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Abstract

Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabe-

tes-related complications. A complex, quantitative relationship has been established

between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative

stress is known to persist after glucose normalization, a phenomenon described as meta-

bolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients

with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels.

The objective of the current study was to delineate the mechanisms underlying such behav-

iors, using a mechanistic physiological systems modeling approach that captures and inte-

grates essential underlying pathophysiological processes. The proposed model was based

on a system of ordinary differential equations. It describes the interplay between reactive

oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent

adaptation mechanisms. Model parameters were calibrated using different sources of

experimental information, including ROS production in cell cultures exposed to various con-

centration profiles of constant and oscillating glucose levels. The model adequately repro-

duced the ROS excess generation after glucose normalization. Such behavior appeared to

be driven by positive feedback regulations between ROS and ROS-induced cell alterations.

The further oxidative stress-related detrimental effect as induced by unstable glucose levels

can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to

instable high glucose declines during glucose normalization phases, and further glucose

increase promotes similar or higher oxidative stress. In contrast, gradual ROS production

potential decrease, driven by adaptation, is observed in cells exposed to constant high

glucose.
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Introduction

Diabetes mellitus is associated with numerous complications as well as an increased incidence

of cardiovascular diseases (CV), resulting in a significant decrease in life quality and life span.

For example, diabetic retinopathy is the most common cause of blindness; diabetic nephropa-

thy is the leading cause of end-stage renal disease [1,2]. Increased blood glucose levels, or

hyperglycemia, are known to be the main driving force underlying diabetic complications. In

healthy subjects, daily blood glucose fluctuates within narrow intervals, whereas in diabetic

patients, blood glucose level is, on average, higher and may also oscillate over a wide range,

due to impaired glucose consumption within the circulatory system. Insulin replacement ther-

apy and oral glucose-lowering agents, in combination with appropriate diet and life-style adap-

tations, may decrease blood glucose to near-normal values and significantly reduce the risk of

complications [1].

Nevertheless, the importance of the initial glucose level control has been demonstrated in

numerous animal and human studies [3]. In the UK Prospective Diabetes Study (UKPDS), the

positive impact of intensive CV complication treatment was preserved during a post-treatment

follow-up period, when patients received conventional therapy [4]. Conversely, in diabetic

rats, poor glucose control led to hyperglycemia-induced changes in retinal cell apoptotic

marker expression, which were sustained for as long as several months following glucose nor-

malization [5]. Such a cellular imprint of the glycemic environment is now referred to as the

“metabolic memory” phenomenon [6].

The objective of this modeling study was to analyze various experimental data on ROS gen-

eration in response to hyperglycemia measured in vitro, in order to provide a quantitative,

mechanistic basis for this metabolic memory phenomenon. Evaluation of dynamics within key

elements of this pathophysiological system, using a mechanistic physiological systems model,

allowed us to characterize features of the phenomenon and to determine conditions leading to

the development of metabolic memory.

Materials and methods

Model development

The phenomenon of metabolic memory has been actively studied in recent years [7]. General

aspects of the potential underlying mechanisms have been hypothesized and studied, preferably

through various in vitro experimental systems. Consequently, an increased generation of reac-

tive oxygen species (ROS) in cellular respiratory chains, also known as oxidative stress, has

been shown to be the main link between hyperglycemia and cellular malfunctions [7,8]. For

example, oxidative stress can play a critical role in DNA methylation, causing the overexpres-

sion of proteins responsible for diabetic abnormalities, such as vascular endothelial growth fac-

tor (VEGF) and transforming growth factor (TGF) [9,10]. To capture and integrate our current

knowledge around the metabolic memory phenomenon, several experimental facts need to be

taken into account during the development and testing of a mechanistic, dynamic model.

First, several studies have demonstrated that despite short ROS half-lives, ROS production

is maintained in excess for long periods of time after (and despite) glucose normalization

[7,11]. These data may be related to ROS-induced DNA damage and epigenetic changes,

which may lead to abnormal functioning of the intracellular respiratory chain and further

acceleration of ROS production [6]. This positive feedback loop between DNA modifications

and oxidative stress is considered to be a key driver of metabolic memory effect [6].

