
Heliyon 8 (2022) e09935
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
A study on quality control using delta data with machine learning technique

Yufang Liang a,1, Zhe Wang b,1, Dawei Huang a,c, Wei Wang d, Xiang Feng b, Zewen Han b,
Biao Song b, Qingtao Wang a,e,*, Rui Zhou a,e,**

a Department of Laboratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, PR China
b Inner Mongolia Wesure Date Technology Co., Ltd, Inner Mongolia, PR China
c Department of Laboratory Medicine, Beijing Longfu Hospital, Beijing, PR China
d Department of Blood Transfusion, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
e Beijing Center for Clinical Laboratories, Beijing, PR China
H I G H L I G H T S
� A protocol for data processing by using delta data together with machine learning algorithm, enables to improve data stability.
� After data processing, the performance of QC event prediction surpassed over 50% clinical recognized PBRTQC method, especially for the hard-to-detect error in QC
event prediction.
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A B S T R A C T

Background: In the big data era, patient-based real-time quality control (PBRTQC), as an emerging quality control
(QC) method, is expanding within the clinical laboratory industry. However, the main issue of current PBRTQC
methodology is data stability. Our study is aimed to explore a novel protocol for data stability by combining delta
data with machine learning (ML) technique to improve the capacity of QC event detection.
Methods: A data set of 423,290 laboratory results from Beijing Chao-yang Hospital 2019 patient results were used
as a training set (n ¼ 380960, 90%) and internal validation set (n ¼ 42330, 10%). A further 22,460 results from
Beijing Long-fu Hospital 2019 patient results were used as a test set. Three-type data (1) Single-type data pro-
cessed by truncation limits; (2) delta-type data processed by truncation limits and (3)delta-type data processed by
Isolated Forest (IF) algorithm were evaluated with accuracy, sensitivity, NPed, etc., and compared with previously
published statistical methods.
Results: The optimal model was based on Random Forest (RF) algorithm by using delta-type data processed by IF
algorithm. The model had a better accuracy (0.99), sensitivity (0.99) specificity (0.99) and AUC (0.99) with the
dependent test set, surpassing the critical bias of PBRTQC by over 50%. For the LYMPH#, HGB, and PLT, the
cumulative MNPed of MLQC were reduced by 95.43%, 97.39%, and 97.97% respectively when compared to the
best of the PBRTQC.
Conclusion: Final results indicate that by integrating an innovative ML algorithm with the overall data processing
protocol the detection of QC events is improved.
1. Introduction

Laboratory test results play a crucial role in disease screening, diag-
nosis, prognosis evaluation, treatmentmonitoring. Traditional QC, due to
non-commutable control materials measured, is not treated as real
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patient samples [1, 2], leading to lower error detection and higher false
alarms. PBRTQC, as a newly QC method, because of real testing results
used for QC, the commutability issue reduces, however, data stability is
outstandingly cumbersome. Several studies have reported methods for
data stability. Xincen Duan et al. [3] used the residual of the regression
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model as the input for improving univariate statistical process control
(SPC) algorithms. Ng et al [4]. developed subpopulation protocols for
hospitalized and ambulatory patients by adding additional clinical in-
formation to improve method performance. Ichihara et al. [5]. set up the
weighted cumulative delta-check (wCDI) method in steps of data trans-
formation, data standardization and index adjustment, for data
pre-processing used for detecting specimen mix-up. Cembrowski GS,
et al. [3, 6] combined delta check (DC) and moving average (MA) algo-
rithms, developed an average of deltas (AoD) strategy, used for moni-
toring the mean delta of consecutive, intra-patient results to detect
systematic error. In their protocol, a simulated annealing algorithm was
used to select the number of patient delta values to calculate the average
delta and to determine truncation limits to eliminate the effect from large
deltas.

DC, a laboratory information system (LIS)-based quality tool, involves
the calculation and evaluation of sequential patients differences, to
detect errors derived from total testing process (TTP). The increase of
delta values may mainly arise from intra-patient variation, from analyt-
ical variation (e.g., instrument) or other out-of analytical variation [7]
Previous studies found that delta check was used for error detection, its
capability was limited, exclusively suited to detect larger analytic errors
or mislabeled specimens [8, 9, 10, 11].

