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Abstract

In order to further our understanding of how gene expression contributes to key functional

properties of neurons, we combined publicly accessible gene expression, electrophysiology,

and morphology measurements to identify cross-cell type correlations between these data

modalities. Building on our previous work using a similar approach, we distinguished

between correlations which were “class-driven,” meaning those that could be explained by

differences between excitatory and inhibitory cell classes, and those that reflected graded

phenotypic differences within classes. Taking cell class identity into account increased the

degree to which our results replicated in an independent dataset as well as their correspon-

dence with known modes of ion channel function based on the literature. We also found a

smaller set of genes whose relationships to electrophysiological or morphological properties

appear to be specific to either excitatory or inhibitory cell types. Next, using data from Patch-

Seq experiments, allowing simultaneous single-cell characterization of gene expression

and electrophysiology, we found that some of the gene-property correlations observed

across cell types were further predictive of within-cell type heterogeneity. In summary, we

have identified a number of relationships between gene expression, electrophysiology, and

morphology that provide testable hypotheses for future studies.

Author summary

The behavior of neurons is governed by their electrical properties, for example how read-

ily they respond to a stimulus or at what rate they are able to send signals. Additionally,

neurons come in different shapes and sizes, and their shape defines how they can form
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connections with specific partners and thus function within the complete circuit. We

know that these properties are governed by genes, acting acutely or during development,

but we do not know which specific genes underlie many of these properties. Understand-

ing how gene expression changes the properties of neurons will help in advancing our

overall understanding of how neurons, and ultimately brains, function. This can in turn

help to identify potential treatments for brain-related diseases. In this work, we aimed to

identify genes whose expression showed a relationship with the electrical properties and

shape measurements of different types of neurons. While our analysis does not identify

causal relationships, our findings provide testable predictions for future research.

Introduction

Two prominent features that distinguish neurons from other cells are their electrical activity

and their characteristic morphology. The specific pattern of electrophysiological activity dis-

played by a given neuron is a core property of its identity as one type of neuron or another.

Similarly, different cell types often show striking differences in their size, branching complex-

ity, and other morphological features. Neuronal cell types defined according to their

electrophysiological or morphological characteristics show substantial correspondence with

one another as well as with those defined using classification schemes based on transcriptomic

criteria [1]. Electrophysiological characteristics of neurons, as well as their connectivity pat-

terns, give rise to the computational properties of a given circuit [2,3]. Additionally, modeling

studies show that morphological changes in simulated neurons can critically change their sig-

naling capabilities [4–6]. Thus, understanding the origins of neuronal electrophysiology and

morphology is an important step in understanding the mechanisms of brain function, both in

the context of basic research and in the search for treatments for neuropsychiatric disorders.

A comprehensive understanding of the mechanisms that give rise to electrophysiological or

morphological diversity must necessarily include a catalogue of the genes whose products con-

tribute to these properties. Many genes have been shown experimentally to influence neuronal

electrophysiology through a variety of mechanisms, including but not limited to ion channel

activity, protein trafficking, and transcription factor activity [7–9]. Processes such as axon

guidance and the development of dendrite morphology are also known to be under genetic

control [10]. Despite this, our understanding of the relationship between gene expression and

electrophysiological or morphological properties is quite limited.

Correlational approaches looking at the relationship between gene expression and neuronal

properties in the absence of experimental manipulation can be a valuable method of prioritiz-

ing genes for future experimental study. For example, multiplex RT-PCR has been used to

examine relationships between binary expression of a small group of genes and various

electrophysiological parameters, allowing for reliable prediction of electrophysiological pheno-

types based on combinatorial gene expression [11]. In addition, the recently developed Patch-

Seq methodology, in which electrophysiology, morphology, and gene expression are analyzed

in a single cell, has been used to examine relationships between gene expression and morpho-

logical or electrophysiological properties. However these analyses have thus far been limited to

either predicting neuronal properties based on combinatorial gene expression profiles, exam-

ining relationships between cell types, or showing relationships predicted a priori based on

known gene function [12–15].

In previous work [16], we combined publicly accessible electrophysiological and gene

expression datasets in order to examine the relationship between gene expression and
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electrophysiological properties. By matching groups of cells inferred to be similar based on

multiple information sources, such as the transgenic reporter line and the brain region cells

were isolated from, we were able to combine separate datasets containing gene expression and

electrophysiological data to generate lists of genes which were correlated with one of several

electrophysiological properties (as outlined in Fig 1A). The goal of this approach was to iden-

tify candidate genes that could be further studied using knockout or knockdown approaches

in order to determine whether a causal relationship was present.

One caveat in our prior study is that the gene-electrophysiology correlations we identified

may have been confounded by overall differences between broad cell classes. Across multiple

datasets and cellular characterization methods, including gene expression [17–20], and

electrophysiology and morphology [1], clustering cellular phenotypes in an unbiased manner

Fig 1. Methods for modeling relationships between gene expression and electrophysiological or morphological properties with

respect to cell class (A) Schematic for defining cell types from single-cell transcriptomic or electrophysiological and morphological

data. We divided cells into types based on Cre-driver expression as well as cortical layer and excitatory/inhibitory identity (left).

Right panel shows summarization of cellular features by cell type for a hypothetical gene and property, where each point in the

scatter plot represents each cell type’s mean gene expression (x-axis) and the mean value of an electrophysiological or morphological

property (y-axis). (B) A hypothetical class-driven relationship between a gene and an electrophysiological or morphological property,

in which neither cell class (excitatory or inhibitory) shows a relationship between gene expression and the property (solid lines), but

an overall relationship appears because of systematic cross-class differences in both data modalities (dashed line). For B-D, small

points represent individual cells and larger circles or diamonds represent cell type averages. (C) A hypothetical example of a non-

class-driven relationship, where the gene-property relationship appears within each major cell class (solid lines), but would be

obscured if modeled in a class-independent manner (dashed line). (D) A hypothetical example of a gene-property relationship

exhibiting an interaction with cell class. Here, expression of the gene is positively correlated with the property in excitatory cell types

but negatively correlated in inhibitory types (solid lines).

https://doi.org/10.1371/journal.pcbi.1007113.g001
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reveals the major taxonomic difference between neurons to be between projecting and non-

projecting neurons [18], or in the case of those cell types present in the cortex or hippocampus,

excitatory and inhibitory neurons [17,19,20]. Thus, the commonly held view that a neuron’s

identity is first and foremost defined by its excitatory or inhibitory identity [21] is corrobo-

rated across multiple data sources and experimental modalities.

Therefore, we reasoned that the dataset we used previously was potentially susceptible to

this confounding effect of cell class, since it contained a mixture of cells from different broad

cell classes. In this work, we will use the term “cell type” to refer to narrowly-defined cell types,

and “cell class” to refer to those which are broadly-defined (excitatory versus inhibitory or pro-

jecting versus non-projecting). We refer to correlations between gene expression and

electrophysiological or morphological properties that are explained by differences between cell

classes as “class-driven,” (e.g. Fig 1B) and to those that exist based on graded differences within

broad cell classes as “non-class-driven” (e.g. Fig 1C). We reason that gene-property relation-

ships that are non-class-driven would be more likely to be potential causal regulators of the

associated property. Although some class-driven correlations likely do reflect true relation-

ships between genes and properties which distinguish excitatory from inhibitory cells, separat-

ing these relationships from instances where one cell class has a higher value of a property and

coincidentally higher or lower expression of a gene without additional sources of data is not

possible. Effectively, such situations are analogous to attempting to draw conclusions about

correlations with only two data points.