Second, there is substantial knowledge on adaptive potential and changes, within this glu-

cose regulatory system. For instance, ROS generation can be stabilized and even decreased,
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given continued (constant) high glucose exposure. This observation may be explained by adap-

tive mechanisms, which protect cells from excessive oxidative stress exposure [7]. Interestingly,

it was also shown that cells exposed to oscillatory glucose levels produce higher ROS levels vs.
cells exposed to a time-equivalent, albeit constant glucose concentration, thereby pointing to

the complex nature of this adaptive processes [9,12–14].

Based on these experimental observations, we here propose a physiological systems model

with three variables, interconnected through: (a) a positive feedback loop (ROS levels vs. meta-

bolic memory development), and (b) a negative feedback loop (ROS generation vs. cellular

adaptive processes) (Fig 1). The proposed variables are:

1. “ROS”, which represents a set of complex functions, which describes oxidative damage

being accumulated during cell exposure to high glucose. It should be mentioned, that the

model describes the steady-state ROS concentration that was measured in the experiments

after several hours at the constant glucose level. Thus, this work is not aimed at reproducing

the short-term dynamics of ROS levels. Therefore, in the model the ROS variable does not

fully reflect the time behavior of real ROS, though it coincides with measured values of ROS

in considered experimental studies [12,13,15–21]. Despite rapid ROS turnover, gradual

ROS increase in response to hyperglycemia in vitro is observed [15]. Therefore, we assumed

ROS levels to be determined by some metabolites with slower half-lives (on the order of sev-

eral hours), which can be characterized as “ROS production potential”. Since ROS turnover

is fast, its dynamics reflects the dynamics of this potential. There are no available experi-

mental data to quantify ROS dependence on ROS production potential and we cannot dif-

ferentiate between these two variables in the model. To preserve model identifiability, we

thus used a single “ROS” variable in the model. Hyperglycemia and metabolic memory pro-

mote excessive ROS production, whereas cellular adaptive processes decrease detrimental

ROS effects on cells.

Fig 1. Model schematic. Glucose stimulates ROS production (ROS) and additionally promotes cellular adaptive processes (AD)—the latter

then mitigates further glucose-dependent ROS generation and subsequently allows for the development of metabolic memory (MM). ROS

and MM positively affect each other, whereas AD is stimulated by glucose excess and negatively influences ROS synthesis. Boxes denote

model variables, black arrows denote reaction rates, dotted lines denote positive influences, and dashed lines denote negative influences.

doi:10.1371/journal.pone.0171781.g001
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2. “MM”, which represents metabolic memory–an accumulation of ROS-related cell abnor-

malities, e.g., damage along the respiratory chain and other mitochondrial malfunctions.

MM dynamics are determined by a zero-order synthesis rate and a first-order elimination

rate. MM synthesis is triggered by an initial generation of oxidative stress species.

3. “AD”, which represents cellular adaptive processes. These processes mitigate detrimental

glucose effects upon the generation of oxidative stress species. Hyperglycemia triggers acti-

vation of AD, which in turn may inhibit ROS synthesis both via (a) direct glucose and (b)

MM-related effects. A Hill equation was used for the description of these negative feedback

effects.

Additional model assumptions were considered, to adequately describe available experi-

mental data and to set physiologically-based initial conditions:

1. Glucose concentration (GLU) was set as either (i) a constant parameter, for experimental

conditions where constant glucose exposure was used, or (ii) an explicit time-varying driv-

ing function, when oscillatory glucose conditions were used. Additionally, the following

parametrization was used to describe detrimental variations in glucose levels, according to

the study design:

ifðGLU > GLUbasalÞ then GLUexcess ¼ GLU � GLUbasal else GLUexcess ¼ 0

2. The initial value of ROS in the healthy state was set to 1 and this then represents a state,

whereby ROS generation is well controlled by tissues not stimulating metabolic memory or

cellular adaptive processes development:

ifðROS > ROSbasalÞ then ROSexcess ¼ ROS � ROSbasalelse ROSexcess ¼ 0

3. A linear dependence between glucose level and ROS production rate was proposed, based

on the experimentally established correlation between glucose concentrations and observed

ROS levels [21].

4. The main data source used here for the estimation of model parameters was derived from

glucose stimulation of HUVEC cells in vitro [12,13,15–21]. For such in vitro conditions, we

assumed ROS generation to be maintained at a steady-state level, following glucose normal-

ization. Though this may differ in vivo: for example, ROS excess may be removed from tis-

sue via bloodstream clearance, thereby breaking this steady-state assumption.