Machine learning (ML), one branch of Artificial Intelligence (AI), is
prevailing in various application fields in recent years. It enables users to
construct a related learning system in accordance with specific tasks. To
be exact, ML can learn useful information from the unknown character-
istics of a process and environment, and apply the learned information to
develop a prediction, a classification and inform the decision-making
process for new unknown problem in the future. ML differs from tradi-
tional statistical methods in that ML can cross industry boundaries and
summarize solutions to problems that cannot be resolved by simple
functions. Our study is aimed to, using delta data, combined with ML
technique, explore a new approach for data stability, thus improving the
capacity of QC event detection. Our study is aimed to assess explore a
novel protocol for data stability by combining delta data with machine
learning (ML) technique to improve the capacity of QC event detection.
To verify the improvement effect of data stability, we compared both
delta-type data and single-type data which were processed by truncation
limits in PBRTQC based on statistical method, and further compared
delta-type data processed by Isolated Forest in ML and in PBRTQC.

2. Materials and methods

2.1. Data collection

Our data was divided into training set, validation set and test set. The
validation set can be understood as a part of the training set used for
monitoring the model training process. All data were obtained from two
Beijing’s Hospitals. 423290 results measured on XN-9000 (Sysmex,
Kobe, Japan) were extracted through the laboratory information system
(LIS) of Beijing Chao-yang Hospital in 2018, of which the data in the first
10 months were used for model training and the latter two months were
used for model validation. 22460 results measured on BC-5390 (Mind-
ray, Shenzhen, China) in the same time interval were obtained from
another hospital, Beijing Long-fu Hospital for model testing. The data
were filtered by rules, including: (1) patients with only one result in the
study interval were excluded; (2) according to Tukey’s standard [12] the
values less than the overall 25% quantile or greater than the overall 75%
quantile were removed as outliers; (3) after Tukey’s standard was
applied, patients with less than two results were excluded; (4) that the
age was 14–60 years old was included; (5) and delta check interval was
defined as one year [13]. All data were collected in-control status. Only
seven representative test items were selected, including lymphocyte
count (lymph#), lymphocyte ratio (lymph%), hemoglobin volume
(HGB), mean hemoglobin volume (MCH), mean hemoglobin concentra-
tion (MCHC), red blood cell volume distribution width (R–CV) and
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platelet count (PLT). The reason for selecting these test items was that
they represented different degrees of variation in leukocyte, erythrocyte
and platelet series, and the degree of variation was based on their
respective GVi/CVg rates. For a pair of results for each patient, one was
used for obtaining delta value by calculating the difference between the
pair of results in experiment 2 and 3, the other for selecting the second
result each patient in experiment 1. Experiment 1–3 were described as
followed.
2.2. Data stimulation

The data filtered by rules were regarded as unbiased data, in order to
simulate out-of-control status in the real setting, we artificially intro-
duced 10 biases of different sizes according to the formula below:

x
0 ¼ x þ n� TEa� x

where n refers to different multiples (�3/2, -1, -1/2, -1/4, -1/6, 1/6, 1/4,
1/2, 1, 3/2), x represents the mean of all data for each test item, TEa
represents the total allowable error for each test item which is defined as
the sum of random error (RE) and systematic error (SE). For delta and
single data sets, the simulation methods of biased data were different: 1)
for the delta data set, a goal bias was only introduced into the second
result of each patient, and then the biased delta was obtained by calcu-
lating a difference with the first result of this pair of patient results; 2) for
the single data set, a goal bias was directly introduced on unbiased data
as biased data. In this paper, a bias represented a shift in the mean.
2.3. MLQC based on delta-type data

2.3.1. Data pre-processing
Isolation Forest (IF) algorithm was used for pre-processing of delta

data. IF is an unsupervised anomaly detection method commonly used
for continuous numerical data [14] Its principle is to set up multiple
isolation trees (iTree), each of which belongs to a binary tree structure to
cut in the data space. As usual, the probability of data occurrence is
extremely rare in the area with sparse spatial distribution, thus if the data
falling in these areas can be considered as an abnormal value [15].

