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Abstract

The medial prefrontal cortex (mMPFC) plays a crucial role in emotional learning and memory
in rodents and humans. While many studies suggest a differential role for the prelimbic (PL)
and infralimbic (IL) subdivisions of mPFC, few have considered the relationship between
neural activity in these two brain regions recorded simultaneously in behaving animals.
Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is
largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behav-
ing rats during the acquisition and expression of conditioned fear. On Day 1, rats received
either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned
stimulus (CS) preceded signaled footshocks. Twenty-four hours later, animals were
returned to the recording chamber (modified to create a novel context) where they received
5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high
levels of post-shock freezing that was associated with an enduring suppression of mPFC
spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS pre-
sentation produced differential conditioned freezing in signaled and unsignaled rats: freez-
ing increased in rats that had received signaled shocks, but decreased in animals in the
unsignaled condition (i.e., external inhibition). This group difference in CS-evoked freezing
was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, dif-
ferences in PL and IL firing rate highly correlated with freezing levels. In other words, in the
signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-
mediated suppression of fear and allowing PL activity to dominate performance, resulting in
high levels of freezing. This was not observed in the unsignaled group, which exhibited low
freezing. These data reveal that the activity of mPFC neurons is modulated by both asso-
ciative and nonassociative stimuli that regulate conditioned fear.

Introduction

The medial prefrontal cortex (mPFC) has been shown to play an integral role in learning and
memory processes related to emotionally prominent stimuli in both rodents and humans [1-
6]. For example, after the conditioning and extinction of fear, the prelimbic (PL) and infralim-
bic (IL) subdivisions of the mPFC are believed to regulate the expression and suppression of
fear, respectively [7-12]. In support of this functional dichotomy, PL inactivation reduces both
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cued and contextual fear [9], whereas IL inactivation impairs extinction learning [11-15].
Moreover, electrical stimulation of PL enhances fear expression [16], whereas IL activation
during extinction enhances extinction recall [17-19]. In addition, inhibitory interneurons in
PL coordinate fear expression [20,21], and CS-evoked firing rates in PL correlate with ongoing
conditional freezing behavior [10]. In contrast, IL single-neuron CS-evoked responses correlate
with extinction recall [7], and the expression of extinction is associated with increased Fos
expression in IL relative to PL, a pattern that is reversed during the renewal of fear outside the
extinction context (i.e., PL>IL) [22,23]. Reciprocal PL and IL activity during fear expression
appears to be mediated in part by ascending basolateral amygdala inputs that themselves show
differential activity during low- and high-fear states [24-26].

Although these studies reveal different roles for PL and IL in the regulation of conditional
fear, they have largely considered IL and PL in isolation and have focused on CS-evoked spike
firing. We have recently observed that fear conditioning is associated with marked changes in
the spontaneous firing rate of IL and PL neurons [27] and that reciprocal changes in IL and PL
firing appear to correlate with the expression of conditional freezing [28,29]. Here we further
explore the relationship between spontaneous and CS-evoked IL and PL firing rates during the
acquisition and expression of conditioned freezing in rats. Rats received either signaled or
unsignaled footshock and were later presented with the auditory cue in a novel context; simulta-
neous IL and PL recordings were made during both the conditioning and retention sessions. We
find that the expression of both post-shock freezing during conditioning and CS-evoked freezing
during retention testing are associated with a differential modulation (largely suppression) of
spontaneous firing in IL and PL. This was most pronounced for rats receiving signaled foot-
shocks. In other words, the auditory CS differentially biased spontaneous firing in the mPFC,
more strongly attenuating firing in IL relative to PL. We propose that this limits IL-mediated
inhibition of fear and allows PL-mediated excitation of fear to dominate performance.

Materials and Methods
Ethics Statement

All procedures were conducted at Texas A&M University and were performed in strict accor-
dance with the guidelines and regulations set forth by the National Institutes of Health and
Texas A&M University with full approval from its Animal Care and Use Committee (Protocol
number: 2015-0005).