The proposed model is represented by a system of ordinary differential equations (ODE),

which describe the dynamics of key system components (Eq 1):

dMM
dt
¼ ktuMM � ððROSexcessÞ � arosmm � MMÞ

dAD
dt
¼ ktuAD � ðGLUexcess � ADÞ

dROS
dt
¼ ktuROS � ðð1þ ðGLUexcess � agluros þMMÞ � ADefÞ � ROSÞ

ADef ¼ 1 �
Fmaxad � AD

Nhad

ADNhad þ EC50
Nhad
ad

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð1Þ

where MM, AD and ROS are model variables corresponding to metabolic memory, cellular

adaptive processes, and ROS generation; ADef is the effective value of ROS generation decrease
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by cellular adaptive processes; ktuMM, ktuAD, ktuROS are turnover constants for variables MM,

AD, and ROS, respectively; arosmm and agluros are parameters describing positive feedbacks

between ROS and MM; Fmaxad, EC50
Nhad
ad , Nhad are the parameter set for adaptive processes.

Several literature data sources were used for model calibration [12,13,15–21]. Seven model

parameters describing ROS turnover and cellular adaptive processes were estimated based on

in vitro ROS production data. For this purpose, 43 experimental data points from 9 published

studies were collected and combined into a pooled dataset. Similarity in experimental design

was a key study inclusion criterion. Specifically, experimental data were included if:

1. Studies were performed on HUVEC cultures;

2. ROS production was evaluated using a fluorescence assay or via measurement of 8-hydro-

xydeoxyguanosine (8-OHdG), as described in [20,21];

ROS levels, in the experiments, were normalized by control ROS conditions (normoglyce-

mia); this allowed for partial reduction of inter-study variability.

Additionally, the model was required to reproduce two main experimental settings with dif-

ferent glucose exposure regimens: one regimen with constant high glucose (CG); one regimen

with oscillatory glucose, between normal and high levels, over fixed time intervals (OG). In

most of these experiments, ROS level was measured either during CG/OG exposure or after

glucose reaching a normal steady-state level (NG).

All model parameters and estimation methods are summarized in Table 1.

Software

Model development and analysis was performed using the IQM toolbox [http://www.intiquan.

com/iqm-tools] for MATLAB 2013b. Visualization of the obtained simulations was performed

in R software version 3.2.5 using the ggplot2 2.1.0 package and the plot3D 1.1 package. NLME

model analysis and parameter estimation was based on the Stochastic Approximation Expecta-

tion Maximization (SAEM) algorithm and performed using the Monolix software [http://

monolix.lixoft.com]. Model quality was evaluated using the following criteria: change in the

objective function value (logarithm of likelihood, Akaike information criterion), inspection of

diagnostic plots, precision of parameter estimates (based on estimated RSE values), as well as

minimization of inter-study and residual variability. The initial set of parameters for the

model calibration was chosen based on physiological limits available from literature sources.

Based on such limits, 100 sets of physiologically-plausible initial parameter values were ran-

domly generated, and parameter estimation was, for each initial value set, performed. Upon

completion of this procedure, the estimated set of parameters values was collected. It was

unique and did not depend on initial values, which in turn also supports model identifiability.

Local sensitivity analysis of model parameters was performed based on the following

algorithm:

1. Each model parameter was changed within a 50% range of the estimated population value,

in uniform, incremental steps.

2. ROS production by cells exposed to 20 mM of CG conditions during two weeks was pre-

dicted using estimated and changed from estimated parameter values reported in Table 1.

3. Comparisons of predictions were performed at the 24-hour, 2-week, and 12-week time

points, to compute relative ROS increase sensitivity values.

4. The impact of each parameter change on model predictions was ranked and displayed

using tornado plots, as described previously [24].

Mathematical modeling of glucose-induced oxidative stress
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Table 1. Values of the model parameters.