2.3.2. Model construction
Unbiased data and biased data in our study were defined as two kinds

of data in ML, and they were distinguished by Random Forest (RF). RF
classifier, an integrated supervised learning, is consists of multiple de-
cision trees, each decision tree will give its own prediction, and the final
prediction is given by way of voting [14].

Patient data was partitioned as a block size. A block size was taken as
a whole. which was called a “machine learning sample”. The input
feature of RF algorithm model was a sequence composed of multiple
values. If the step size was 10, it indicated that the input dimension was
10. This not only introduced the serialization feature, but also met the
multi feature requirements of machine learning algorithm. The following
described the process of determining the step size and RF algorithm
parameters:

Firstly, take an example of one test item, when RF algorithm pa-
rameters in the programwere set as default values, a block size needed to
be pre-defined. A traversal experiment in a range of 5–20 in step of 1 was
carried on to determine a proper block size. Secondly, all data included
were partitioned by the block size determined, then a new “ML sample”
was formed. Thirdly, ML samples were standardized. The samples
composed of unbiased data was labeled “000 and the samples composed of
biased data as “1”. The same experimental steps above were imple-
mented as unbiased data and biased data. In the following, the RF al-
gorithm parameters were optimized by adjusting the numbers of-trees
(N-trees) and max depth of trees (Max Depth). The search scope for N-
trees from 100 to 500 in step of 100, and for Max Depth from 50 to 300 in



Figure 1. Integrated experimental process diagram.
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step of 50. The accuracy of training and testing results for each combi-
nation was analyzed, to select the best parameter combination.

2.4. PBRTQC based on statistics

Two PBRTQC algorithms, moving average (MA) and moving standard
deviation (MovSD) by only using single-type patient data, were selected
as comparative methods. Then, both PBRTQC by using delta-type patient
data and ML QC using delta-type patient data were regarded as
comparing methods, one to estimate the ability of QC event prediction by
using single-type data and delta-type data separately, the other to
compare the efficiency of data filtering by the way of transaction limits
recommended by The International Federation of Clinical Chemistry and
Laboratory (IFCC) [16, 17] and by ML IF algorithm.

For PBRTQC, the optimization of parameters strictly followed the
experimental process recommended by IFCC. In the first step, the input
data for PBRTQC was filtered by truncation limits, like data filtering of IF
in ML, the minimum and maximum values were removed after sorting
the original data. In order to reduce the influence of noise caused by
extreme values, six data truncation limits were explored (0%, 1%,
5%,15%, 20% and 40%); then the data filtered were dealt with or
without Box-Cox transformation.
Table 1. Data analysis of the 3 data types for the seven test items.

Test item Algorithm Mean SD Min

LYMPH# Single 2.0722 0.9855 0.2400

Delta -0.0138 0.7819 -3.6900

IF -0.0076 0.3249 -0.6800

LYMPH% Single 31.3645 11.7726 2.9000

Delta -1.8032 8.8492 -40.9000

IF -0.2161 5.2249 -10.6600

HGB Single 129.6815 19.5626 56.0000

Delta 2.0162 11.2371 -64.0000

IF 0.8813 5.3897 -10.4000

MCH Single 29.5675 2.7095 17.9000

Delta 0.0941 0.9510 -7.3000

IF -0.0140 0.4154 -0.8600

MCHC Single 325.8178 13.1967 268.000

Delta 0.8596 12.1156 -48.0000

IF 1.0480 4.3566 -9.5000

RCV Single 13.5693 2.1297 10.9200

Delta -0.0211 1.4696 -10.9000

IF 0.0243 0.2560 -0.4000

PLT Single 235.4359 82.7727 30.0000

Delta 2.8489 57.2888 -243.000

IF 1.4151 23.3346 -42.0000

Single - single-type data; Delta - delta-type data pre-processed by different truncation li
ML method; Mean - average value; SD - standard deviation; Min - minimum value; 25

3

2.4.1. PBRTQC by using single-type data
For PBRTQC by using single-type patient data, the data were firstly

filtered by reference intervals of test items. Both MA and MovSD [18]al-
gorithmswere experimented. The optimal range of block sizewas selected
from10, 30, 50, 90, 110, 130 to150. themeanand standarddeviation (SD)
of the two PBRTQC algorithms were calculated for each block size.

