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Abstract

Purpose: Assess follow-up recommendations in radiology reports, develop and assess traditional 

machine learning (TML) and deep learning (DL) models in identifying follow-up, and benchmark 

them against a natural language processing (NLP) system.

Methods: This HIPAA-compliant, IRB approved study, was performed at an academic medical 

center generating >500,000 radiology reports annually. 1,000 randomly-selected ultrasound, x-ray, 

computed tomography and magnetic resonance imaging reports generated in 2016 were manually 

reviewed and annotated for follow-up recommendations. Traditional machine learning (Support 

Vector Machines, Random Forest, Logistic Regression) and deep learning (Recurrent Neural Nets) 

algorithms were constructed and trained on 850 reports (training data), with subsequent 

optimization of model architectures and parameters. Precision, recall and F1-score were calculated 

on the remaining 150 reports (test data). A previously-developed and validated NLP system 

(iSCOUT) was also applied to the test data, with equivalent metrics calculated.

Results: 12.7% of reports had follow-up recommendations. The TML algorithms achieved F1 

scores of 0.75 (Random Forest), 0.83 (Logistic Regression), and 0.85 (Support Vector Machine) 

on the test data. DL Recurrent Neural Nets had an F1 score of 0.71; iSCOUT also had an F1 score 

of 0.71. Performance of both TML and DL methods by F1-scores appeared to plateau after 500–

700 samples while training.

Conclusion: TML and DL are feasible methods to identify follow-up recommendations. These 

methods have great potential for near real-time monitoring of follow up recommendations in 

radiology reports.

INTRODUCTION

While imaging’s importance in medicine is undeniable, studies suggest that a portion of 

imaging tests might be redundant, inappropriate, or otherwise unnecessary [1]. Although 

slowing recently, imaging utilization continues to grow and up to 12% of radiology reports 

include a follow-up recommendation for additional imaging [2]–[4]. Unnecessary follow-up 

recommendations may result in wasteful imaging, though the scope is not well studied. 

Furthermore, improving techniques and image resolution in diagnostic radiology has led to 

the detection of even subtler new or incidental findings, raising questions of management. 

Although some follow-up recommendations are based on well-established guidelines (e.g., 
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Fleischner Society guidelines for lung nodules [5,6], American College of Radiology 

whitepaper on managing incidental findings [7]), many remain based on clinical preferences 

and vary widely [8]. Further, guidelines may contain individual recommendations with 

heterogeneous strength of supporting evidence [9] or practitioners may inappropriately apply 

them [8].

Studying follow-up recommendations is key to understanding and monitoring their 

prevalence, identifying unwarranted variations in their use, tracking their impact, and 

developing initiatives to improve their use. Nonetheless, it remains challenging to extract 

recommendations from radiology reports, given their free text nature and the varied 

language radiologists use to make follow-up recommendations. Manual annotation can 

accurately identify these, but the necessary human-hours make it unsustainable to study 

sufficiently large samples over time. Furthermore, automated identification of these 

recommendations is critical to build quality control systems to ensure that these 

recommendations and further imaging are not missed.

While several groups have applied natural language and machine learning methods to 

analyzing radiology reports for follow-up recommendations, most have concentrated on 

traditional machine learning (TML) approaches; assessing reports on a sentence-by-sentence 

basis or via semantic and syntax analysis [10–12]. This work has been extremely promising, 

but to our knowledge no group has leveraged deep learning (DL) methods or pieced together 

algorithms capable of considering large sections of the report. DL relies on stacked nodes 

and layers to automatically extract features in a way believed to be analogous to human 

thinking. Such work would thus leverage ever-increasing computing power, and benefit from 

context cues indicating follow-up recommendation much like human readers can.

OBJECTIVE

We sought to: 1) assess follow-up recommendations in radiology reports, 2) develop and 

assess TML and DL models to identify follow-up recommendation in free text radiology 

reports, and 3) benchmark them against a previously-developed and validated natural 

language processing (NLP) system.