Subjects

Twelve experimentally naive adult male Long-Evans Blue Spruce rats (weighing 200-224 g;
50-57 days old) were obtained from a commercial supplier (Harlan Sprague-Dawley, India-
napolis, IN). Upon arrival and throughout the experiments, rats were individually housed in
cages within a temperature- and humidity-controlled vivarium, and kept on a 14:10 hr light/
dark cycle (lights on at 7 am) with ad libitum access to food and water. All experiments took
place in the daytime during the light phase. Rats were handled for ~30 seconds a day for 5 days
to habituate them to the experimenter before any behavioral testing or surgical procedures
were carried out. No animals became ill or died prior to the experimental endpoint.

In vivo electrophysiology

Rats were randomly assigned to one of two groups: 6 rats received “signaled” footshocks during
fear conditioning, and 6 others received “unsignaled” footshocks (see below). Prior to in vivo
electrophysiology experiments, all rats were surgically implanted with a microelectrode array
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within the medial prefrontal cortex (mPFC). To do so, rats were anesthetized with isoflurane
(5% induction, 2% maintenance) and secured in a stereotaxic apparatus (Kopf Instruments,
Tujunga, CA). The scalp was incised and retracted; three burr holes were drilled for anchor
screws. A portion of the skull overlying mPFC was removed to allow for microelectrode
implantation. The rat was implanted with a 16-channel microelectrodearray (Innovative
Neurophysiology, Durham, NC) targeting both the prelimbic (PL; 8 wires) and infralimbic (IL;
8 wires) subdivisions of the mPFC in the right hemisphere. The 2x8 wire microarray was con-
structed from two rows of 50 pm diameter tungsten wires of two different lengths (PL, 6.9 mm;
IL, 8.0 mm; see below for dorsal-ventral coordinates); wires in each row and the rows them-
selves were spaced 200 pm apart (center-to-center). The array was positioned with its long axis
parallel to the anterior-posterior plane. The coordinates for the centermost wires of the array
were (relative to bregma at skull surface): +2.7 mm AP, +0.55 mm ML, -4.0 mm DV for PL;
and +2.7 mm AP, +0.35 mm ML, -5.1 mm DV for IL. The array was secured to the skull with
dental acrylic and one week was allowed for recovery before in vivo recordings began.

A standard rodent conditioning chamber (30x24x21 cm, Med Associates, St. Albans, VT)
housed in a sound-attenuating cabinet was modified to allow for electrophysiological record-
ings. The chamber consisted of two aluminum sides, a Plexiglas rear wall, and a hinged Plexi-
glas door. The grid floor contained 19 stainless steel rods (4 mm diameter) spaced 1.5 cm apart
(center-to-center). Rods were connected to a shock source and solid-state grid scrambler (Med
Associates) for the delivery of footshocks. A loudspeaker mounted on the outside of a grating
in one aluminum wall was used to play auditory tones. Locomotor activity was transduced by a
load-cell under the floor of the chamber, and the output of the load-cell was recorded by an
OmniPlex recording system (Plexon, Dallas, TX). All behavioral and neural activity was
recorded automatically with this system.