All patient results were divided into 20 virtual days according to the
original time sequence, and 1150 data were allocated every day, inclu-
ding the first 150 unbiased data and the last 1000 biased data. The
control limits based on three calculation methods provided by IFCC,
namely: symmetric, all PBRTQC and daily extremes were calculated for
each test item [16]. For the symmetric method, we choose two distances:
2.5-time coefficient variance (CV) (equivalent to 2.5-time SD of PBRTQC
results, 3-time CV (equivalent to 3-time SD of PBRTQC results). All pa-
rameters above mentioned were combined and experimented. The best
combined results were obtained.

2.4.2. PBRTQC by using delta-type data
To ensure the comparability with PBRTQC based on single-type pa-

tient data, the same experimental steps as method 4.1 were followed. The
only change in this experiment was that the input data was replaced by
delta-type patient data.
25th 50th 75th Max

1.4400 1.8600 2.4500 9.4700

-0.3600 -0.0200 0.2700 11.0600

-0.2600 0.0000 0.2500 0.6000

23.3000 30.2000 37.3000 77.8000

-6.5000 -1.5000 3.3000 34.2000

-4.4000 -0.1600 4.0000 9.5600

118.0000 131.0000 143.0000 184.0000

-4.0000 2.0000 7.0000 68.0000

-4.0000 1.0000 5.0000 11.6000

28.3000 29.8000 31.2000 39.8000

-0.3000 0.1000 0.5000 7.3000

-0.3000 0.0000 0.3000 0.8000

0 318.0000 326.0000 335.0000 364.0000

-7.0000 1.0000 7.0000 75.0000

-3.0000 1.0000 5.0000 9.2000

12.3000 13.0400 14.0700 30.4000

-0.4900 0.0000 0.4000 18.1600

-0.2000 0.0000 0.2000 0.5300

182.0000 224.0000 275.0000 742.0000

0 -21.0000 4.0000 27.0000 456.0000

-17.0000 1.0000 20.0000 48.0000

mits based on statistical method; IF - delta-type data pre-processed by IF based on
th - 25th quartile; 50th - 50th quartile; 75th - 75th quartile; Max - maximum value.
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2.5. Evaluation metrics

Four process indicators: true positive (TP), true negative (TN), false
positive (FP) and false negative (FN), were recorded, and then five in-
dicators in the confusion matrix commonly used were evaluated the
performance of our model, namely: area under ROC curve (AUC), true
positive rate (TPR), true negative rate (TNR), false positive rate (FPR),
false negative rate (FNR), and accuracy (ACC), here TPR was equivalent
to sensitivity, TNR was equivalent to specificity.

When FPR <5%, the number of patients affected (NPed) from the
beginning of a bias introduced to the bias detected was used to evaluate
the clinical performance of PBRTQC and MLQC. The mean (ANPed),
median (MNPed) and 95% quantile (95 NPed) of NPed on 20 virtual days
were used as clinical performance indicators. The minimum value of
accumulative MNPed was the optimal result.

Data processing and model analysis were performed in Python 3.7.3
package. The model training process depends on “numpy”, “Pandas” and
other tool kits. Figure 1 showed the integrated experimental process
diagram.
Figure 2. Data separability between critical biased and unbiased data for three-type d
of Cell Blood Count, the 3 columns from left to right represented single-type data, de
represented a ML sample with the same block size consisting of 10 patient raw data