MATERIALS AND METHODS

Corpus Selection

This study was performed at a large tertiary healthcare institution and approved by its 

Institutional Review Board. Reports were extracted from the institution’s Radiology 

Information System from among magnetic resonance imaging (MRI), computed tomography 

(CT), ultrasound (US) and x-ray (XR) studies performed 1/1/2016–12/31/2106. These 

totaled 547,495 unique reports from inpatient, outpatient and emergency department 

encounters. Buderer’s formula for diagnostic test sample size calculation was applied (95% 

confidence interval, precision: 0.05, estimated specificity: 0.95), yielding a size of 150 

testing samples [13]. A total 1,000 radiology text reports were extracted randomly to have an 

850:150 training-to-testing split. In addition to the radiology text report content, study 

modality, study description, patient date of birth and patient gender were also collected.
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Training Corpus Annotation

The text reports were manually labeled for the presence of any follow-up recommendations 

by an annotator (Emmanuel Carrodeguas). A second annotator (Whitney Swanson) 

independently labeled 400 reports to assess inter-rater agreement via kappa statistic. Reports 

with 1+ recommendations were labeled as containing follow-up, regardless of the number of 

recommendations. Recommendations for follow-up were defined as any phrase that might 

reasonably and explicitly suggest further imaging or procedural intervention (e.g., biopsy, 

colonoscopy, cystoscopy, etc.). Phrases suggesting clinical correlation or establishing 

uncertainty but not suggesting further steps were not considered follow-up. For example, 

“recommend short interval follow-up” and “MRI could be performed” constituted follow-up 

phrases; “clinical correlation recommended” or “structure could not be well visualized” did 

not. The annotated corpus was then randomly divided for training and validation using 850 

reports (training data), and testing using 150 reports (test data).

Follow-Up Detection Using Information Extraction Methods

To establish a baseline for all machine learning methods, test data report text was analyzed 

using the Information from Searching Content with an Ontology-Utilizing Toolkit (iScout), a 

previously-validated NLP system [14]. For follow-up detection, this system relies on 

detecting “imaging terms” found close to “action terms” in text. For example, “Follow-up 

chest CT is recommended in 12 months” would be identified as a follow-up due to the 

proximity of “follow-up” (an action term) and “chest CT” (an imaging term). Imaging and 

action term lists are provided as Supplemental Materials.

Data Pre-processing and Feature Extraction for Machine Learning Models

The radiology report text data was preprocessed to remove special characters and 

capitalization. In our experience with manual annotation, actionable recommendations are 

almost always in the Impression sections of structured reports (even if also mentioned in 

Findings) and therefore we restricted analysis to the Impression section when possible to 

reduce computational complexity. For TML algorithms and DL, text data was converted into 

a Bag of Words (BoW) representation using the Scikit-Learn CountVectorizer utility, and 

scaled to frequencies using the TfidfTransformer utility [15]. CountVectorizer converts text 

into a matrix of occurrence counts, and TfidfTransformer scales each frequency using term-

frequency times the inverse of document frequency (TF-IDF). CountVectorizer can treat 

multiple words as single units, applying n-grams to preserve sequence information. For 

TML algorithms, we included increasing n-grams as a tuned hyperparameter (see considered 

parameters in Supplemental Materials) and we applied 1–3-gram representations for our 

deep neural nets due to computational complexity. For long short-term memory (LSTM) 

recurrent neural network (RNN) DL approaches, text was transformed into numerical tokens 

using TensorFlow’s Tokenizer function [16].

TML Models

We trained Support Vector Machine (SVM), Random Forest (RF) and Logistic Regression 

(LR) models using the Scikit Learn Python application programming interface (API). All 

models were first evaluated with default hyperparameters using 10-fold cross validation. 
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Hyperparameters for all three models were tuned using Scikit-Learn’s grid search 

(GridSearchCV), with optimized models re-evaluated using 10-fold cross validation. 

Optimized models were trained on the entirety of the training data and tested for 

generalizability on the test data. The searched hyperparameter space is provided as 

Supplemental Materials.

SVM is a classification algorithm that represents samples as points in space, using 

hyperplanes with associated wide margins to separate data points into categories [17]. Data 

points close to the dividing plane are called support vectors.

The RF classification algorithm relies on an ensemble of decision trees, averaging their 

results to make a decision [17]. Each decision tree learns to make predictions based on a 

random subset of input features, splitting data points through hierarchical nodes (e.g., by 

minimizing entropy) until reaching a classification.

LR is a classifier that relies on the logistic (a sigmoid function) of the weighted sum of 

features and a bias term to determine classification [17].

DL Models

Keras, an API with a TensorFlow backend, was used to construct long short-term memory 

recurrent neural network (LSTM-RNN) models [18]. Varied architectures were trained and 

evaluated using 5-fold cross validation, with the optimized model tested on the test data. 

Models started with an arbitrarily low number of hidden layers and nodes, then increased 

iteratively to estimate the optimized architecture. An early callback was implemented to 

avoid overfitting, ending training when the validation loss function (measure of model 

performance on validation data) began increasing. The last layer in each model was an 

activation function that turned the output into a binary classification (follow-up present or 

absent).