Parameter Description Value RSE1,

%

Dimension Estimation method

GLUbasal Maximum glucose level, healthy

state

9 - mM Fixed—based on data published in [22]

ROSbasal Normalized basal ROS level in

experiments

1 - dimensionless Based on assumption “a” described in the Model Development

paragraph

ktuMM MM elimination constant 0.007 - 1/hour Calculated from mitochondrial protein half-life (equal to 4 days

[23]).

arosmm Linear ROS effect on MM synthesis 1 - dimensionless Based on assumption “d” described in the Model Development

paragraph. See also table footnote2

Fmaxad Maximum AD effect on ROS

synthesis

0.8 - dimensionless Fixed—according to expression data of proteins responsible for

adaptation to oxidative stress (e.g., TIGAR, MDM-2, etc.) [7]

Nhad Hill coefficient for adaptation to ROS

synthesis

5 - dimensionless An approximate estimate (based on the number of fixed value

runs, see3)

ktuROS ROS elimination constant 0.0316 53.05 1/hour Estimated according to data published in [12,13,15–21]

ktuAD AD elimination constant 0.00714 1.41 1/hour

agluros Linear glucose effect on ROS

synthesis

0.364 31.36 1/mM

EC50ad EC50 for AD effect (equation relating

AD effect to ROS synthesis)

6.142 0.64 -

Ω for

ktuROS

Inter-study variance for ROS

elimination4
1.145 33.76 1/hour

Ω for agluros Inter-study variance for glucose

effect on ROS synthesis4
0.936 22.79 1/mM

b Proportional residual error5 0.09932 18.65 %

1Relative standard error.
2Parameter arosmm determines system behavior after glucose normalization. Depending on parameter arosmm value, ROS production potential may either

decrease to normal values, remain at steady-state, or accumulate. In accordance with the definition of metabolic memory, abnormal ROS production is held

constant after glucose decrease (6). Thus, for reaching the steady-state conditions, parameter arosmm can be expressed using the following equation:

arosmm ¼
ROSss � 1

ROSss � ROSbasal

;

where ROSss is the steady-state ROS level after glucose normalization.
3The following approach was used for the Hill coefficient estimation. The fixed value of this parameter was varied over a range of 0.1 to 10. An analysis of

parameter estimation outcomes (likelihood value and RSE of estimated parameters) demonstrated that the goodness-of-fit improved with Hill coefficient

increase and starting from the value of five and above the model produced the same goodness-of-fit. This value makes physiological sense, considering

that these cellular adaptive processes tend to exhibit a switch-like behavior, with a maximal level being rapidly reached after an initial glucose stimulation [7].
4The rate of ROS production potential change as well as overall ROS concentrations in response to a given glucose stimulation do show high inter-study

variability, even when considering comparable experimental settings across the literature references which were used. A non-linear mixed effects (NLME)

approach was used to adequately quantify inter-study variability. Based on parameter estimation results and the goodness-of-fit analysis, two random

effects were introduced into the model, namely on kelROS and agluros:

yj ¼ fj þ εj;

where fj ¼ fðk
1

j ; k
2

j ; . . . ; kijÞ

Function f describes the model structure; kij parameters represent population parameters including kelROSj and aglurosj for jth subject; εj is the residual error.

5Several residual error models were tested, including constant, proportional and different combined error types. The proportional error model was identified

as the best one given the data:

εj ¼ b � fj � ej;

where b is a coefficient, ej is a random number.

doi:10.1371/journal.pone.0171781.t001
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Results

Analysis of model quality and predictions

Model quality in reproducing the data is shown in Fig 2. A high inter-study variability in ROS

levels is observed. Consequently, population parameter values are able to reproduce average

trends found in the data (Fig 2A). By taking into account the inter-study variability for two

parameters, kelROS and agluros (respectively, glucose effect on ROS generation, and ROS turn-

over), the individual fits were significantly improved in the model (Fig 2B). Estimated RSEs of

the parameters were relatively small, indicating the good precision in parameter estimates

(Table 1). The quality of the model was also evaluated by simulating data using final parameter

estimates (fixed and random effects) and assessing the visual predictive check. Based on simu-

lation results, the model adequately reproduced ROS dynamics, for the experimental CG and

OG exposure protocols used in cells in vitro (Fig 2C and 2D). The prediction interval captured

all experimental data, except for two points, which were both observed in the same study:

these outlier points may be explained by the specific experimental settings used in that study

(oxidative stress was measured using 8-OHdG assay in this study) [13].

According to Fig 2, the model predicted the bell-shaped ROS dynamics in cells exposed to

CG (Fig 2C), and oscillating ROS dynamics in cells exposed to OG (Fig 2D). It is interesting to

note that ROS levels remained above normal values, even during NG periods within the OG

regimen. Overall ROS levels were higher in OG-exposed cells, which is in agreement with the

observation that OG exposure is more detrimental to cells than a CG exposure. After glucose

normalization, the model predicted a decrease in ROS levels to 46–63% following glucose nor-

malization. For an OG-NG exposure regimen, the model predicted similar ROS levels before

vs. after glucose normalization, which is also in good agreement with comparable experimental

data points found in the literature [7,11].