4

3. Results

3.1. Data description

For the seven test items included, three different data pre-processing
methods were used. As seen in Table 1, when single-type data was
converted to delta-type data, the mean and SD of the data narrowed
significantly, and the concentration and stability of the data were also
increased. In terms of the values adopting different quartiles, the dis-
tribution was more uniform to the results of delta-type data than to that
of single-type data, although the sign introduced by delta-type data
increased the value threshold for some test items. Further, the data was
more concentrated when filtered by IF based on delta-type data. Taking
LYMPH# as an example, the SD of delta-type data after dealt with by IF
was reduced by 67.03% compared with the single-type data processed
by truncation limits, and the reduction rates of the remaining six test
items were 55.62%, 72.45%, 84.67%, 66.99%, 87.98%, and 71.81%,
respectively. To visualize of data distribution characteristics of the
three types of data, principal component analysis (PCA) technique was
ata by PCA. The 3 rows from top to bottom represented LYMPH #, HGB and PLT
lta-type delta, and delta-type data processed by IF. Every point in each diagram
.



Table 2. AUC for different block sizes and the results of RF tuning for R–CV at the
critical bias.

Block size AUC N-
trees

Max Depth Training accuracy Testing accuracy

5 0.9122 100 150 0.90 0.89

6 0.9352 200 100 0.91 0.92

7 0.9449 200 300 0.92 0.93

8 0.9556 300 100 0.96 0.94

9 0.9768 300 300 0.93 0.93

10 0.9862 400 100 0.94 0.93

11 0.9841 400 300 0.94 0.93

12 0.9832 500 100 0.94 0.93

13 0.9865 500 300 0.95 0.92

N-trees - number of trees; Max Depth - max depth of trees.

Y. Liang et al. Heliyon 8 (2022) e09935
used to show the difference between biased data at the critical level and
unbiased data, when a block size was set as 10. In Figure 2, the 3 rows
from left to right representing LYMPH #, HGB and PLT, and the 3
columns from top to bottom representing single data, delta delta, and
delta by IF. Every point in each diagram represented a ML sample
consisting of 10 patient data as a block size. The results proved that the
separability increased when the single-type data sequentially was
processed by delta and then IF.
5

3.2. MLQC results by using delta-type data

Take RCV as an example, the influencing degree of the block size to
the ability of QC event detection was explored by RF algorithm in ML.
Here RCV was selected as the arithmetic example from the seven test
items included because its within-individual and between individual
ratio (CVi/CVg) was the largest, and this indicated that the degree of
variation of this test item was considered relatively complex. The biased
data at the critical level and unbiased data were used for model training.
When RF algorithm parameters were set as default values, the block size
was gradually increased starting from 5, and the AUC value of the model
also increased; however, the change trend in AUC was no longer signif-
icant for block sizes above 10, so 10 was used as the block size for all
subsequent experiments. When further adjusting the RF parameters, the
search range of the parameter of N-trees was from 100 to 500 in step of
100; for each N-trees, the Max Depth was set from 50 to 300 in step of 50,
and the accuracy of corresponding training and testing was counted in
each group of experiments. The following Table 2 showed some data of
the traversal experiment process, and the results showed that when the
N-trees was 300 and the Max Depth was 200 was the optimal parameter
combination.

3.3. The performance of QC event prediction for three-type data

For each test item, three types of data were experimented, namely: (1)
PBRTQC by using single-type data processed by statistical truncation
Figure 3. The visualization of data dis-
tribution feature for the training and the
test sets and the performance parame-
ters of five experiments at critical bias
for LYMPH #, HGB and PLT. A-C take
examples of LYMPH #, HGB and PLT
ordered from left to right, represented
principal component analysis (PCA)
plots of the training set and internal
validation set. D represented the TPR,
TNR, FPR, FNR and ACC of the five al-
gorithms (TPR - true positive rate; TNR -
true negative rate; FPR - false positive
rate; FNR - false negative rate; ACC -
accuracy). E represented ANPed,
MNPed, 95NPed of them (ANped -
average of Nped; MNped - median of
Nped; 95Nped - 95 quantile of Nped).
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limits; (2) PBRTQC by using delta-type data processed by statistical
truncation limits; and (3) MLQC by using delta-type data processed by IF,
where (1) and (2) experiments included 2 different algorithms, MA and
MovSD, respectively. For MA and MovSD algorithms, 280 permutations
derived from 5 truncation limits, 7 block sizes, 4 control limits, and 2
data transformation, respectively, were experimented. Due to paper
space limitation, take examples of LYMPH #, HGB and PLT of CBC,
Figure 3A, B, C showed the distribution feature of the training set and the
test set in the MLQC. The coverage of the two sets was consistent for the
three items in the scatter plots of A-C.