Single-unit recordings occurred over two days in two distinct contexts within this condi-
tioning chamber. On Day 1, the rats were transported to the recording room in a black plastic
box, connected to a headstage with a flexible cable, and placed in the recording chamber. The
chamber had been cleaned with 1% ammonium hydroxide to provide a distinct olfactory cue, a
black pan containing a thin layer of the same solution had been placed under the grid floor,
and the room was illuminated with ambient red lights (context A). After a 3-min stimulus-free
baseline recording period, “signaled” rats received 5 auditory tone-footshock pairings, whereas
“unsignaled” rats received 5 shocks without tones. The tones (conditioned stimuli, CS) were 2
sec, 80 dB, 2 kHz; the shocks (unconditioned stimuli, US) were 0.5 sec and 1 mA, where shock
onset occurred at tone offset. There was a 1-min inter-trial interval (I'TT) between shocks.
Behavioral and neural data were not recorded during this conditioning period due to the elec-
trical noise associated with shock delivery; recordings commenced immediately after the last
footshock. The recording session continued for 15 min after the last shock, after which the rat
was returned to its home cage. On Day 2, the transport and recording contexts were altered to
reduce generalization of fear from the conditioning session to this fear recall test session. The
rat was transported in a white plastic box. The recording chamber was cleaned with 1% acetic
acid to provide a distinct olfactory cue, a white pan containing a thin layer of the same solution
was placed under the grid floor, the grid floor was covered with a transparent rubber mat, the
back wall was covered with alternating black and white stripes, and the room was illuminated
with ambient fluorescent white lights (context B). After a 3-min stimulus-free baseline period,
all rats were presented with five tone-alone trials (1-min ITI); the rat remained in the chamber
for 5 min after the final tone and behavioral and neural data were recorded throughout the ses-
sion. Two rats were excluded from each group for Day 1 and 2 analyses on the basis of being
statistical outliers in terms of freezing behavior (1 from each group) or neural activity (1 from
each group) (> 2 SD), resulting in group sizes of 4 for signaled and unsignaled.
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Extracellular single-unit activity was recorded using a multichannel neurophysiological
recording system (OmniPlex, Plexon, Dallas, TX). Wideband signals recorded on each channel
were referenced to one of the recording wires (resulting in a maximum of 15 channels of activ-
ity per rat), amplified (8,000x), digitized (40 kHz sampling rate), and saved on a PC for offline
sorting and analysis. The recording reference wire was located in PL, and was randomly
selected to optimize the quality of the recordings. After high-pass filtering the signal at 600 Hz,
waveforms were sorted manually using 2-dimensional principal component analysis (Offline
Sorter, Plexon). Only well-isolated units were used in the analysis. If two units with similar
waveforms and identical time stamps for their action potentials appeared on adjacent elec-
trodes, only one unit was used. Sorted waveforms and their timestamps were then imported to
NeuroExplorer (Nex Technologies, Madison, AL) for further analysis.

The analysis of neural activity focused on spontaneous single-unit firing during each record-
ing session; CS-evoked activity was also analyzed for Day 2. For both Day 1 and Day 2, the
spontaneous firing rate was normalized to the 3-min baseline period prior to tone and/or
shock presentations. In addition, in order to avoid treating neurons collected from the same
brain region and rat as independent factors, normalized firing rate data were averaged for all
cells collected within a brain region from each rat to create a single value for each brain region
over time. This analysis was primarily centered around understanding differences in PL and IL
firing. IL normalized activity was subtracted from PL normalized activity to create a PL versus
IL difference. For analysis of the CS-evoked activity on Day 2, firing rate was binned in 100
msec increments around the time of the tones for individual neurons, and the evoked responses
were normalized to the 1 sec period prior to tone onset, averaged across the 5 tones.

Histology

After the completion of experiments, rats were overdosed with pentobarbital and electrolytic
lesions were created by passing electrical current (80 nA, 10 sec; A365 stimulus isolator, World
Precision Instruments, Sarasota, FL) through 6 of the recording wires (anterior, middle, poste-
rior wires in both PL and IL) to mark the location of the recording array in mPFC. The rats
were then perfused transcardially with 0.9% saline followed by 10% formalin. Brains were
extracted from the skull and post-fixed in a 10% formalin solution for 24 hours followed by
10% formalin/30% sucrose solution where they remained for a minimum of 48 hours. After the
post-fix period, coronal brain sections (50 um thickness) were cut on a cryostat (-20° C),
mounted on subbed microscope slides, and stained with thionin (0.25%) to visualize electrode
placements. Electrodes that were located outside of PL or IL, which principally consisted of
those that were too lateral, were excluded from further analysis. We did, however, obtain neu-
rons from both PL and IL in each of the rats.