LSTM-RNNs consist of multiple layers of nodes. Each node is also connected to adjacent 

nodes within the same layer (giving the network a sequence component). Furthermore, each 

node can remember previous information that persists through training steps, giving them a 

“memory” component. Input data was represented as a sequence of word tokens and passed 

into an embedding layer that was actively trained to create a vector for each word in a 100-

dimensional space, spatially related to similar concepts. The models were regularized using 

a dropout of 0.2, representing the proportion of nodes that were randomly excluded in each 

iteration to prevent overfitting.

Validation Framework

Models were developed using 10-fold cross validation for TML models and 5-fold cross 

validation for DL models (850 training and validation reports). All TML and DL models 

were trained and tested on a mid-2015 Apple Macbook Pro (CPU: 2.5 GHz Intel Core i7, 

RAM: 16GB 1600 MHz DDR3, GPU: AMD Radeon R9 M370X 2048MB); the Scikit-Learn 

and Keras/Tensorflow APIs utilized the CPU with no GPU usage. Time was measured using 

Python’s datetime functionality and estimated for the development (grid search, cross 

validation of DL models) and final training of all models. Previously validated, iScout was 
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not modified for this work.[14] Scikit-Learn’s metric utilities were applied to calculate 

Precision (True Positives / (True Positives + False Positives)), Recall (True Positives / (True 

Positive + False Negatives)) and F1 score (harmonic mean of the two). Each model was 

characterized by receiver operating characteristic (ROC) plots and the associated area under 

the curves (AUCs). Top models for each algorithm were chosen based on F1-scores, and 

these models were then trained on all the data minus a 10% validation set (85 reports) for 

early stopping callbacks. Therefore, each optimized model was re-trained on 765 reports.

Evaluating Models on Test Data

The re-trained models were then used to determine generalizability on the test data (150 

reports), with Precision, Recall, and F1 scores reported. Finally, to test the impact of the size 

of training data on training, each model was re-trained on increasing subsets of training data 

(100, 200, 300, 400, 500, 600, 700 and 765) and re-tested on the hold-out test data. iScout 

was tested on the test data (150 reports).

RESULTS

The total corpus of reports consisted of 96 MR, 249 CT, 223 US, and 432 XR examinations. 

Annotations revealed 127 (12.7%) reports with follow-up recommendations. CT and MR 

modalities had the highest rate of follow-up recommendations at 25.3% (63 reports) and 

18.8% (18 reports), respectively. XR and US both had lower rates at 6.3% (27 reports) and 

8.5% (19 reports), respectively. 400 reports were annotated by two raters with a percentage 

agreement of 97.5% and a Kappa agreement score of 0.78 (95% Confidence Interval [CI] 

0.39–1.0). The characteristics of the annotated training and test sets are shown in Table 1.

TML Algorithms Training and Optimization

Initial training and validation of TML algorithms with 10-fold cross validation showed an 

AUC of 0.96 for SVM, 0.92 for RF and 0.95 for LR algorithms. F1-scores prior to 

optimization were 0.0 for SVM, 0.43 for RF and 0.21 for LR. Metrics after optimization are 

shown in Table 2. SVM was optimized with a 7-degree polynomial kernel with a 1- to 3-

gram BoW representation. RF had 100 estimators and optimized with a 1- to 6-gram BoW 

representation with 5 minimum samples per leaf. LR was optimized with a 1- to 6-gram 

BoW representation. ROC curves for all models are displayed in Figure 1. Grid search times 

(Table 2) for TML models ranged from 1 minute (LR) to 35 minutes (SVM) and were 

heavily dependent on the size of the hyperparameter space searched.

DL Models Training and Optimization

Training and validation metrics for DL algorithms are shown in Table 3. LSTM-RNN F1-

scores ranged from 0.10 to 0.60, with 100 Nodes × 2 LSTM layers representing the best 

architecture. Training and validation times for DL models (Table 3) were all significantly 

longer than TML models, ranging from 30 minutes to 300 minutes.

Testing Models on Hold-Out Data

Optimized models and iScout were tested on the test data to evaluate generalizability to 

unseen data (Table 4). The tuned SVM model had the best performance in terms of all 
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metrics with a precision of 0.88, a recall of 0.82 and an F1-score of 0.85. LSTM-RNN DL 

model had an F1 score of 0.71. IScout also had an F1-score of 0.71.

Sensitivity to Training Sample Size

Optimized models were further trained with increased samples sizes to establish sensitivity 

to sample sizes. Models were trained on increasing samples of 100 report intervals, with 

average F1-scores for traditional and DL approaches recorded. Compared curves are shown 

in Figure 2.