Simulation typical CG and OG experimental settings are shown in Fig 3. During CG

exposure experiments, when glucose level is maintained at 20 mM for 14 days, bell-shaped

ROS dynamics were observed (Fig 3A). This complex behavior can be interpreted by a cellu-

lar adaptive process: a gradual accumulation of AD during high glucose exposure decreases

the glucose effect on ROS production, and consequently decreases oxidative stress. In fact,

such adaptation exhibits a prolonged effect, even after NG conditions have set in, resulting

in a temporal decline in ROS concentrations (Fig 3A). However, ROS excess during CG or

OG exposure also allows for the gradual accumulation of MM, which, in turn, shifts the

quasi steady-state level of ROS, typical for NG conditions, to a new, higher value. Oscillating

ROS dynamics mirrored the oscillating glucose exposure in the OG experiment (Fig 3B). AD

and MM accumulation was also observed in this simulated experiment, however the AD

level at the end of OG exposure was lower vs. CG exposure. This may explain higher ROS

and MM levels at the end of the OG exposure experiment, as compared to CG exposure, and

provides evidence for more a detrimental effect following unstable (time-varying) glucose

regimens, such as abnormal increase of cell proliferation, hyperactivation of p53 related to

cell senescence etc. [7,9].

Model simulations of glucose stimulatory effects, depending on various

experimental designs

The proposed model and its corresponding simulations already highlighted, in the present glu-

cose-ROS regulation system, a number of complex, nonlinear responses, which are dependent

on both the amplitude and the duration of initial glucose exposure. One may next use the

model to investigate changes in system behavior, according to various experimental protocols,

Mathematical modeling of glucose-induced oxidative stress
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which the user may want to explore via simulations. We thus simulated several experimental

protocols, within a range of physiological conditions typical of diabetic patients, e.g., by vary-

ing glucose exposure amplitude and/or duration, during the glucose exposure phase. Simula-

tion results were captured in contour plots pictured in Figs 4–6.

Fig 2. Model quality in reproducing data. (A) Observations vs. population model predictions. (B) Observations vs. individual model

predictions. The straight line represents a perfect agreement between experimental and calculated values. The magnitude of glucose

exposure is coded by color; the type of experiment is coded by dot shape. (C) Population simulations of ROS dynamics in CG experiments.

(D) Population simulations of ROS dynamics in OG experiments. Solid line denotes model-predicted median; gray shades correspond to

different percentiles of population predictions; the magnitude of glucose exposure is coded by color; the type of experiment is coded by dot

shape.

doi:10.1371/journal.pone.0171781.g002

Mathematical modeling of glucose-induced oxidative stress
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In the first study case, we predicted, via simulations, responses to an experimental setting

with CG exposure (Fig 4). Glucose levels were allowed to vary over a 9- to to 25-mM range,

with an overall CG exposure duration of 21 days. Model predictions demonstrated that the

time to reach ROS level maxima is dependent on the amplitude of the glucose exposure (Fig

4A). A gradual accumulation of ROS production potential was observed when cells were

exposed to glucose levels lower than 16 mM, whereas the bell-shaped ROS dynamics were

obtained at higher glucose levels. In fact, this effect corresponded to a more rapid cellular

adaptation in the higher glucose case (Fig 4B). Interestingly, dynamics of the MM variable, in

Fig 3. Predictions of model variables and their dynamics, for typical experimental settings. (A) CG exposure

experiment: Glucose was maintained at 20 mM for 14 days, then was decreased to 5 mM. (B) OG exposure experiment:

glucose was allowed to oscillate between 5 mM and 20 mM over 24-hour intervals for 14 days, then was decreased to 5

mM.

doi:10.1371/journal.pone.0171781.g003

Fig 4. Contour plots of model simulations: variables and their dynamics in an experimental setting of CG exposure, with varying

glucose amplitude. (A) Simulations of ROS dynamics. (B) Simulations of cellular adaptive processes. (C) Simulations of metabolic memory

dynamics.

doi:10.1371/journal.pone.0171781.g004
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general, followed the dynamics of ROS behavior, although the maximal effect on metabolic

memory was achieved already with moderate glucose exposures, in the range of 12 to 16 mM

(Fig 4C). These simulations demonstrated a tight relationship between MM and ROS, via a

system of positive feedback mechanisms captured in the model. They provided further evi-

dence that the cellular adaptive processes were more effective in conditions of higher glucose

and longer duration in glucose exposure.