Statistics

Data were analyzed with conventional parametric statistics (StatView, SAS Institute). Two-way
analysis of variance (ANOVA) and repeated-measures ANOVA were used to assess general
main effects and interactions (o = 0.05). Paired and unpaired student’s two-tailed ¢-tests were
also used for pairwise comparisons of means. Results are shown as mean + SEM.

Results
Spontaneous mPFC firing and post-shock freezing

To examine the effects of signaled and unsignaled footshock on mPFC neural responses, we
performed single-unit recordings in freely moving rats. Animals were implanted with a 16
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channel microelectrode array in the right hemisphere, targeting both PL (8 wires) and IL (8
wires). Placements of the center of the array for each animal are shown in Fig 1A. Animals
were given a one week recovery period following implantation surgery. For behavioral testing,
rats were transported to a behavioral chamber which was modified to allow for awake, behav-
ing recordings. A headstage and flexible cable connected the rat to a multichannel Omniplex
recording system (Plexon) to allow for the collection of neural data. Freezing behavior was

Day 1 3min & b 15 min
(Context A) baseline ¢, & post-shock
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Fig 1. Signaled and unsignaled footshock modulates mPFC single-unit activity. (A) Day 1 experimental design; histological placement of
the center of each electrode array in mPFC is shown. Each array targeted both PL (8 wires) and IL (8 wires) in the right hemisphere. Coronal
sections represent (left to right) coordinates +3.2 and +2.8 relative to bregma in the anteroposterior plane. (B) Signaled (red) and unsignaled rats
(blue) displayed no significant difference in freezing behavior during the post-shock 15 min stimulus-free period. The spontaneous firing rate of all
neurons was normalized to the pre-conditioning baseline for each brain region and shock group. Normalized firing rate for PL and IL for signaled

and unsignaled, (time 0 is immediately after the last shock). (C) Heat maps showing shock-induced changes in firing rate for individual neurons
split by group and brain region. Data during the shock trials were not recorded. All values are means + SEM.

doi:10.1371/journal.pone.0165256.9001
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measured automatically using a load-cell transducer and amplifier [30]. Single-units recorded
in separate sessions were treated as separate neurons.

In the first recording session (Day 1), after a stimulus-free 3 min baseline period, rats
received either 5 tone-footshock trials (“signaled” rats) or 5 unsignaled footshock trials
(“unsignaled” rats) and remained in the chamber for 15 min after the last shock was delivered
(see Fig 1A for Day 1 design). The recording chamber had specific visual and olfactory cues to
make the context distinct (see Materials and Methods). Neural and behavioral data were
recorded throughout the session, except during shock delivery and the inter-shock intervals
due to electrical noise caused by coupling the grid floor with our recording system.

Freezing and spontaneous firing rate data were averaged in 20-sec bins [Fig 1B and 1C; time
0 is immediately after the last shock]. A repeated measures ANOVA revealed no difference in
post-shock freezing between shock groups [Fig 1B; main effect of group, ns; group x time, also
ns]. However, both signaled and unsignaled shock significantly modified the spontaneous firing
rate of PL and IL neurons, consistent with a previous report from our laboratory (27) (Fig 1B and
1C). Heat maps display shock-induced changes in firing rate for each neuron split by group and
brain region (signaled PL n = 63, unsignaled PL n = 34; signaled IL n = 31, unsignaled IL n = 34)
(Fig 1C). In signaled rats, the populations of PL and IL neurons showed a pronounced suppres-
sion of spontaneous firing rate in the immediate post-shock period, which was greater in magni-
tude and longer lasting in IL. In unsignaled rats, the post-shock changes in PL and IL firing were
qualitatively and quantitatively different. In this case, PL neurons showed a transient increase in
firing, whereas IL neurons showed a modest suppression of firing rate. An ANOVA performed
on these data revealed that these changes in firing rate were dependent on the conditioning pro-
cedure, the brain area where the recordings were made, as well as an interaction of these factors
[main effect of group, F(1,158) = 4.75 p < 0.05; main effect of brain region, F(1,158) = 6.73,

p < 0.05; time x group x brain region interaction, F(47,7426) = 1.48, p < 0.05]. Importantly,
spontaneous firing in IL was suppressed much more than PL firing, and this was most robust in
the immediate post-shock period, when freezing was highest.