Due to limitations in available data, we were unable to address the effect of cell class in our

previous work [16]. Since then, the RNA-seq and electrophysiology datasets from the Allen

Institute for Brain Science (AIBS) (which we originally used as validation data) have expanded

greatly, with more cells and more transgenic lines represented. This increase in size, together

with the fact that the AIBS data were collected using standardized protocols, suggests that this

dataset might prove valuable for discovering genes correlated with electrophysiological and

morphological properties. In addition, the growing use of the PatchSeq methodology [12],

allowing transcriptomic, electrophysiological, and morphological characterization of the same

single cell, also affords an opportunity to test gene-property correlations.

Leveraging the larger size of the new AIBS dataset, we were able to address limitations of

our previous study related to excitatory versus inhibitory cell class by employing statistical

methods to help mitigate the effects of cell class. These methods, together with the larger num-

ber of cell types represented in the new dataset, allowed us to identify novel electrophysiologi-

cal and morphological property-related gene sets which are potentially more likely to

represent meaningful biological relationships.

Results

Primary dataset

The primary dataset we used combined groups of cells from mouse visual cortex characterized

by the Allen Institute for Brain Science (AIBS; http://celltypes.brain-map.org/), where multiple

Cre-driver lines were used to target cells for characterization. Standard electrophysiological

protocols were used to characterize cells in vitro, with a subset of these cells further undergoing

detailed morphological characterization [1]. In addition, a separate group of cells were sub-

jected to deep single-cell RNA-sequencing to characterize cellular transcriptomes [20].

Because the same Cre-lines were used to characterize cells along multiple modalities of neuro-

nal function, we were able to summarize these data to the “cell type” level (reflecting Cre-line,

cortical layer, and major neurotransmitter; shown in S1 Table) by pooling and combining cel-

lular characterization data across different animals and data modalities. We acknowledge that

Transcriptomic correlates of neuronal diversity
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the cell type classification used here is somewhat crude and that there is overlap between cell

types as we have defined them, as well as variability within types, but chose to define cell types

in this way because it allows us to combine data from the RNA-seq and electrophysiology/

morphology datasets. The definition of multiple cell types within one Cre-line based on corti-

cal layer and major neurotransmitter is supported by cross-layer differences in gene expression

[20] and in electrophysiological properties (S1 Fig).

The final combined dataset is composed of 34 inhibitory GABAergic and 14 excitatory glu-

tamatergic types (48 total) with electrophysiological data, and 30 inhibitory and 13 excitatory

types (43 total) with morphological data. The increased size of this dataset is a considerable

advance over our prior analysis [16], which employed an older version of the same dataset

(only 12 cell types) [19]. This was made possible in part because of more Cre-lines available for

analysis and finer cortical layer dissections for the transcriptomic data. For each cell type thus

defined, we computed the mean log expression value for each gene represented in the RNA-

seq dataset and the mean value of each of sixteen electrophysiological and six morphological

properties (described in S2 Table). Some of the electrophysiological and morphological prop-

erties were log-transformed prior to taking the mean (see Methods). In order to account for

the existence of correlations among properties, we additionally performed principal compo-

nent analysis (PCA) on either the electrophysiological or the morphological properties, and

assessed the correspondence of each of the resulting principal components (E_PC1-E_PC3

and M_PC1-M_PC3) to gene expression.

Analysis approach

Our goal was to identify, for each electrophysiological or morphological property, genes that

were correlated with the property (Fig 1A). However, overall differences between excitatory

and inhibitory cell classes can make the interpretation of such relationships more complicated

in several ways. For example, Fig 1B shows an example of a gene-property correlation that

appears almost entirely class-driven, meaning that although no relationship appears within
either cell class, the apparent relationship is entirely driven by differences between cell classes.

In this case, inhibitory cell types show higher expression of the gene and a greater value of the

property compared to excitatory cell types. In contrast, Fig 1C shows a non-class-driven rela-

tionship, meaning one that manifests in both cell classes, but which may be obscured by base-

line differences when the cell classes are grouped. In this example, a correlation that appears

within both classes independently is obscured by a higher value of the property in inhibitory

compared to excitatory cell types. Although this obscuring effect is present in this particular

example, it is not required for a relationship to be considered non-class-driven; we expected to

see some relationships that were consistent both within each class as well as among all cell

types. Both class-driven correlations and non-class-driven correlations that are obscured by

the effects of class can be viewed as instances of Simpson’s paradox, in which the direction of

an overall relationship is the opposite of the relationship within relevant subsets of the data

[22,23]. We hypothesized that non-class-driven, but not class-driven, relationships would be

consistent with those relationships existing across individual cells within a cell type (small

points, representing individual cells within a type, in Fig 1B–1D).

In order to computationally account for these possibilities, we evaluated each combination

of gene and property using a statistical model that assesses the predictive value of the gene on

the property while controlling for the effects of cell class. We termed this model the class-con-

ditional model (P~G+C, where P is the value of the property, G is the gene expression level,

and C is cell class). This model would be expected to identify a significant relationship between

the gene and the property when a non-class-driven relationship is present (Fig 1C), but would

Transcriptomic correlates of neuronal diversity
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not identify relationships that are class-driven (Fig 1B). The class-conditional model is by no

means the only method that could be used to control for the effects of cell class, and other

methods such as subsetting the dataset to look at only one class at a time would likely produce

useful results as well. We chose to use the class-conditional approach because it allowed us to

use the data from both excitatory and inhibitory cell types, whereas subsetting the dataset to

include only one class would have led to our throwing out data from many relevant cell types.

For comparison, we modeled the same gene-property pairs using a class-independent model

(P~G), which assesses the predictive value of the gene on the property irrespective of cell class.

This model is similar in principle to the correlational method used in our previous work [16]

and would be expected to produce a significant result in cases showing class-driven relation-

ships (such as Fig 1B) but might miss some instances of non-class-driven relationships (such

as Fig 1C).

Another possible gene-property relationship is one where there is an interaction between

gene and class, meaning that the gene-property relationship is different in excitatory and

inhibitory cell types. An interaction could indicate either that excitatory and inhibitory cell

types both show a correlation between the gene and property, but the slopes are in opposite

directions (as in the example in Fig 1D), or that the gene is correlated with the property only

in one cell class. To detect such situations, we introduced a third model, the interaction

model (P~G+C+G�C), which tested whether the relationship between gene expression and

the property in question was significantly different between excitatory and inhibitory cell

types. In summary, the three models are designed to answer three different questions:

Class-independent model: Is expression of the gene a significant predictor of the property if

we assume that cell class is not a factor?

Class-conditional model: After accounting for cell class, is the gene’s expression a signifi-

cant predictor of the property?

Interaction model: Is the relationship between the gene’s expression and the property statis-

tically different in inhibitory and excitatory cells?

Accounting for cell class results in the identification of a distinct but

overlapping set of genes

We first set out to understand how accounting for cell class identity (excitatory or inhibitory)

affects the interpretation of gene-property relationships. We found 12,225 genes with expres-

sion levels passing our basic filtering criteria (see Methods for details on how expression-level

filtering was performed) and assessed each gene in combination with each electrophysiological

or morphological property. We modeled each relationship with or without including an indi-

cator variable for cell class, using the class-conditional or class-independent models described

above. For most properties, we found that the degree of overlap between the sets of genes iden-

tified in the two models (at a false discovery rate (FDR) of 0.1) was substantial but far from a

complete intersection (Fig 2A, Venn diagrams, and S2 Table). For example, for after-hyperpo-

larization (AHP) amplitude, we found ~6000 significantly-associated genes in the class-inde-

pendent model and ~6500 in the class-conditional model; out of these, ~3700 genes were

shared between models. Thus, accounting for cell class results in the identification of a sub-

stantially different set of candidate genes, which suggests that many of the genes identified in

our previous work [16] might reflect class-driven gene-property relationships.