In Figure 3D, E, for the LYMPH#, HGB, and PLT, the experimental
results for the positive bias at the critical level (equivalent to adding a
new factor n with values between 1/4 and 1/2 to the previous simulation
equation) showed that the model had a better accuracy (0.99), sensitivity
(0.99), specificity (0.99) in the in dependent test set. Its performance
surpassed over 50% by the optimal method by MA and MovSD. The
MNPed of the ML QC results using delta-type data were all within 10,
which were reduced by 93.06%, 90.72%, 93.20%, respectively, relative
to the best results of PBRTQC. The remaining of test items, the tuning
parameters, and their performance in different experimental conditions
at the critical biases, were shown in Tables 3, 4, and 5.

In Figure 4 A, B, C, the different colored lines indicated the MNPed for
each experiment, and the corresponding colored area indicated ANPed
and 95NPed. The top horizontal line of the MNPed curve indicated the
current error is not detected. The PBRTQC for both single-type and delta-
type data were inferior to MLQC with delta-type data and showed
asymmetric error detection curves for both positive and negative errors.
However, MLQCwas not only more sensitive than both PBRTQC, but also
the MNPed curves were symmetrically distributed, suggesting that MLQC
showed stronger ability for error detection, especially at critical levels.

For MLQC, all results of the MNPed to the seven test items for all
biases (except for zero bias), were below 10 except for the MCHC item.
The cumulative ANPed, MNPed and 95NPed corresponding to each of the
10 experiments for all biases (except for bias at critical level for each test
item) showed significant differences among the methods. Taking
LYMPH# as an example, the best performance for using single-type data
was the MovSD algorithm with the above three cumulative values of
5044.92, 4871, and 8476.5, respectively; the best performance for using
delta-type data was the MA algorithmwith the three cumulative values of
1629.52, 1094, and 5213, respectively; and the three cumulative values
for using delta-type data by ML QC were 45.07, 50, 60. Taking HGB as an
example, the best performance for using single-type data was the MovSD
algorithm with three cumulative values of 4550.80, 4751.5, and 8015.3;
the best performance for using delta-type data was the MovSD algorithm
with three cumulative values of 3515.60, 3504, and 5341.5; and the
three cumulative values for delta-type data by ML QC were 89.42、
91.5、104.55. Taking PLT as an example, the best performance for using
single-type data was MovSD algorithm with 3 cumulative values of
4479.43, 3818, 8260.3; the best performance for using delta-type data
was MovSD algorithm with 3 cumulative values of 3454.44, 3798,
5362.1; and the three cumulative values for delta-type data by ML QC
were 70.33, 72, 102.2. It was obvious that the experimental results using
delta-type data were better than single-type data, and the cumulative
ANPed and MNPed of delta data ML QC for all 10 biases were reduced to
within 100 from the previous 1000 or beyond. For the LYMPH#, HGB,
and PLT, the cumulative MNPed of ML QC results relative to the best
PBRTQC results were reduced by 95.43%, 97.39%, and 97.97%,
respectively.

4. Discussion

Levey and Jennings introduced QC by using QC materials into the
clinical laboratory in 1950 as the primary way to improve poor analytical
performance [19]. The fundamental objective of QC program in the
clinical laboratory is to characterize the analytical process accurately and
thereby to provide information regarding the quality of results reported



Table 4. Test results of 5 algorithms at the critical level in erythrocyte lineage.