Another interesting model-based investigation is the study of how glucose amplitude and

duration in the simulated experiments may affect ROS quasi steady-state levels achieved after

reaching NG conditions. To this end, ROS levels were predicted for a set of various experimen-

tal settings. In particular, cells were exposed to constant high glucose levels ranging from 9 to

25 mM, with durations of one hour and up to two weeks (Fig 5). Overall, the key model vari-

ables exhibited response profiles, which were comparable to those predicted for CG exposure

conditions. Thus, the longer the duration, or the higher the amplitude in glucose exposure, the

higher the ROS production and the subsequent effect on metabolic memory accumulation.

Typically, changes in the AD variable were not seen under NG exposure conditions, as adapta-

tion (cellular adaptive processes) are strictly dependent upon non-NG conditions. However,

the influence of such adaptive processes was important to explain differences in maximal ROS

levels and MM responses, which can be observed in experiments with higher durations of glu-

cose exposure.

Effects of oscillatory glucose exposures were of particular interest, since such conditions

may actually reflect best the pathological state in diabetic patients. The following experimental

design protocols were considered, in our simulations of OG exposure conditions: cells were

exposed to OG with an amplitude of oscillations ranging from 0 to 20 mM (“Y” axis on Fig 6),

and a corresponding maximal glucose level of 25 mM. Duration of the experiment was set to

21 days (Fig 6). As demonstrated in Fig 6A, ROS dynamics was affected by the amplitude of

glucose oscillations. For example, OG conditions with an amplitude lower than 5 mM did not

result in oxidative stress production, while higher OG amplitudes promoted a striking increase

Fig 5. Contour plots of model simulations: variables and their steady-state levels, after reaching an

NG exposure condition. The duration of cell exposure to high glucose and to glucose levels during the

experiment was varied. (A) Simulations of ROS dynamics. (B) Simulations of metabolic memory dynamics.

doi:10.1371/journal.pone.0171781.g005

Mathematical modeling of glucose-induced oxidative stress
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in ROS levels. ROS dynamics behavior, in turn, determines the dynamics of cellular adaptive

process (adaptation), as shown in Fig 6B. In particular, lower amplitudes in OG were not suffi-

cient to switch on the adaptation effect; only high or very high OG amplitudes were able to

trigger a visible adaptation effect. This was in sharp contrast with CG exposure conditions (Fig

4), where even moderate levels of glucose exposure could initiate a prominent response in

adaptation. Consequently, there was an increase in cumulative ROS levels due to higher MM

accumulation under OG exposure conditions (Fig 6C).

Local sensitivity analysis

The impact of specific parameter changes on predicted ROS levels and following glucose expo-

sure was investigated using a local sensitivity analysis. A standard CG setting of 20 mM glucose

exposure (Fig 7) or OG oscillations between 5 mM and 20 mM over 24-hour intervals (Fig 8)

was considered for this sensitivity analysis, along with a duration of two weeks. Additionally,

three characteristic time points were used: the time of initial response to glucose exposure, 24

hours following the start of the experiment (Figs 7 and 8A); the time of glucose exposure com-

pletion, two weeks after the start of the experiment (Figs 7 and 8B); and the time of return to

NG exposure conditions, 12 weeks after the start of the experiment (Figs 7 and 8C).

Sensitivity profiles turned out to differ for the three different characteristic time points. In

particular, ROS dynamics during the first day of the experiment were mainly driven by param-

eters agluros and ktuROS, which are responsible for the direct glucose effect on the ROS produc-

tion potential accumulation rate (Figs 7 and 8A). ROS production potential after two weeks of

glucose exposure was significantly affected by any of parameter change (Figs 7 and 8B). It is

interesting to note that different factors are responsible for ROS levels in cells exposed to CG

and OG regimens during 2 weeks. Higher ROS dependence on parameters responsible for cel-

lular adaptive processes, Fmaxad, ktuad and EC50ad is observed for CG regimen (Fig 7B),

whereas ROS level in cells exposed to an OG regimen depends on parameters arosmm, EC50ad

and agluros (Fig 8B). Interestingly, after reaching NG exposure conditions, the parameter most

sensitive to ROS level changes for both CG and OG regimens was arosmm, a parameter that is

key in the development of metabolic memory (Figs 7 and 8C).