We found that most of the electrophysiological properties showed some degree of correla-

tion with E_PC1, as well as varying degrees of overlap with the genes showing a significant

result in the class-conditional model, whereas E_PC2 showed substantial overlap with only sag

and AP threshold (S2A and S2B Fig). The morphological properties showed poorer overlap

Transcriptomic correlates of neuronal diversity
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with the principal components, likely because M_PC1 and M_PC2 were primarily correlated

with properties for which no significant genes were identified in the class-conditional model

(S2D and S2E Fig). For both sets of features, excitatory and inhibitory cell types were fairly

well separated by the combination of PC1 and PC2 (S2C and S2F Fig).

We next asked how overall differences in morphological and electrophysiological properties

between excitatory and inhibitory cells affect gene-property relationships. To this end, we used

a linear model to estimate the effect of cell class on each property. For most properties, there

was a significant (p< 0.05) effect of cell class. The features of action potential (AP) threshold,

input resistance, sag, rheobase, branchiness, soma surface, and bifurcation angle, as well as

E_PC3, M_PC2, and M_PC3, are exceptions to this. The existence of a significant difference in

most properties between excitatory and inhibitory cell types highlights the importance of tak-

ing cell class into account when attempting to relate these properties to gene expression. The

properties without a significant difference are likely to be less susceptible to class-driven

effects, but the class-independent model still might miss potentially interesting relationships

due to differences in gene expression between classes, resulting in genes which are identified

by the class-conditional model only.

We compared the strength and direction of the relationship in both the class-independent

and class-conditional models by directly comparing the slopes derived from each model for

each gene-property relationship (where slope indicates the change in the property per 2-fold

change in gene expression; shown for AHP amplitude in Fig 2B). While there is broad agree-

ment between the class-independent and class-conditional models (rSpearman = 0.52), a sub-

stantial number of gene-property relationships are significant in one model but not the other

(at FDR = 0.1). In other words, these relationships are either class-driven (significant in the

class-independent model only) or non-class-driven and obscured by class (significant in the

class-conditional model only). For example, the relationship between the gene Gprasp1 and

AHP amplitude illustrates an example of a class-driven relationship where the apparent rela-

tionship is entirely due to broad differences in excitatory and inhibitory classes (Fig 2C). The

gene Camk2g shows a non-class-driven relationship with the same property that is obscured in

the class-independent model by higher AHP amplitude values in inhibitory cell types (Fig 2D).

However, many genes, such as Xxylt1, are identified using either model (Fig 2E).

Divergent gene-property relationships in inhibitory versus excitatory cell

classes

We next wondered whether some gene-property relationships might be potentially different

within, or specific to, excitatory or inhibitory cell types. To test this, we incorporated an inter-

action term between gene expression and excitatory versus inhibitory cell class to assess

whether the gene-property relationships (i.e. slopes) were different within each cell class. For

nearly all properties, there were fewer genes with a significant interaction term in the interac-

tion model compared to the number with a significant gene term in the class-conditional

model (Fig 3A, Venn diagrams, and S3 Table). For example, out of the ~6600 genes signifi-

cantly associated with AHP amplitude in the class-conditional model, ~2300 also show inter-

actions, and there are an additional ~700 which show an interaction but are not significant in

the class-conditional model. This could indicate that “true” interactions are comparatively

rare, but this finding is also likely partly explained by differences in statistical power. In addi-

tion, these interactions do not appear to be merely the result of low or no gene expression

within one cell class but not the other; we did not observe strong correlations for any property

between the interaction term coefficient and the average difference in expression levels

between inhibitory and excitatory cell types (S3 Fig).
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Fig 2. Different sets of genes are associated with electrophysiological and morphological properties after correcting for cell class. (A) Number of genes

significantly associated with each property in the class-conditional model at various levels of significance (only properties with significant genes in this model are

Transcriptomic correlates of neuronal diversity
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For all properties, we found that the slopes of the gene-property relationships within excit-

atory cell types were poorly correlated with those within inhibitory cell types (example features

maximum branch order and AHP amplitude shown in Fig 3B and 3C). By definition, the

genes with significant interaction terms were those where the slopes calculated within excit-

atory and inhibitory classes were very different from each other (pink and purple points in Fig

3B and 3C). If the majority of gene-property relationships are shared between excitatory and

inhibitory cell types, as one might expect if neuronal properties are regulated using largely con-

sistent mechanisms even across cell classes, one might expect a positive correlation between

slopes calculated in inhibitory and excitatory cell types. However, such a correlation may be

lacking in this analysis because we would expect most genes to have no relationship to a given

property and thus for the deviations of their slopes from zero to be essentially random.

The properties maximum branch order and sag are unusual in that they show few signifi-

cant genes using the class-conditional model, but many (1914 and 1109, respectively) with sig-

nificant interactions (Fig 3A, Venn diagrams, and S3 Table; slopes for maximum branch order

plotted in Fig 3B). We hypothesize that this might be because these properties are under stron-

ger (or otherwise more readily identified) genetic control in excitatory compared to inhibitory

cell types, together with the uneven numbers of excitatory and inhibitory cell types (see

Discussion).

Fig 3D and 3E show examples of genes with significant interaction terms for AHP ampli-

tude. The class-conditional model also shows a significant relationship between AHP ampli-

tude and expression of Man1c1 (Fig 3E) but not Nrxn3 (Fig 3D). In other words, the

interaction model identified a potentially interesting relationship in the case of Nrxn3 which

was missed by the class-conditional model. For Man1c1, the interaction model does not reveal

a new relationship, but instead highlights the fact that this gene-property relationship, if real, is

potentially more complicated than would be assumed based on the class-conditional model

alone. Man1c1 is an enzyme involved in the maturation of N-linked oligosaccharides [24], and

is thus a plausible regulator of AHP amplitude, since N-linked glycosylation of voltage-gated

potassium channels or their auxiliary subunits is known to regulate both surface trafficking

and channel function [25,26]. The apparent class-specificity of this relationship could result

from class-specific co-expression of certain potassium channels or other enzymes involved in

glycan synthesis or maturation.