Test item Algorithm TL (%) Transfor-mation BS CL CL_l CL_U TPR TNR FPR FNR ACC ANPed MNPed 95NPed

HGB Single-MA 10 BC 130 daily extremes 125.9305 130.8100 0.1459 1.0000 0.0000 1.0000 0.5622 842.0866 1100 1100

Single-MovSD 5 neat 50 daily extremes 2.4035 14.5398 0.0709 1.0000 0.0000 1.0000 0.5286 602.7619 551 1100

Delta-MA 15 - 110 daily extremes -3.8918 5.1418 0.6943 0.9596 0.0404 0.9596 0.8193 570.3228 469 1100

Delta-MovSD 5 - 30 daily extremes 11.4405 26.4159 0.9191 1.0000 0.0000 1.0000 0.9568 103.1467 97 236

Delta-ML Processing 10 RF-model - - 0.9912 0.9997 0.0003 0.9997 0.9923 8.8500 9 11

MCH Single-MA 15 BC 90 3CV 29.2380 30.2543 0.4386 0.9722 0.0278 0.9722 0.7015 643.4252 643 1100

Single-MovSD 15 Neat 30 daily extremes 1.2504 2.1272 0.4785 0.9558 0.0442 0.9558 0.7136 547.8189 454 1100

Delta-MA 5 - 30 2.5CV -1.1558 1.2430 0.1658 0.9939 0.0061 0.9939 0.5759 568.5952 426 1100

Delta-MovSD 1 - 20 3CV 1.4054 4.1035 0.4086 0.9989 0.0011 0.9989 0.6900 196.8989 136 494

Delta-ML Processing 10 RF-model - - 0.9909 0.9923 0.0077 0.9923 0.9911 8.3500 8 12

MCHC Single-MA 20 BC 130 daily extremes 329.3763 334.2094 0.5485 0.9990 0.0010 0.9990 0.7704 630.4646 559 1100

Single-MovSD 0 Neat 30 3CV 6.7953 11.7294 0.5884 0.9990 0.0010 0.9990 0.7907 567.5827 429 1100

Delta-MA 1 - 30 3CV -9.1536 9.6639 0.4066 0.9989 0.0011 0.9989 0.6890 268.1905 200 669

Delta-MovSD 5 - 90 daily extremes 5.6724 10.6232 0.9570 0.9977 0.0023 0.9977 0.9760 83.3125 83 120

Delta-ML Processing 10 RF-model - - 0.9913 0.9930 0.0070 0.9930 0.9915 8.7500 9 11

R–CV Single-MA 10 BC 90 daily extremes 12.5823 13.1440 0.3866 0.9674 0.0326 0.9674 0.6697 476.0472 293 1100

Single-MovSD 5 BC 50 3CV 0.1928 1.1664 0.4026 0.9568 0.0432 0.9568 0.6756 187.3571 94 921

Delta-MA 20 - 30 daily extremes -0.4530 0.4332 0.2248 0.9630 0.0370 0.9630 0.5884 473.9370 283 1100

Delta-MovSD 1 - 30 2.5CV 0.8907 3.1528 0.7922 0.9978 0.0022 0.9978 0.8902 83.4404 76 185

Delta-ML Processing 10 RF-model - - 0.9897 0.9843 0.0157 0.9843 0.9890 10.3000 10 12

TL - truncation limit; BC - Box–Cox transformation; BS-block size; CL_l - Control limit_lower; CL_U - Control limit_ upper; TPR - true positive rate; TNR - true positive rate; FPR - false positive rate; FNR - false negative rate; ACC
- accuracy; ANped - average of Nped; MNped - median of Nped; 95Nped - 95 quantile of Nped.
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for clinical specimens [20]. Patient-based real-time quality control
(PBRTQC) is a generic term for the use of patient results for real-time
quality-control purpose as an alternative tool for insufficient or ineffi-
cient QC. Recent studies by Xincen Duan, et al. [3] used an additional
regression adjustment before using a common algorithm in the RARTQC
framework removed autocorrelation in the test results, and allowed re-
searchers to add additional variables, and to improve data trans-
formation; Ichihara et al. [5] set up the weighted cumulative delta-check
(wCDI) method, applying a series of techniques for data stability.