Fig 6. Contour plots of model simulations: variables and their dynamics, in an OG experimental setting with varying glucose

amplitude. (A) Simulations of ROS dynamics. (B) Simulations of effective cellular adaptive processes. (C) Simulations of metabolic memory

dynamics.

doi:10.1371/journal.pone.0171781.g006
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Discussion

We developed a minimal mechanistic model that captures, in kinetic and quantitative terms,

the effects of glucose on oxidative stress and on metabolic memory. We calibrated the model

based on multiple sources of experimental data available from the published literature. The

proposed model structure takes into account the key processes responsible for ROS generation

under various profiles of hyperglycemic conditions. The model implementation and calibra-

tion approach combined the use of fixed parameters, in agreement with realistic physiological

Fig 7. Impact of model parameters on ROS levels, during a 2-week, 20 mM CG exposure experiment. ROS levels were predicted at

three different time points: the early ROS response at 24 hours after the start of the experiment (A); ROS levels at 2 weeks after the start of

the experiment (B); ROS levels after achieving NG exposure conditions, 12 weeks after the start of the experiment (C). Parameter values

were varied ± 50% (brown bar color—for positive change; orange color—for negative change) from the initial estimate (Table 1). Bar size

and X-axis represent the magnitude of the parameter change effect on the ROS value.

doi:10.1371/journal.pone.0171781.g007

Fig 8. Impact of model parameters on ROS levels, during a 2-week, 5–20 mM OG exposure experiment. ROS levels were predicted at

three different time points: the early ROS response at 24 hours after the start of the experiment (A); ROS levels at 2 weeks after the start of

the experiment (B); ROS levels after achieving NG exposure conditions, 12 weeks after the start of the experiment (C). Parameter values

were varied ± 50% (brown bar color—for positive change; orange color—for negative change) from the initial estimate (Table 1). Bar size

and X-axis represent the magnitude of the parameter change effect on the ROS value.

doi:10.1371/journal.pone.0171781.g008
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limits, and the NLME method, for the estimation of unknown parameter values, to better han-

dle uncertainty around model-based predictions and to increase the model predictive power.

This approach, in turn, also made it possible to build a model with a clear and interpretable

structure, which may then be used to better understand mechanisms and conditions, which

underlie detrimental, time-dependent glucose effects in healthy tissue and in diabetics. Thus,

the calibrated model allowed us to explain patterns of ROS in response to various glucose

exposure regimens, as tested in vitro, and to extrapolate such knowledge towards untested

experimental protocols and conditions, such as in diabetics. As an example, the model was

able to reproduce the observed “metabolic memory” phenomenon and to predict ROS excess

as observed after glucose normalization conditions [7]. This behavior was described in the

model by a minimal system of positive and negative feedback loops, between ROS generation

and generic variables, which describe metabolic memory and the development of cellular

adaptive processes (adaptation) (Fig 1).

Differences in the accumulation rates of the proposed model variables could account for

the quantitative effects observed in in vitro experiments and were in good agreement with mul-

tiple experimental data reported in the literature. [23,25]. Such an experimental observation

finds its basis through a most sensitive parameter identified in the model for NG exposure

conditions, mainly responsible for the development of metabolic memory. Indeed, small

changes in parameter arosmm, which underlies the positive feedback loop between ROS excess

and metabolic memory generation, can be sufficient to support increased ROS steady-state lev-

els, post-glucose normalization. However, in vitro studies of glucose stimulation typically do

not extend measurements for stability of ROS at steady-state, post-glucose stimulation. Unlike

to in vitro, in vivo ROS dynamics is affected not only by its production and elimination but

also by elution from the tissue. Therefore, the feedback loop between ROS and MM can be

interrupted and ROS production can return to normal state. In the current model framework,

the gradual ROS decrease to normal levels can be reproduced assuming arosmm<1; however,

the lack of quantitative data does not allow us to estimate the value of arosmm, i.e., the rate of

system recovery. This model limitation is a key point to consider for future development, e.g.,

towards predictions of the system’s behavior in vivo; to this end, incorporation of in vivo data

on metabolic memory will be critical. Metabolic memory phenomenon was supported by pre-

clinical studies, e.g., diabetic animals treated after periods of poor glycemic control [5]. Such

studies, however, report only a single time point measurement of ROS levels following glucose

normalization; this is in line with our model-based results, but would not allow us to estimate

the dynamic trend of oxidative stress following normalization.