Results from the class-conditional model are more likely to validate using

independent methods

We next asked how the gene-property relationships from the class-independent and class-con-

ditional models, based on our analysis of the AIBS cortical cell types dataset, might generalize

to other datasets. We first compared the results reported here to those from our earlier Neu-

roElectro/NeuroExpresso (NE) literature-based dataset [16], after subsetting these data to

shown). Darkness of the bar represents the significance level of each group of genes. Venn diagrams to the left indicate the extent of overlap (pink; middle) between

the gene sets identified by the class-independent (gold; left) and class-conditional (teal; right) models, where the area of each segment is proportional to the

significant gene count at a threshold of FDR = 0.1. Venn diagrams for different properties are not to scale with one another. Percentages next to principal

components (PCs) indicate the percent variability explained by that component. See S2 Table for descriptions of electrophysiological and morphological properties

analyzed here, as well as gene counts for all properties. (B) Comparison of model-based slopes from the class-independent and class-conditional models. Each point

represents a single gene’s relationship with the electrophysiological property AHP amplitude and is colored according to whether the relationship is significant in

one or both models (at FDR = 0.1). Example genes in C-E are indicated. For clarity of visualization, only a random subset of genes (2% total) are shown to mitigate

over-plotting. Dashed line indicates identity. (C-E) Examples of genes showing significant associations with AHP amplitude that are class-driven (C; significant in

class-independent model only), non-class-driven (D; significant in class-conditional model only), or non-class-driven but significant by either model (E). Solid lines

indicate linear fits within excitatory or inhibitory cell classes only and dashed line indicates a linear fit including all cell types. Gene expression is quantified as

counts per million (CPM).

https://doi.org/10.1371/journal.pcbi.1007113.g002
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Fig 3. Identification of divergent gene-property relationships in excitatory versus inhibitory cell classes (A) Number of genes showing a significant interaction

effect between gene and class for each property. Darkness of the bar represents the significance level of each group of genes. Venn diagrams to the left indicate the

extent of overlap (pink; middle) between the class-conditional (teal; left) and interaction (purple; right) models, where the area of each segment is proportional to the
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include only non-projecting cell types (reflecting 19 cell types in total sampled throughout the

brain, described in detail in the Methods). We chose to use non-projecting cell types in the NE

dataset, as these were recently described by a mouse brain-wide transcriptomic survey as cor-

responding to a single broad cell class [18]. To this end, we used the same linear model-based

approach as in the AIBS dataset to assess the relationships between between genes and

electrophysiological properties in the NE dataset. This approach was identical to the class-

independent model, except that the dataset contained only one cell class. Next, for gene-prop-

erty relationships from both the class-independent and class-conditional models, we assessed

their aggregate consistency with those from the NE dataset. Here, we defined “consistency” for

a given model (i.e. class-independent or class-conditional) and property as the Spearman cor-

relation between gene-property slopes calculated from the AIBS dataset with the slopes for the

same set of gene-property relationships in the NE dataset (illustrated in Fig 4B).

In Fig 4A we show a comparison of the gene/electrophysiology slopes from the AIBS and

NE datasets [16]. We found that for seven out of the eleven electrophysiological properties

shared between the datasets, both AIBS dataset-based statistical models were consistent with

analogous gene-property relationships based on the NE dataset (95% confidence intervals

above zero based on 100 bootstrap resamples). For six out of the eleven features, we found that

the class-conditional model was considerably more consistent (p< 0.05 based 100 bootstrap

resamples) than the class-independent model with relationships in the NE dataset. For only

one feature, membrane time constant (tau), was the class-independent model more consistent

(p< 0.05) than the class-conditional with the NE dataset. Fig 4B shows an example of how

consistency was measured for AP half-width. The relationship between Atp2a2 expression and

AP half-width is shown in Fig 4C and 4D as an example of a gene-property relationship which

is consistent between the NE (r = -0.742) and AIBS datasets for the class-conditional (beta =

-0.099 ± 0.024; q = 0.002, where q indicates the lowest FDR threshold at which the gene would

be considered significant, also sometimes called the adjusted p-value) but not the class-inde-

pendent (beta = -0.024 ± 0.034; q = 0.62) model.

Assessing within-cell type correlations using PatchSeq datasets

We next wondered whether these between-cell type gene-property relationships might be pre-

dictive of cell-to-cell heterogeneity within a given cell type. We reasoned that the recently

developed PatchSeq methodology, allowing morphological, electrophysiological, and tran-

scriptomic characterization from the same single cell, presents a unique opportunity to test

this possibility [12]. While these data at present are limited by relatively modest sample sizes

and technical factors such as inefficient mRNA capture and potential off-target cellular mRNA

contamination [27], we nonetheless sought to use these data to assess the nature of within-cell

type gene-property relationships.

To this end, we performed an integrated analysis of 5 PatchSeq datasets, with each dataset

characterizing transcriptomic and electrophysiological diversity of mouse forebrain inhibitory

cells from the neocortex, hippocampus, and striatum (Table 1). We chose to focus on

significant gene count at a threshold of FDR = 0.1. Venn diagrams for different properties are not to scale with one another. Percentages next to principal components

(PCs) indicate the percentage of variability explained by that component. (B-C) Slope values within excitatory cell types (x axis) plotted against the slope values for the

same set of genes in inhibitory cell types (y axis). Each point represents a single gene’s relationship to the morphological property maximum branch order (B) or

electrophysiological property AHP amplitude (C), and is colored according to its significance in one or both models (see inset legend). Example gene-property

relationships highlighted in D-E are marked in panel C. For clarity of visualization, only a random 2% subset of the total number of genes are plotted. Dashed lines

indicate positive and negative unity lines. (D) Example of a gene with a significant interaction term which is not significant in the class-conditional model. For D and

E, solid lines indicate linear fits including only excitatory or only inhibitory cell types, and dashed line indicates a linear fit including all cell types. (E) Example of a

gene which is significant in both the class-conditional and interaction models.

https://doi.org/10.1371/journal.pcbi.1007113.g003
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Fig 4. Modeling gene/electrophysiology relationships using the class-conditional model is more predictive than the class-independent

model of model slopes in an independent dataset containing non-projecting cell types only (A) Aggregate gene-property relationship

consistency between AIBS and NeuroExpresso/NeuroElectro (NE) datasets. Error bars indicate a 95% confidence interval, and asterisk indicates a

significant (p< 0.05) difference in the consistency metric between the class-independent and class-conditional models, calculated using 100

bootstrap resamples of the original values (indicated only for properties where both values are positive). (B) Direct comparison of gene-property

relationships between the AIBS and NE datasets. Each point represents the relationship between a single gene and the property AP half-width.

The model slope from the AIBS dataset is plotted on the x axis (with the class-independent model (ind) slopes in gold, and the class-conditional

model (cond) slopes in teal), and that for the same set of genes in the NE dataset on the y axis. For clarity of visualization only 10% of the total

number of genes are plotted. Lines indicate a linear fit for each set of points. The correlation within each set of points is used as a measure of

cross-dataset consistency (plotted for all properties in panel A). (C-D) Example of a gene showing consistent results between the NE dataset and
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inhibitory neurons here as these were present in each of the PatchSeq datasets. Our analysis

includes one novel dataset of 19 Pvalb-Cre positive interneurons recorded in region CA1 of

the mouse hippocampus, reported here for the first time. Cells in this dataset (referred to as

the Bengtsson Gonzales dataset), were characterized as described in [15].

To jointly analyze these PatchSeq datasets, we first mapped PatchSeq sampled cells to the

subclass level (i.e., major cell type level; e.g., Pvalb, Sst, Vip; defined in S4 Table) as defined by

as defined by cellular dissociation-based single-cell RNAseq reference atlases from the cortex

and striatum (see Methods) [15,20]. Next, for each major cell type, we identified genes that are

highly variable in their expression levels within cells of the same type. We reasoned that these

highly-variable genes might be those most likely to drive or appear correlated with

electrophysiological heterogeneity within each cell type. Lastly, we performed a joint analysis

across PatchSeq datasets to assess the strength of gene-property relationships within cell types

where the gene was highly variable. Here, we used a mixed-effects regression model, with gene

expression as a fixed effect and dataset and cell type as random effects and with cells weighted

by their estimated transcriptome quality (see Methods).