DISCUSSION

Follow-up recommendations are an important component of an actionable radiology report 

to inform clinical decision-making and care planning for patients. Follow-up 

recommendations are common (10–12% of reports), but a substantial portion may not be 

evidence-based [19,20], with significant unexplained variation among radiologists [8]. As 

such, assessing follow-up recommendations provides an excellent opportunity for improving 

care and enhancing the value of radiologist’s input in devising an optimal patient care plan. 

However, radiology reports with follow-up recommendations are difficult to identify, in part 

due to their free text nature and their lack of standardized structure and content. Therefore, 

automated identification of reports containing follow-up recommendations would constitute 

a powerful tool for research and quality improvement and provide opportunities to ensure 

and track appropriate follow-up for a broad range of powerful clinical applications. To our 

knowledge, this is the first study assessing TML and DL methods in identifying follow-up 

recommendations in radiology reports. We find that all of these machine learning methods 

can identify reports with follow-up recommendations, with optimized models comparable to 

a previously validated system.

First, our experiments indicate the feasibility of training machine learning algorithms on 

textual data. A challenge of machine learning is obtaining adequate samples for training and 

validation. Although large datasets exist in electronic health records (EHRs), most radiology 

reports are free text and would require manual annotation prior to training. Current 

approaches to other machine learning problems use large databases (tens of thousands), an 

approach that is onerous for radiology reports. However, our study demonstrates stable 

results with less data (training on 500–700 reports), indicating that both TML and DL are 

feasible methods for assessing follow-up recommendations in radiology reports.

Secondly, our study highlights the ease of design and minimal preprocessing needed to 

achieve accurate results with machine learning. Many current information extraction systems 

(such as iScout) depend on carefully constructed algorithms and methods to achieve 

different tasks [14]. As such, they are not flexible and once constructed require expert input 

to adapt to changing targets. For example, utilizing iScout for follow-up detection required 

the careful curation of imaging and follow-up term lists. Likewise, previous machine 

learning approaches to information extraction have relied on extensive preprocessing 

(removing stop words, linking ideas, word stemming). Here we show that with minimal 

preprocessing and readily available “out-of-the-box” machine learning classifiers, we could 

match carefully engineered methods. This represents a useful option for practicing 
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radiologists and radiology groups seeking to track and monitor their own recommendation 

trends.

Thirdly, our study assesses both traditional and deep machine learning approaches and 

compares them to a previous rule-based NLP tool. Traditional models (SVM, RF, LR) 

performed well after optimization. Interestingly the DL method’s performance appears to 

plateau with increasing training size, but it is possible that this is a function of the restricted 

architecture tested. Unlike previously-developed NLP tools, DL and TML can automatically 

select and combine features without pre-determined rules created manually by human 

domain experts. However, rule-based, TML and DL approaches can all be viably utilized for 

NLP, specifically extracting information from structured reports. It remains possible that 

with larger data sets and more complex architectures, DL methods would provide better 

classification, as DL continues to break barriers in other fields, including pathology, cancer 

prognosis, and drug discovery [21–24]. Similar results have been seen in radiology, with DL 

methods being applied broadly from lesion segmentation to diagnostic predictions from 

brain imaging [25–27]. As such, ML’s role is likely to continue increasing in medicine and 

radiology.

Finally, our study opens the possibility to use automatically extracted follow-up 

recommendations in clinical practice. Automated systems integrated in an EHR facilitate 

coordination between various providers regarding collaborative care plans[28]. For reports 

containing further recommendations, a system can monitor and inform providers so that 

necessary diagnostic follow-up is not delayed. In addition, identifying follow-up 

recommendations within one’s own practice provides an opportunity to quantify between-

providers variations in follow-up recommendations for specific findings, as well as 

variations resulting from clinical uncertainty[29].

From a population health perspective, an integrated system built on our work could, for 

example, validate radiologist recommendations against accepted standards, providing them 

real-time feedback. Over time, such a system could track adherence to these 

recommendations and even quantify the impact on patient outcomes. In addition, a system 

that could automatically monitor follow-up recommendations could be useful for reporting 

in quality improvement activities and federal regulatory requirements. For example, follow-

up imaging recommendations for abdominal findings (e.g., pancreatic cysts) can be included 

in the Center for Medicare and Medicaid Services Merit-based Incentive Payment System 

Measures and the system could facilitate reporting [30].