Spontaneous and evoked mPFC firing during the expression and
inhibition of conditioned fear

Twenty-four hours after conditioning, the rats were transported back to the recording chamber
for a retention test. The recording context for this session was distinct from that used for condi-
tioning, although there was nonetheless a moderate level of generalized fear that was likely
associated with tethering the rats to the recording cable in both sessions. Three minutes after
placement in the chamber, the rats received 5 auditory cues (1 min ISI, see Fig 2A for design).
This session served to index conditioned fear to the CS in the signaled rats; unsignaled rats
were not expected to freeze to the tone. Indeed, as shown in Fig 2B, presentation of the auditory
CS increased conditional freezing in signaled rats and decreased freezing in the unsignaled rats
[Fig 2B; main effect of group, F(1,6) = 9.65, p < 0.05; time x group interaction, F(10,60) = 3.30,
p < 0.01]. The decrease in freezing in the unsignaled rats is likely the result of external inhibi-
tion of conditional responding by the novel auditory cue [31]. In other words, the novel audi-
tory tone served as a “distracting” stimulus that reduced conditional freezing.

The differential freezing behavior in signaled and unsignaled rats was associated with differ-
ences in both spontaneous and CS-evoked firing in PL and IL. As shown in Fig 2C and 2D PL and
IL neurons from signaled rats showed robust short-latency excitatory responses to the tone CS
(dashed lines). The tone-evoked responses among PL and IL neurons are evident in the heat maps
depicting CS-evoked firing from individual neurons split by group and brain region (Fig 2E),
which correspond to the average peri-event histograms aligned to tone onset (Fig 2F). These

PLOS ONE | DOI:10.1371/journal.pone.0165256 October 24, 2016 6/13



o @
@ ’ PLOS | ONE Medial Prefrontal Cortex and Fear Expression

A Day 2 3 min = 5 tone-alone 5mn E =z
(Context B) baseline trials post-tone .
o
B 100 o
£ %] 2
~ ()]
o 60 2
L= — //\ 5
N 40 -
§ wls i
=2l M Sig >
. | M Unsig y
BL 1 2 3 4 5 1 2 3 4 5 e
Trial Post-Trial 5
¢ Prelimbic F . . Prelimbic
1.5 R mE .
1 [ ! ! 1 B Unsi 1
g |_J | 9 g
) B T O Ng — ' ®
'1‘ 4 [ I I:‘ 0 I"'r"
: -5

O

1 5 Infralimbic

Infralimbic

1 J
g | g1
Q Q
0 | 0 -5 1
@ 0 ?
N -5 N O

= -5

-3 T1 T2 T3 T4 T5 8 10 -1 0 1 2 3
Time (min) Time (sec)

Fig 2. Fear recall suppresses mPFC population level single-unit activity. (A) Day 2 design. (B) Upon tone presentation on Day 2, signaled
(red) and unsignaled rats (blue) displayed opposing freezing patterns. (C, D) Average normalized firing rate data from PL and IL are binned in 5
sec increments for the duration of the session. Gray dashed lines indicate tone onset (tone response is the bar immediately to the right of dashed
line) for the 5 tones. Signaled rats exhibited robust tone-evoked responses that are superimposed on the overall suppression of neural activity in
both PL and IL, as compared to the general increase in firing in unsignaled PL and IL. (E) Heat maps plotting tone-evoked responses for neurons
from signaled and unsignaled rats. (F) Normalized tone-evoked histogram averages plotted in 100 msec bins for PL and IL. Previously signaled
rats showed robust tone-evoked responses in both PL and IL around tone onset (first 200 msec) compared to unsignaled rats. No difference was
observed between brain regions when comparing within a shock group. All values are means + SEM.