Despite the limitations of the PatchSeq data, we found a small number of genes whose

expression levels were significantly associated with cell-to-cell electrophysiological heterogene-

ity within cell types (FDR = 0.1; Fig 5A). For example, we found that expression of Kcna1,

which encodes the potassium channel Kv1.1, was inversely correlated with AP half-width (Fig

5B; BetaPatchSeq = -0.0484 ± 0.0106, qPatchSeq = 0.0683) within hippocampal Pvalb and striatum

Pthlh cells (the only cell types in which the variability in Kcna1 expression met our threshold

for analysis). Importantly, there was also a significant relationship with the same directionality

for Kcna1 and AP half-width in the AIBS dataset (Betaclass-conditional = -0.048 ± 0.011, qclass-con-

ditional = 0.001). Moreover, the relationship between Kcna1/Kv1.1 expression and action poten-

tial width has been experimentally reported previously [28].

As another example, we saw an inverse correlation between Fxyd6 expression and AHP

amplitude, based on cortical Lamp5- and striatum Th- cells (Fig 5C, BetaPatchSeq =

-0.695 ± 0.118, qPatchSeq = 0.00841). We also saw a similar relationship in the AIBS dataset

(Betaclass-conditional = -0.021 ± 0.003, qclass-conditional = 0.00001). Intriguingly, Fxyd6 encodes

the AIBS dataset using the class-conditional model, but not the class-independent model. C shows the relationship within the AIBS dataset, and

D shows the same gene and property in the NE dataset. Solid lines indicate a linear fit including only types belonging to one cell class, and dashed

line indicates a linear fit including all cell types.

https://doi.org/10.1371/journal.pcbi.1007113.g004

Table 1. Description of PatchSeq datasets re-analyzed in this study. Depending on the dataset, RNA amplification was performed using variations on single-cell-tagged

reverse transcription (STRT) [31] or Switching Mechanism At the end of the 5’-end of the RNA Transcript (SMART) [32]. The Bengtsson Gonzales dataset reflects a novel

dataset reported here for the first time.

Dataset Description RNA amplification Number of

cells

Accession

Cadwell [12] Cortical layer 1 interneurons Smart-seq2 57 E-MTAB-

4092

Fuzik [13] Cortical layer 1/2 interneurons and pyramidal cells STRT-C1 (with unique molecule

identifiers)

80 GSE70844

Földy [14] Hippocampal CA1 and subiculum pyramidal cells and regular- and fast-

spiking interneurons

SMARTer 93 GSE75386

Muñoz-Manchado

[15]

Striatum interneurons STRT-C1 (with unique molecule

identifiers)

99 GSE119248

Bengtsson Gonzales Hippocampal CA1 Pvalb-Cre interneurons STRT-C1 (with unique molecule

identifiers)

19 GSE130950

https://doi.org/10.1371/journal.pcbi.1007113.t001
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phosphohippolin, a regulator of Na+/K+ ATPase activity [29] and is thus plausibly involved in

the AHP and action potential repolarization. Intriguingly, in a separate single-cell RNA-seq

study of CA1 interneurons, Fxyd6 was found to be more highly expressed cells known to spike

more slowly [30].

In general, we found that when a gene-property relationship was statistically significant in

both the PatchSeq and AIBS class-conditional analyses (at FDR = 0.1), this relationship was

usually in the same direction in both analyses (Fig 5A; 10 out of 13 gene-property relationships

total). Results were similar in the class-independent model, except with a smaller set of gene/

ephys relationships matching between both (7 out of 9 relationships were in a consistent direc-

tion). All of the genes which were consistent between the class-independent and PatchSeq

analyses were also consistent in the class-conditional model. While our analyses of these Patch-

Seq datasets should be considered preliminary (pending the availability of larger and higher-

quality datasets), we find the correspondence with our earlier analysis encouraging. Namely,

this analysis suggests that some of the same genes that appear to drive large differences across

cortical cell types might also be defining more subtle within-cell type heterogeneity.

The expected relationship between voltage-gated potassium channels and

AHP amplitude is apparent only after accounting for cell class

We next asked whether we see a relationship between an electrophysiological feature and a cat-

egory of genes which are known regulators of that feature. Voltage-gated potassium channels

are known to be involved in producing the after-hyperpolarization following an action poten-

tial [33,34] (AHP amplitude; illustrated by the dashed arrow in Fig 6A). We thus hypothesized

that for many of these genes, higher expression levels would be associated with larger AHP

amplitudes (although not all voltage-gated potassium channels necessarily contribute directly

to AHP amplitude). We further hypothesized that this relationship would be more apparent

after accounting for cell class, in part because AHP amplitudes differ considerably between

excitatory and inhibitory cell classes (Fig 6B–6D). Indeed, our previous work found a spurious

negative correlation between expression of the Kcnb1 gene and AHP amplitude which resulted

from higher expression of Kcnb1 in excitatory cell types compared to others [16].

We evaluated model slopes between each of 29 voltage-gated potassium channel genes [35]

and AHP amplitude in the AIBS dataset for each of the class-independent and class-condi-

tional statistical models (examples shown in Fig 6B–6D and summary in Fig 6E).

Examples of voltage-gated potassium channel genes associated with AHP amplitude include

Kcnh3 (Fig 6B) in a class-driven and Kcnh7 and Kcnc2 in a non-class-driven manner (Fig 6C

and 6D). In total, the class-independent model identified 17 significant genes (at a stringent

threshold of FDR = 0.01), with 8 of these genes having positive slopes and 9 negative. In contrast,

there were 13 genes that were significantly associated with AHP amplitude in the class-condi-

tional model at the same statistical threshold, and 11 of these genes had slopes in the positive

direction. Thus the results obtained using the class-conditional model are consistent with our a
priori hypothesis that expression levels of voltage-gated potassium channel genes are more likely

to show positive than negative relationships with AHP amplitude, whereas the results obtained

using the class-independent approach do not appear to support this conclusion.

Evidence of causal support for specific gene-property relationships

To further validate the gene-property correlations found in the AIBS dataset, we asked whether

any of the same relationships showed direct support in the literature. In some cases we found

that previously published work showed that manipulation of the gene of interest caused

electrophysiological effects in line with what would be predicted by our analysis.
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Kcna1, a voltage-gated potassium channel, is significantly related to E_PC1 along with a

number of electrophysiological features in our analysis, including maximum firing frequency

(q = 0.0002; Fig 7A). This finding of a relationship between Kcna1 expression and maximum

firing frequency is consistent with a published study on the same gene. Kopp-Scheinpflug et al.

Fig 5. Assessing gene-property relationships within cell subclasses using PatchSeq (A) Number of genes associated

with each electrophysiological property based on a joint cross-laboratory analysis of 5 PatchSeq datasets. Genes shown

are significant at FDR = 0.1, based on a mixed-effects regression model, treating gene expression as a fixed effect and

dataset identity and cell type as random effects. Bar color denotes overlap of PatchSeq based gene-property

relationships with analogous relationships from the AIBS class-conditional model analysis. Note that analysis of gene-

property relationships in the PatchSeq datasets are independent from those in the AIBS cell types analysis. (B, C)

Examples of genes showing significant associations with electrophysiological features in the class-conditional analysis

of the AIBS dataset (left-most panel) and the mixed-effects analysis of the PatchSeq datasets (other panels). Dataset

name and cell type is shown in the subpanel title and solid lines indicate linear fits within cell classes (AIBS) or fits

within each PatchSeq dataset and cell type, after weighting cells by transcriptome-quality (see Methods). Based on

differences in mRNA quantification, x-axis units for AIBS, Cadwell, and Földy datasets are log2 (CPM+1), and for

Bengtsson Gonzales, Muñoz, and Fuzik datasets are log2 normalized molecule counts (normalized to 2000 unique

molecules per cell).

https://doi.org/10.1371/journal.pcbi.1007113.g005
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(2003) examined mice with a knockout of the Kcna1 gene and found that firing rates in audi-

tory neurons were reduced in the knockouts only at high intensities of an auditory stimulus,

and that this difference was more robust in the inhibitory neurons of the medial nucleus of the

trapezoid body (MNTB) compared to excitatory ventral cochlear nucleus (VCN) bushy cells

[7].

