNA sequencing technologies,
and this will be a critical area for improvement moving forward.

The protein engineering of nuclease domains to improve ac-
tivity and specificity will also continue to be a focus area, particu-
larly as the methods for computational design and experimental
selection of proteins with novel properties improve. For example,
engineered “nickases” have been developed to stimulate HDR but
minimize off-target indels generated by the creation of double-
strand breaks by nucleases, but the nickase-mediated HDR fre-
quencies are generally lower (Doyon et al. 2011b; Miller et al.
2011; Kim et al. 2012; Wang et al. 2012; Mali et al. 2013a; Ran

et al. 2013; Guilinger et al. 2014b; Tsai et al. 2014; Wu et al.
2014b). Protein engineering may also be used to alter the specific-
ity of sequence recognition requirements of DNA-binding pro-
teins, such as the directed evolution of Cas9 variants to
recognize alternate PAMs (Kleinstiver et al. 2015) or of TALEs to
change the requirement of a 5′ thymine (Lamb et al. 2013).
Continued efforts to generate effective guidelines for optimal
gRNA design will also be extremely important for future Cas9-
based technologies (Briner et al. 2014; Cho et al. 2014; Doench
et al. 2014; Fu et al. 2014; Chari et al. 2015; Farboud and Meyer
2015; Singh et al. 2015; Xu et al. 2015). For example, the develop-
ment of algorithms that incorporate biological phenomena into
optimal gRNA design are an important area for future work
(Singh et al. 2015). Finally, the continued development of targeted
recombinases and transposases could eventually supplant nucle-
ase-based genome editing if the challenges of efficiently and spe-
cifically targeting highly active versions of these proteins to new
sites can be overcome.

The specificity of the genome engineering technologies is
also pertinent for transcriptional and epigenetic modification us-
ing these tools. Although genome-wide measurements of gene ex-
pression and chromatin structure suggest low frequencies of off-
target effects (Hilton et al. 2015; Polstein et al. 2015), a thorough
and controlled assessment of unintended epigenetic modifica-
tions is still necessary for many of the newly described effector do-
mains. The duration and heritability of these synthetically
depositedmodifications should also be the subject of future inves-
tigation (Kungulovski et al. 2015). Optimal concentrations and
spatiotemporal control by chemical or optogenetic regulation
will also aid in mitigating any inadvertent effects (Fig. 3D;
Polstein and Gersbach 2012, 2015; Konermann et al. 2013; Davis
et al. 2015; Nihongaki et al. 2015; Wright et al. 2015; Zetsche et
al. 2015). In addition, the direct delivery of purified ZFs, TALEs,
or preassembled Cas9/gRNA complexes can minimize off-target
activity (Gaj et al. 2012; Chen et al. 2013b; Ru et al. 2013; Kim
et al. 2014; Ramakrishna et al. 2014; Liu et al. 2015; Zuris et al.
2015), which may further safeguard against aberrant effects.

Despite these areas of potential optimization and improve-
ment, genome engineering technologies are clearly ready to have
a significant impact on genomics and medicine. Functional char-
acterization of the epigenetic modifications associated with gene
regulation is now possible using these tools. This will allow high
resolution functional annotation and indexed categorization of
genomic regulatory elements. The assignment of functional data
to these regulatory regions will also benefit from analyses across
lineages and cell states, thereby providing regulatory atlases across
genomic space and organismal development. Ongoing improve-
ments in delivery systems for primary cells and tissues will contin-
ue to facilitate this work (Kabadi et al. 2014; Ran et al. 2015; Zuris
et al. 2015). Similarly, themanipulation of epigenetic states at spe-
cific loci will also allow determinations of causal effects of these
marks and the role of epigenomic signatures at specific regulatory
elements in disease and lineage specification.

The precise perturbation of genomic contact points may also
be useful to determine the functionality of physical connections
and to understand the reported stochasticity associated with these
interactions (Kind et al. 2013; Nagano et al. 2013). Imaging of ge-
nomic loci using engineered DBPs is also possible (Chen et al.
2013a; Miyanari et al. 2013), and this could provide an indepen-
dent approach to demonstrate colocalization of genomic regions
in real time. In addition, directed localization of specified genomic
regulatory elements to nuclear regions associated with repression,
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such as the nuclear lamina (Amendola and van Steensel 2014;
Pombo andDillon 2015), could aid in validating the functional rel-
evance of nuclear subcompartmentalization. Therefore the chal-
lenge of mapping the complex and dynamic four-dimensional
genome is positioned to be a major future research area enabled
by these new genome engineering technologies.

The functional characterization of the expanding sets of puta-
tive regulatory regions is nontrivial but will be facilitated by mod-
ern genome engineering. Likewise, determination of the causal
variants in complex non-Mendelian diseases could be accom-
plished using precise recapitulation of the variants in otherwise
isogenic cell cultures and animal models. Developing custom ge-
nomic models will continue to enable drug development and
models of potential drug resistance (Kasap et al. 2014; Smurnyy
et al. 2014). This will facilitate rapid identification of drugs with
therapeutic efficacy and realize the potential of personalized and
precision medicine by connecting genomics, therapeutic targets,
and disease phenotypes. Modern genome engineering platforms
are now established as indispensable research tools for diverse
areas of biotechnology, and promising areas for their direct and in-
direct application to improving human health are rapidly expand-
ing. This newera of genomic understanding is likely to continue to
create new possibilities for genome research for the foreseeable
future.
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