Otherwise, in real settings, clinical testing data takes on significant
heterogeneous feature and contains a number of extreme data. And some
independent variables from population impact patient data-oriented QC
method performance, such as age, sex, patient type, within-or-between
biological variability, sample mislabeling, patient misidentification,
distribution patterns of test results.

Delta check is a quantity of change expressed as a magnitude or ratio
that can be determined by calculating continuous paired data from
representative patients. It has been used for monitoring quality issues in
total testing process, such as patient identification errors, sample iden-
tification errors or sample mishandling in the pre-analytical phase, as
well as for QC in analytical phase [21]. While DC is still limited by a
simple linear transformation for handling the noise from data. ML, as one
of the main tools for data mining, can seek structural features of the data
from complex dimensions and big data volume. In this paper, ML tech-
nique is introduced into QC, combined with delta data, to explore a
newly overall protocol for data stability, thus improving patient
data-based QC effectiveness.

An overall protocol for stabilizing data is set up by using delta data in
combination with IF algorithm in ML. First, inputs are changed from
single-type data to delta-type data, the paired-data weakens the pertur-
bation from single patient data although additional intra-individual
variation information introduced, which is equivalent to denoising to
the single data, making the characteristics of the bias expected to be
identified more significant, thus improving the accuracy of QC event
detection. The experimental results in Table 1 showed that the SD was
reduced by 31.85% on average after the single data of the seven test
items were converted to delta data. Second, for the stabilization of
sample sources, ML IF shows a powerful advantage, which is essentially
based on the distribution of samples in a high-dimensional space to
remove outliers in samples. It transforms a sample pre-processing issue
into a classification problem based on density and distance by the spatial
location of the samples. The IF algorithm enables to recursively segment
data set randomly until all sample points are completely isolated. With
this segmentation strategy, every data point is effectively utilized, thus
improving data utilization, reducing information loss, and preventing
denoising failure caused by removing outlier data directly by means of
setting statistical truncation limits. When the delta-type data processed
by IF, the SD was reduced by an average of 72.36% compared to the
single-type data processed only by a truncation limit on statistics.

As while, RF algorithm is also used to further improve the effective
utilization of data, which in turn improves the QC effectiveness. In this
study, a ML RF model is established, which maps every single data point
within a moving window length to a high-dimensional space, and the
data points within the same moving window are regarded as a whole and
mapped in the high-dimensional space with a divisible population effect.
Here, the data points within each moving window are characterized as
serialized information after feature engineering process in ML, and the
data points within each moving window produce a horizontal cross-
correlation into the RF model in a multidimensional parallel manner,
instead of by the way of the mean calculated by using the data points in
one block size data in PBRTQC. The RF model is trained through many
data iterations, and there exists a technique similar to IF in its process,
which summarizes a relatively reasonable delimited hyper-curve. And
when a new unknown input sequence needs to be predicted, the sequence
will be compared with the delimited hyper-curve, a final anomaly
probability is output by calculating the size relationship of each element



Figure 4. The curves for the comparison performance of 5 experiments. A,B,C corresponded to LYMPH #, HGB, and PLT, respectively. Colored lines represented
MNPed for each bias, colored area represented the associated 95NPed. Parameters were displayed in the top corner (BS: block size; T: truncation limit, BC: with
Box–Cox transformation).

Y. Liang et al. Heliyon 8 (2022) e09935
in it. Our experimental results showed that ANPed, MNPed and 95NPed
of MLQC using delta data, were basically within 10, which were reduced
by 96.39%, 95.34% and 96.37% respectively compared to the optimal
results of PBRTQC. The sensitivity and specificity of the MLQC were also
both better than the best results of PBRTQC. Here, TPR refers to the
sensitivity, which represents out-of-control status of QC, and TNR refers
to the specificity, which represents in-control status of QC. High sensi-
tivity and specificity of our model indicates that the MLQC is rarely
possible for misclassification and omission of QC event detection as well
as without delay and labor-intensive to false alarm.

In summary, by implementing an overall protocol for data processing,
together with ML algorithm innovation, an effective tool for QC error
detection is established.
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