Expression of Scn1b, a voltage-gated sodium channel subunit, shows a negative relationship

with action potential half-width in the class-conditional model (q = 0.0008; Fig 7B), and is also

related to a number of other properties including E_PC1 and E_PC2. This relationship is

obscured in the class-independent model due to overall longer half-widths in excitatory cell

types. Consistent with the idea that Scn1b might function to shorten AP half-widths, layer 5

cortical pyramidal neurons from mice lacking the Scn1b gene show longer half-widths than

controls, due to changes in protein stability of voltage-gated potassium channels [36].

Interestingly, the Lrrk2 gene, mutations in which contribute to Parkinson’s disease [37], is

positively correlated with neurite branchiness (number of branch points per μm) in the class-

conditional model, but not the class-independent model (q = 0.049; Fig 7C). Lrrk2 has been

shown by several studies to regulate neurite outgrowth and branching in cultures [38–41].

We do find some examples in which the reported direction of a gene-property relationship

in the literature is inconsistent with the direction predicted based on our class-conditional

model. For example, we found a positive correlation between expression of the potassium

channel subunit gene Kcnab2 and maximum firing frequency (q = 1.8 � 10−5; Fig 7D). In con-

trast to this, mice with a knockout of the same gene exhibit hyperexcitability in neurons of the

amygdala [42]. This discrepancy could reflect a role of Kcnab2 in limiting spiking within fast-

Fig 6. Accounting for cell class changes the interpretation of the relationship between potassium channel expression and after-hyperpolarization

amplitude (A) Schematic view of an action potential trace, with the dashed line representing the AHP amplitude value. (B-D) Examples of voltage-

gated potassium channel genes significantly associated with AHP amplitude in the class-independent model (B), the class-conditional model (C), or

both (D) at a threshold of FDR = 0.01. Solid lines indicate a linear fit including only excitatory or only inhibitory cell types, and dashed line indicates a

linear fit including all cell types. (E) Comparison of class-independent and class-conditional approaches for detecting associations between voltage-

gated potassium channels and AHP amplitude. Each point indicates a single gene, and x and y axes are the slopes from the class-independent and class-

conditional models, respectively. Labeled points are the example genes shown in B-D. Dashed line indicates identity.

https://doi.org/10.1371/journal.pcbi.1007113.g006
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Fig 7. Examples of experimentally supported or otherwise potentially interesting genes (A-D) Examples of genes showing statistically-significant gene-

property relationships in the class-conditional model (at FDR = 0.1) that also have experimental support for their causal regulation of the property in the

literature. Solid lines indicate linear fits including only excitatory or only inhibitory cell types, and dashed line indicates a linear fit including all cell types (also

applies to F-I). (E) Heatmap showing a subset of the most significant genes for each property in the class-conditional model, sorted along both axes by

similarity. Dendrogram represents cross-property similarity between the significance levels for the genes shown here; properties appearing closely linked in the
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spiking cells. In other words, perhaps certain cell types express high levels of Kcnab2 because

they are fast-spiking, rather than the other way around. Since our analysis is by definition cor-

relational, we are unable to distinguish the direction of causation, if any, between gene expres-

sion and neuronal properties.

Not only do the genes discussed here provide important validation for our method, but the

existence of a smooth correlation between these genes and their associated properties is poten-

tially interesting. The previous studies cited above provide causal evidence for gene-property

relationships via gain- and loss-of-function approaches, which are likely more reminiscent of

pathological states than of natural variability between cell types. Our results suggest that these

genes could additionally play an instructive role in setting the precise levels of electrophysio-

logical or morphological properties between cell types under normal physiological conditions.

In addition, since morphological features are in part established due to developmental gene

expression patterns [43], such features may show poor correlations with mRNA sampled from

adult cells. Of course, the correspondence between the causal effects of gene expression as

measured by loss-of-function studies may not always correspond neatly to the correlational

relationship observed between naturally-occurring cell types, as illustrated above for Kcnab2.

Novel gene-property relationships

In addition to those discussed above, we identified many genes whose function in regulating

neuronal electrophysiology or morphology is less well characterized. These present testable

hypotheses for future study. In Table 2, we list some of the top significant genes from the class-

conditional model for each property, chosen based on significance levels and/or previous stud-

ies into their cellular function (also shown in Fig 7E).

One notable feature from this analysis is that many of these genes, like Kcna1 and Scn1b dis-

cussed above, are significantly associated with several or many different properties. For exam-

ple, maximum firing frequency, input-output curve slope, and average interspike interval show

a similar pattern in the strength of their association with this set of genes. These features all mea-

sure similar aspects of neuronal function (broadly speaking, whether a neuron tends to fire rap-

idly or not), so it would be surprising if they did not show correlations with the same genes.

Two more properties that closely share associated genes are AP half-width and AHP amplitude,

which measure distinct aspects of the action potential waveform, but might share genetic under-

pinnings related to rapid channel opening and closing [44]. The genes most strongly associated

with various electrophysiological properties tend not to show significant associations with the

morphological properties of branchiness and max branch order. However, some of the genes

associated with these morphological properties do show some (generally weak) associations

with some electrophysiological properties (for example Mgat5 and Ifitm10).

Several of the genes for which we were unable to find conclusive loss-of-function studies in

the current literature (Fig 7F–7I) seem particularly intriguing, given what is known about their

cellular function. In the discussion, we briefly speculate about how these genes might function

as regulators of the properties with which they are associated in our analysis. However, further

study will be needed to determine what role, if any, these genes play in regulating electrophysi-

ological or morphological properties.

dendrogram are those which are strongly associated with the same genes in our analysis. For each property, up to 3 top genes were chosen that were significant

(at FDR = 0.1) in the class-conditional model, and also non-significant (at FDR = 0.2) in both the class-independent and interaction models for the same

property. In addition, genes marked by asterisks are shown here based on their known function based on the literature in addition to at least one significant

result in the class-conditional model, shown as scatterplots in A-D and F-I. Light grey indicates a non-significant result in the class-conditional model (at

FDR = 0.1). (F-I) Examples of under-studied but plausibly causal genes showing significant results in the class-conditional model (see text).

https://doi.org/10.1371/journal.pcbi.1007113.g007
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Table 2. Top correlated genes for each electrophysiological property. Genes marked with asterisks are significantly associated (at FDR = 0.1) with the indicated prop-

erty in the class-conditional model, and selected based on their reported function in the literature. All other genes are significant (at FDR = 0.1) in the class-conditional

model and non-significant (at FDR = 0.2) in both the class-independent and interaction models for the indicated property. “Direction” indicates the direction of the model

slope; for example, high expression of Daam1 in a cell type predicts a low value of AP half-width and vice versa.