doi:10.1371/journal.pone.0165256.9002

histograms reveal that the excitatory tone-evoked response (averaged across the first 200 msec of
tone onset) was significantly greater in neurons from signaled rats compared to those from un-
signaled rats for both PL [#(102) = 2.46, p < 0.05] and IL [#(82) = 3.38, p <0.01]. The magnitude
of the tone-evoked response did not differ between PL and IL within each conditioning group.

Interestingly, however, the spontaneous firing rates of the population of PL and IL neurons
did show differential changes in firing rate in the two groups. As shown in Fig 2C and 2D
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neurons from signaled rats exhibited a pronounced decrease in firing rate across the session,
particularly in IL. This is in contrast to neurons from unsignaled rats, which exhibited increases
in spontaneous firing rate over the session. An ANOVA performed on these data reveals that
the pattern of firing across the session was dependent upon the conditioning procedure [F
(1,176) = 18.88, p < 0.01] and interacted with brain region [time x group x brain region inter-
action, F(146,25696) = 1.20, p < 0.05)]. In other words, the expression of conditioned fear to
the CS in the signaled rats was associated with a differential decrease in IL and PL firing rates
(i.e., IL more suppressed than PL) compared to a similar increase in IL and PL firing rates in
unsignaled rats. Importantly, no difference in raw firing rate was observed during the 3 min
baseline period prior to CS presentation [main effect of group, #s; main effect of brain region,
ns; group x brain region, #s] or the generalized level of baseline freezing [unpaired t-test, ns], so
it is unlikely that these factors impacted the observed differences.

Differential firing in PL versus IL predicts freezing behavior

During both conditioning and retention testing, fear-induced changes in IL and PL spontane-
ous firing rate were different, particularly in the signaled group. To further examine the rela-
tionship between conditioned freezing behavior and mPFC firing rate in each rat, we averaged
the normalized firing rate in each brain area for a 3-min period after the final footshock (Day
1) or a 2 min period during tones 4 and 5 (and the ITIs) from the Day 2 test trials. These time
points were chosen because both groups exhibited asymptotic levels of freezing during this
period on Day 1. In addition, for Day 2 this was the time point of largest separation in freezing
between groups. We then generated a difference score by subtracting IL from PL (PL-IL) for
each session and rat and plotted these difference scores in relation to the average freezing
behavior across the same time periods. As shown in Fig 3A, differences between PL and IL fir-
ing were lowest in the unsignaled group during the test session, a group that also showed the
lowest conditioned freezing [Day 2 sig vs unsig; #(6) = 3.61, p < 0.05]. Importantly, no differ-
ence was observed between groups on Day 1, when freezing was similarly elevated. In other
words, a greater difference between PL and IL firing rates driven by a larger suppression of IL
relative to PL firing was associated with high levels of conditional freezing. Interestingly, the
difference in normalized PL and IL firing rates strongly predicted freezing behavior during the

A B
Signaled Unsignaled
7 _ 100 120
1.5 o—— @ *‘ 0
g | 80 100
] ! n 3
o | 3 & 80
% | 60 @ o
0 | 5 S 60
c B & N
g | -
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‘ .
0 ‘ . i, 0
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Fig 3. Differential firing in PL versus IL predicts freezing behavior. (A) Freezing (circles) was similar across Days 1 (3 min post-shock period)
and 2 (tones 4 and 5) in signaled rats, whereas it decreased markedly on Day 2 in unsignaled animals. Relative neural activity (PL minus IL) was
similar in magnitude (and positive) across days for the same time periods in signaled rats, but also decreased in magnitude markedly on Day 2 in
unsignaled animals. (B) Linear regression analysis showing the PL vs IL difference during tones 4 and 5 plotted against freezing levels for the
same time period. This analysis revealed a strongly positive correlation between the two variables when including rats from both shock groups. All
values are means + SEM. *p<0.01.