Our study has several limitations. First, we restricted our algorithms to the Impressions 

sections of text reports. Although most follow-up recommendations are indicated there, 

other contextual information (setting of study, patient characteristics, indication of study) is 

often useful for human raters and could have improved our models. Furthermore, while our 

limited preprocessing and sample size highlight the feasibility of these models, they likely 

also acted to limit performance. In ongoing applications of these algorithms, fine tuning 

these parameters could improve accuracy. Third, due to computational constraints we limited 

the architecture and fine tuning of our models, potentially disproportionately impacting the 

DL models. Fourth, our model only identified the presence of a follow-up recommendation, 
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extracting no information about the incidental finding or what was recommended. Finally, 

the study single institution has a limited number of radiologists, impacting generalizability 

of our models to other institutions.

In conclusion, machine learning models appear to be useful tools, capable of detecting 

follow-up recommendations with minimal training data in a way that may be equally applied 

to retrospective analyses or potentially to near real-time monitoring of radiology reports. 

Future work can: leverage optimized models, expanding on current architectures with more 

computing power; focus on training and modifying models to extract further information 

regarding the nature of incidental findings and subsequent recommendations; and test real-

world generalizability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TAKE-HOME POINTS

• Follow-up recommendations are an important component of an actionable 

radiology report to inform clinical decision-making, present in 12.7% of 

radiology reports.

• Machine learning algorithms utilized the Impression section of radiology 

reports with minimal textual pre-processing for identifying reports with 

follow-up recommendations.

• Traditional machine learning and deep learning algorithms can identify 

radiology reports with follow-up recommendations.

• Automatic identification of follow up recommendations could have wide 

implications for real time monitoring of reports to create alerts for actionable 

findings to ensure collaborative care plans are developed with other providers.
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Figure 1: 
(A-B) Receiver operating characteristic (ROC) curves for traditional machine learning 

models (blue) and optimized parameters (green). Subplots represent Support Vector 

Machines (A), Random Forest (B) and Logistic Regression (C). (D) Receiver operating 

characteristic (ROC) curve for top long short term memory deep learning architecture (100 

nodes × 2 layers).
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Figure 2: 
Average F1 scores for deep learning (DL, blue) and traditional machine learning (TML, 

orange) models with increasing training data (100 to 750 samples).
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Table 1:

Characteristics of training and testing corpus

Training and Validation (N=850) Testing (N=150)

Follow-Up Recommendations 110 (12.9%) 17 (11.3%)

Modality

X-ray 365 (42.9%) 67 (44.7%)

Computed tomography 217 (25.5%) 32 (21.3%)

Magnetic resonance imaging 82 (9.6%) 14 (9.3%)

Ultrasound 186 (21.9%) 37 (24.7%)

Patient Gender

Female 487 (57.3%) 89 (59.3%)

Male 363 (42.7%) 61 (40.7%)

Patient Age 56.3 (Standard Deviation: 19.3) 54.8 (Standard Deviation: 18.6)
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Table 2:

Traditional machine learning metrics from 10-fold cross validation on training data

Model Precision Recall F1-Score AUC Grid-Search Time

SVM 0.77 0.71 0.74 0.96 33 minutes

Random Forest 0.77 0.75 0.76 0.96 5 minutes

Logistic Regression 0.61 0.91 0.73 0.97 1.2 minutes

AUC= area under the ROC curve; SVM= support vector machine
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Table 3:

5-fold cross validation deep learning algorithm architectures and metrics on training data

Model Architecture Precision Recall F1-Score AUC Training Time

LSTM-RNN 50 Nodes × 2 LSTM 0.71 0.44 0.54 0.89 30 minutes

100 Nodes × 2 LSTM 0.68 0.54 0.60 0.91 30 minutes

100 Nodes × 5 LSTM 0.59 0.46 0.52 0.88 90 minutes

500 Nodes × 2 LSTM 0.68 0.54 0.60 0.85 120 minutes

500 Nodes × 5 LSTM 0.52 0.26 0.35 0.79 300 minutes

1000 Nodes × 2 LSTM 1.00 0.05 0.10 0.72 300 minutes

AUC= area under the curves; LSTM-RNN= long short-term memory recurrent neural network; bolded row indicates top scoring architecture
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Table 4:

Optimized model testing on test data

Model Precision Recall F1-Score Training Time

SVM 0.88 0.82 0.85 0.7 seconds

Random Forest 0.80 0.71 0.75 5.5 seconds

Logistic Regression 0.79 0.88 0.83 1.2 seconds

LSTM-RNN 0.91 0.59 0.71 15 minutes

iScout 0.71 0.71 0.71

SVM= support vector machine; LSTM-RNN= long short-term memory recurrent neural network; bolded row indicates top scoring architecture
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