Property Gene Gene Name q Direction

Electrophysiology PC3 (9%) Rasgef1b RasGEF domain family, member 1B 0.029 +

Electrophysiology PC3 (9%) Gpr88 G-protein coupled receptor 88 0.036 +

Electrophysiology PC3 (9%) Cpne4 copine IV 0.041 +

Electrophysiology PC2

(18%)

Arid5a AT rich interactive domain 5A (MRF1-like) 0.00088 +

Electrophysiology PC2

(18%)

Basp1 brain abundant, membrane attached signal protein 1 0.0026 -

Electrophysiology PC2

(18%)

Pik3r1 phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85 alpha) 0.0026 -

Electrophysiology PC1

(47%)

Igf1 insulin-like growth factor 1 9.4 � 10−11 -

Electrophysiology PC1

(47%)

Itpr1 inositol 1,4,5-trisphosphate receptor 1 1.3 � 10−10 +

Electrophysiology PC1

(47%)

Arhgef2 rho/rac guanine nucleotide exchange factor (GEF) 2 1.4 � 10−8 +

Rheobase Dlx1 distal-less homeobox 1 9.5 � 10−7 -

Rheobase Dlx2 distal-less homeobox 2 0.00052 -

Rheobase Slc6a1 solute carrier family 6 (neurotransmitter transporter, GABA), member 1 0.00085 +

AP Threshold Arid5a AT rich interactive domain 5A (MRF1-like) 0.013 +

AP Threshold Kcnf1 potassium voltage-gated channel, subfamily F, member 1 0.013 -

AP Threshold Tuba8 tubulin, alpha 8 0.019 +

AP Half-width Krt1 keratin 1 2.4 � 10−7 +

AP Half-width Necab2 N-terminal EF-hand calcium binding protein 2 1.6 � 10−6 +

AP Half-width Ephx4 epoxide hydrolase 4 2.2 � 10−6 -

AP Amplitude Itpr1 inositol 1,4,5-trisphosphate receptor 1 2.9 � 10−6 -

AP Amplitude Rac3 RAS-related C3 botulinum substrate 3 4.5 � 10−5 +

AP Amplitude Acap2 ArfGAP with coiled-coil, ankyrin repeat and PH domains 2 5.3 � 10−5 -

AHP Amplitude Igf1 insulin-like growth factor 1 6.7 � 10−9 -

AHP Amplitude Prox1 prospero homeobox 1 4.8 � 10−7 -

AHP Amplitude Sema3c sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin)

3C

6.1 � 10−7 -

Capacitance AW551984 expressed sequence AW551984 4.6 � 10−7 +

Capacitance Lrrc4c leucine rich repeat containing 4C 0.00000049 -

Capacitance Oxtr oxytocin receptor 0.00000081 +

Time Constant Tau Celf6 CUGBP, Elav-like family member 6 1.2 � 10−6 +

Time Constant Tau Prr5 proline rich 5 (renal) 3.7 � 10−6 +

Time Constant Tau Fam81a family with sequence similarity 81, member A 4.3 � 10−6 -

Input Resistance Ctxn1 cortexin 1 7.7 � 10−6 +

Input Resistance Enc1 ectodermal-neural cortex 1 7.7 � 10−5 +

Input Resistance A330050F15Rik RIKEN cDNA A330050F15 gene 0.00025 -

Resting Membrane Potential Egfl7 EGF-like domain 7 0.012 +

Resting Membrane Potential Ehbp1l1 EH domain binding protein 1-like 1 0.012 +

Resting Membrane Potential Tagln3 transgelin 3 0.013 +

Sag Tuba8 tubulin, alpha 8 0.064 -

Sag Kcnf1 potassium voltage-gated channel, subfamily F, member 1 0.064 +

Average Interspike Interval Igf1 insulin-like growth factor 1 2.8 � 10−7 +

Average Interspike Interval Arhgef2 rho/rac guanine nucleotide exchange factor (GEF) 2 3.97 � 10−6 -

(Continued)
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Discussion

In this work we presented a series of correlations between gene expression and electrophysio-

logical or morphological properties, each representing a testable hypothesis for future studies.

Our key insight here is to introduce cell class (i.e., excitatory and inhibitory cell type identity)

as an indicator variable when modeling the relationship between genes and properties. This

has the advantage of 1) avoiding the identification of class-driven correlations, 2) helping iden-

tify a subset of non-class-driven correlations that might have been obscured by overall differ-

ences between excitatory and inhibitory cell types, and 3) revealing instances where gene-

property relationships might be different for excitatory versus inhibitory cell types.

Although the idea that non-class-driven correlations would have a higher chance of reflect-

ing a meaningful relationship between a specific gene and property compared to class-driven

ones seems straightforward, we evaluated this prediction through a number of specific empiri-

cal tests. First, we found better correspondence between gene-property relationships from the

class-conditional model with those derived from the non-projecting cell type subset of our

prior NeuroExpresso/NeuroElectro dataset. Second, we observed consistency between the

class-conditional model and gene-property relationships derived from five independently-col-

lected PatchSeq datasets, suggesting that the relationships described here might be predictive

of gene-property relationships within narrowly-defined cell types, consistent with the hypothe-

sis presented in Fig 1B–1D. Third, our analysis of the relationship between action potential

after-hyperpolarization (AHP) amplitude and voltage-gated potassium channel genes suggests

that genes and electrophysiological features showing a significant result in the class-condi-

tional model are more likely to reflect known functions of those genes.

Table 2. (Continued)

Property Gene Gene Name q Direction

Average Interspike Interval Ddn dendrin 1.1 � 10−5 -

Max Firing Frequency Igf1 insulin-like growth factor 1 4.6 � 10−12 -

Max Firing Frequency Itpr1 inositol 1,4,5-trisphosphate receptor 1 1.9 � 10−9 +

Max Firing Frequency Arhgef2 rho/rac guanine nucleotide exchange factor (GEF) 2 0.000000017 +

Input-Output Curve Slope Igf1 insulin-like growth factor 1 1.6 � 10−13 -

Input-Output Curve Slope Itpr1 inositol 1,4,5-trisphosphate receptor 1 3.9 � 10−10 +

Input-Output Curve Slope Sytl2 synaptotagmin-like 2 0.000000034 +

Adaptation Ratio Sox2ot SOX2 overlapping transcript (non-protein coding) 0.00021 -

Adaptation Ratio Igf1 insulin-like growth factor 1 0.00023 -

Adaptation Ratio Dlx1 distal-less homeobox 1 0.0003 -

Branchiness Mthfd2l methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like 0.023 -

Branchiness Ifitm10 interferon induced transmembrane protein 10 0.024 -

Branchiness Lamp5 lysosomal-associated membrane protein family, member 5 0.024 +

Max Branch Order Mgat5 mannoside acetylglucosaminyltransferase 5 0.017 -

Max Firing Frequency Kcna1� potassium voltage-gated channel, shaker-related subfamily, member 1 0.00018 +

AP Half-width Scn1b� sodium channel, voltage-gated, type I, beta 0.00079 -

Branchiness Lrrk2� leucine-rich repeat kinase 2 0.048 +

Max Firing Frequency Kcnab2� potassium voltage-gated channel, shaker-related subfamily, beta member 2 1.8 � 10−5 +

AHP Amplitude Rab33a� RAB33A, member RAS oncogene family 0.004 +

AHP Amplitude Med23� mediator complex subunit 23 0.057 +

AP Half-width Nphp4� nephronophthisis 4 (juvenile) homolog (human) 0.036 -

AP Half-width Daam1� dishevelled associated activator of morphogenesis 1 0.096 -

https://doi.org/10.1371/journal.pcbi.1007113.t002
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The PatchSeq and voltage-gated potassium channel analyses highlighted distinct advantages

of the class-conditional model. The class-conditional model revealed higher overlap between

the PatchSeq and AIBS datasets, compared to the class-independent model, where most shared

relationships (for both models) were in a consistent direction. This indicates that the class-

conditional model might be more sensitive to certain relationships, and our analysis of the

PatchSeq datasets argues in favor of the biological relevance of these same relationships. In

contrast, the main advantage of the class-conditional model in the voltage-gated potassium

channel analysis was primarily to avoid class-driven correlations. In other words, the class-

conditional model exhibits increased specificity, an important factor when considering that

these results might be used to help prioritize genes for experimental study.