doi:10.1371/journal.pone.0165256.9003
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test session, in particular. Indeed, when freezing was most different between the groups in the
later trials of the test (trials 4 and 5), there was a highly significant positive correlation between
the PL-IL firing rate differential and freezing behavior (where PL firing in the signaled group
was less suppressed than IL firing, resulting in a positive PL-IL difference value) [Fig 3B; Pear-
sonr =0.93, p < 0.01]. These data reveal that the balance of spontaneous neural firing in PL
and IL is a strong predictor of freezing behavior.

Discussion

As we have previously reported, footshock stress rapidly and persistently alters neural signaling
in both PL and IL [27]. Somewhat unexpectedly, we also found here that the magnitude and
direction of these firing rate changes is altered by the presence of an associative cue during the
acquisition of conditioned fear (i.e., signaled vs unsignaled shock), where we observed greater
post-shock suppression of spontaneous firing in mPFC of signaled rats. We also show here, to
our knowledge for the first time, that the mPFC is engaged during the nonassociative external
inhibition of fear. In contrast to rats that received signaled footshocks during conditioning, rats
receiving unsignaled shock exhibited decreases in freezing upon presentation of the auditory
stimulus on Day 2. These opposing behavioral responses were mirrored in the spontaneous fir-
ing rates of mPFC neurons. Signaled rats showed a suppression of PL and, to a greater extent,
IL activity, whereas unsignaled rats displayed increased PL and IL firing. Interestingly, we also
observed that the difference in PL versus IL firing rate strongly predicts freezing behavior upon
fear recall: signaled rats showed a relative bias favoring PL over IL activity and this difference
was not observed during the external inhibition of fear. Collectively, these data suggest differ-
ences in PL and IL signaling may underlie freezing levels, rather than PL activity alone [10].
These data also reveal a general role for the mPFC in fear regulation that extends to both asso-
ciative and nonassociative learning mechanisms.

A number of studies have revealed that the mPFC has an important role in fear conditioning
and extinction [1,2,6,8,32]. It is largely believed that within the fear circuit PL and IL have
opposing roles, with PL activity underlying fear expression and IL fear suppression [7-15].
While both the signaled and unsignaled group displayed asymptotic levels of freezing immedi-
ately following the last conditioning trial, we observed differential firing rate patterns between
groups. Signaled rats showed a general suppression of mPFC firing activity in both PL and to a
greater extent IL. This mPFC suppression may be driven by ascending amygdala input [33]. In
contrast, we observed a moderate suppression of IL firing in unsignaled rats and a transient
peak in firing in PL. It is possible that these findings reflect differences in the acquisition or
consolidation of cued (signaled) versus context (unsignaled) fear which may relate to differ-
ences in the temporal predictability of the US. For example, the peak in PL firing in the
unsignaled group after the last conditioning trial may reflect a potential timing mechanism in
anticipation of an upcoming shock.