Another set of paradoxical experimental data were reproduced by the model, namely the

more profound effects of oscillatory vs. constant glucose exposure settings, on ROS stimulation

[7]. No robust hypothesis underlying the driving force between cellular adaptation and hyper-

glycemia has been reported to date in the literature. In the present model, however, the

observed effect could be implemented via incorporation of a semi-mechanistic cellular adapta-

tion process, directly triggered by a glucose excess. Adaptation is a function of the excess glu-

cose exposure AUC, and the OG protocol simply does not lead to as much accumulation of

AD because of less total exposure. The key to the difference between the CG and OG scenarios

is the non-linear feedback from AD to ROS production, which is not activated until AD has

reached a certain threshold—which is less likely to occur under OG stimulation. Moreover,

according to the model simulations, OG exposure with low-amplitude oscillations would not

cause oxidative stress. This model prediction is in good agreement with clinical data indeed: a

low incidence of diabetic complications has been reported, in patients with tight glycemic con-

trol, although with plasma glucose levels still higher as compared to healthy subjects [26].

According to the American Diabetes Association (ADA) guideline, the targeted daily blood
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glucose level for non-insulin dependent diabetic patients is 4.4–10.0 mM [27]. This is in accor-

dance with in vitro data, since oxidative stress is observed in cells exposed to 10 mM CG and

higher [21]. Additionally, results from our sensitivity analysis (Figs 7B and 8B) indicated that

model parameters responsible for the adaptation process most influence ROS levels after pro-

longed cell exposure to HG. All these findings confirm the importance of keeping daily blood

glucose levels within a specific range: a narrow interval with a particular mean value of glucose

level is more beneficial than a wider one with the same mean value. It points to the important

benefits of, for example, dietary intervention associated with lower glucose supply from food

intake and reduction of prandial glucose peaks, on top of glucose-lowering agents or insulin

replacement therapy. Oscillatory glucose regimens can indeed cause the highest level of meta-

bolic memory building-up, with a potential for subsequent diabetic complications (Fig 6C).

This is further supported by reports showing that glycosylated hemoglobin levels (HbA1c),

which correlate well with averaged plasma glucose levels, are not necessarily a good predictor

for diabetic complication risk, whereas plasma glucose instability can be more important [28].

HbA1c has been, for years, a gold standard for metabolic control evaluation in diabetic

patients [28]. However, today’s continuous glucose monitoring (CGM) systems do allow for

daily blood glucose dynamics tracking, and would therefore allow for the development of a

quantitative algorithm linking such glucose dynamics history to oxidative stress levels and risk

of diabetic complications.

A current limitation in the present in vitro study on glucose-stimulated oxidative stress gen-

eration (from both experimental and modeling perspectives) lies in the absence of detailed,

informative longitudinal data, which would profile the ‘metabolic memory’ phenomenon.

Also, an accurate quantitative description of the in vitro data is highly limited by inter-study

variability, which may obscure complex systems dynamics. In our modeling approach, the use

of an NLME technique was of great help in the further analysis of pooled datasets from studies

of comparable experimental conditions. This allowed us to handle data variability well and to

identify a population set of parameters, to describe average trends in ROS dynamics over a

continuous timescale. However, individual level data would be required, to gain further

insights into variability source(s). Meanwhile, the developed model may be used as a tool for

improved, informed experimental study design, which in turn may provide further under-

standing of glucose effects on oxidative stress.

Conclusion

We developed a minimal, semi-mechanistic model that describes current data and hypotheses

on glucose dynamical effects upon oxidative stress, as observed in vitro. The calibrated model

predicted well both the ‘metabolic memory’ phenomenon and the detrimental effects of unsta-

ble glucose. With only a few parameters, it reproduced complex relationships between glucose

dynamics and oxidative stress, and allowed us to identify underlying drivers of the observed

phenomenon. Further work may include model updating and calibration for in vivo condi-

tions, which, together with daily plasma glucose profiles, would allow us to predict oxidative

stress levels and their link to the potential risk of complications in diabetic patients.
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