Several previous studies have examined PL or IL CS-evoked activity upon fear recall, or
extinction and retrieval [7,10,20,27,28,28,29]. Yet how concurrent PL and IL activity, and more
specifically spontaneous firing rate, relates to ongoing freezing levels has not been addressed.
Given that IL activation is thought to underlie the suppression of fear after extinction (a low
fear state), it is possible that IL suppression, rather than PL excitation (or a combination of the
two), represents a neural mechanism for fear expression. Indeed, we show that whereas PL
spontaneous firing is not necessarily enhanced upon fear recall (high fear), IL firing is consis-
tently more suppressed (particularly in signaled rats). This observation is in agreement with
previously reported slice recordings which demonstrated that fear conditioning dampens the
intrinsic excitability of IL neurons and this can be reversed with extinction training [34,35].
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These data suggest that a suppression of IL activity may underlie fear expression. It is possible
that this represents a relative shift in PL vs IL influence on the fear state, favoring high fear
with a larger suppression of IL activity, creating a bias towards PL activity, as observed in the
signaled group here. Interestingly, in the unsignaled group, where fear was reduced during
tone presentation, PL and IL neural activity were moderately increased and largely indistin-
guishable between the two regions. Under these conditions, there would be no bias favoring
either brain region which may relate to the observed decrement in freezing. Importantly, no
difference was observed between groups in terms of generalized baseline freezing or raw firing
rate during this session, making it unlikely that these factors contributed to the observed differ-
ences between groups upon CS presentation, including what we interpret as external inhibition.
These data suggest that a relative shift in PL vs IL signaling, as opposed to the activity of either
brain region alone, may be a strong and reliable predictor of freezing behavior. While little is
known regarding PL-IL functional connectivity, it is likely that these differences stem from
both cortico-cortical connectivity as well as ascending input from the amygdala [24-26] which
may differ between groups.

The fact that PL and IL activity were nearly indistinguishable in unsignaled rats (low freez-
ing) on Day 2 suggests a broader role for the mPFC in the nonassociative inhibition of condi-
tional fear. Little is known about the neural substrates underlying nonassociative mechanisms
that may reduce conditional fear, such as external inhibition. While a wealth of data exists on
nonassociative mechanisms of learning, the findings primarily focus on habituation (decreased
responding to repeated presentation of a stimulus) and sensitization (increased responding to
repeated stimulation). In addition, these studies often investigated hippocampal mechanisms of
nonassociative learning [36-39] and do not directly focus on aversive processes. In terms of con-
ditioned fear, many studies have shown that stress exposure can facilitate Pavlovian conditioning
via nonassociative mechanisms (e.g., sensitization) [40-42]. Interestingly, our laboratory has pre-
viously shown that the hippocampus mediates the recovery of extinguished fear in response to
unexpected events (i.e., external disinhibition) [43]. In this design, after fear extinction, rats were
presented with a familiar CS in a novel context or a novel cue in a familiar context. In either case,
rats exhibited fear renewal and this could be blocked by hippocampal inactivation [43]. These
data point to a key role for the hippocampus in the renewal of fear to an extinguished CS or a
novel stimulus, although it remains possible that mPFC activity, through interactions with the
hippocampus, underlies this nonassociative relapse of fear as well. Here, we have shown that in
animals trained with unsignaled shocks, a novel cue presented at test produces the external inhi-
bition of conditional fear. Interestingly, this corresponded to moderately elevated firing in both
PL and IL, suggesting the mPFC may play a broader role in the nonassociative inhibition of fear.
Consistent with this idea, a recent study has proposed that presentation of a novel stimulus dur-
ing extinction learning serves to reduce post-extinction recovery of fear in both rats and humans
[44]. It is possible that this novelty-induced facilitation of extinction is mediated by preferentially
engaging the mPFC, although this remains an open question.

In summary, here we have extended previous research examining footshock-induced
changes in mPFC activity. Additionally, we observed medial prefrontal correlates of external
inhibition in which increases in mPFC firing in unsignaled rats were associated with decreased
freezing to a novel stimulus, with little to no difference in PL versus IL spontaneous firing.
These data reveal a broader role for the mPFC in the regulation of inhibitory processes, extend-
ing beyond fear extinction to include the nonassociative external inhibition of conditional fear.
In contrast to the findings in the unsignaled group, signaled rats showed a large difference
between PL and IL firing during fear recall, which strongly predicted high freezing behavior.
Opverall, our data suggest that the difference in PL versus IL activity, driven by a suppression of
IL, may underlie fear expression, rather than the activity of either brain region alone.
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