In this work, we have operationalized the concepts of class-driven and non-class-driven

correlations as those which produce a significant result in the class-independent model only or

in the class-conditional model, respectively. This is a simplification, since both effects can exist

simultaneously to differing degrees (for example, Daam1 and AP half-width, Fig 7I) and our

ability to distinguish them with confidence is limited by the number and composition of cell

types in the dataset. It should be emphasized that, since these categories are defined based on

significance thresholds, the distinction between, for example, a non-class-driven relationship

which is obscured by class and one which is significant in either model is not meaningful in a

statistical sense and should not be interpreted as being directly informative about the underly-

ing biology. Bearing this in mind, the distinction may be useful in practice for prioritizing

genes for further examination. Thus, we have shown that thresholding the set of all genes

based on one model or the other results in the identification of a distinct but overlapping set of

genes, meaning that the choice of model is consequential.

A novel feature of our analysis is the investigation of gene-property relationships that are diver-

gent within excitatory and inhibitory cell types. Using the interaction model, we found a small

subset of genes showing significant associations in the class-conditional model that also have a sig-

nificant interaction term, indicating that their relationship with the property in question is depen-

dent on cell class. We also found another small set of gene-property relationships that have a

significant term in the interaction but not the class-conditional model. In contrast to all other

properties analyzed, for the properties sag and maximum branch order, the interaction model

identified many more genes compared to the class-conditional model. One possible explanation is

that for both of these features, the absolute slopes in excitatory cells tend to be higher than those

in inhibitory cells (shown in Fig 3B for maximum branch order), suggesting either that these fea-

tures might be under stronger genetic control in excitatory types compared to inhibitory, or that

the genes associated with them in excitatory cell types are more readily identified by our analysis.

Since this dataset contains more inhibitory than excitatory types, an inhibitory-specific relation-

ship may be identified in the class-conditional model by virtue of the number of cell types, but an

excitatory-specific relationship would likely be “diluted” by the larger number of inhibitory cell

types not showing the relationship. It is also possible that, in the case of maximum branch order,

this effect is partially explained by methodological differences in the dataset, since inhibitory but

not excitatory morphological reconstructions contain axons in addition to dendrites [1].

Novel putative gene/electrophysiology relationships

Our primary motivation for comparing gene expression to neuronal properties is to identify

candidate genes that might influence those properties. While directly testing the functional rel-

evance of specific gene-property predictions is beyond the scope of this work, we have

highlighted below some of our potentially novel findings that might be of greatest interest for

further follow up.
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Rab33a expression is positively correlated in the AIBS dataset with AHP amplitude with a

significant interaction (Fig 7F), and also shows significant positive correlations with E_PC1,

input-output curve slope, maximum firing frequency, and rheobase, and significant negative

correlations with AP half-width and average interstimulus interval (ISI). Rab33a is a small

GTPase thought to be involved in regulation of vesicle trafficking, likely at stages prior to

plasma membrane docking [45,46]. One hypothesis for how Rab33a could regulate AHP

amplitude and/or AP half-width is that Rab33a might facilitate the transport and/or insertion

of vesicles containing voltage-gated potassium channels, or regulators thereof, into the axonal

membrane, leading to narrower action potentials and larger AHPs. Our analysis of the AIBS

data suggests that any effects of Rab33a expression on AHP amplitude would be present only

in inhibitory cell types.

Med23 (also known as Crsp3), a subunit of the mediator complex which acts as a transcrip-

tional co-activator for RNA polymerase II [47,48], shows a positive correlation with AHP

amplitude (Fig 7G). Although the complete set of roles played by Med23 are incompletely

understood, it has been shown to modulate signaling by the BMP, Ras/ELK1, and RhoA/MAL

pathways [49,50]. Thus it has the potential to regulate a variety of genes, including potentially

voltage-gated potassium channels or interacting proteins thereof. Given Med23’s role in regu-

lating transcription through a variety of signaling pathways, it is notable that our analysis

showed only one feature with which it was convincingly associated. It is also interesting to

note that mutations in Med23 have previously been associated with intellectual disability, in

some cases with a predisposition to seizures [51,52].

Expression of Nphp4 encoding the cytoskeletal-associated protein nephrocystin-4 was nega-

tively correlated with AP half-width (Fig 7H) as well as with resting membrane potential and

maximum firing frequency. Although Nphp4 is primarily understood for its function in the

kidney, Nphp4 mutations often cause co-morbid deficits in the nervous system [53]. Further-

more, Nphp4 has been shown to regulate actin networks via its interaction with the polarity

protein Inturned and with the formin Daam1 [54]. Daam1 is also negatively correlated with

AP half-width (Fig 7I), and not significantly correlated with any other features. The actin net-

work in the axon forms a highly regular lattice structure which includes regularly interspersed

voltage-gated sodium channels [55]. A similar relationship between the actin network and

other voltage-gated ion channels has not been tested, but seems plausible. A potential mecha-

nism through which Nphp4 and Daam1 could regulate the shape of the action potential might

involve the organization of the axonal actin network structure, which might change the local

levels or relative positioning of voltage-gated ion channels, especially potassium channels, or

their regulators.

Limitations and caveats

We note that the gene-property relationships reported here are by definition correlational.

Demonstrating that any specific gene is involved in regulation of any electrophysiological or

morphological property is beyond the scope of this work. Our goal in this study was to gener-

ate testable hypotheses which, together with the current body of published literature, will help

guide future experiments. We expect that this list of putative relationships contains some pro-

portion of causal genes, and based on our analyses expect that this proportion may be higher

than that in our previous work [16], However, causality can only be determined for a given

gene and property using direct experimental methods.

Additionally, as in our prior work [16], we have limited our analyses to models in which

expression levels of a single gene predict downstream properties in an approximately linear

fashion, and in which that gene is regulated primarily at the transcriptional level. Some
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instances of mechanisms involving interactions between multiple genes, or those involving a

non-linear relationship between log-gene expression and an electrophysiological or morpho-

logical property, are likely to have been missed here. In addition, for mechanisms through

which electrophysiological or morphological properties are controlled at the translational or

post-translational level, our analysis is unlikely to provide insight into the gene whose product

directly controls the property. However, this analysis has the power to identify transcripts

whose products are involved in the translation, modification, or trafficking of proteins which

in turn regulate electrophysiology or morphology.

Furthermore, the generalizability of the gene-property relationships reported here might be

limited by the fact that the AIBS dataset only reflects cells sampled from the adult mouse pri-

mary visual cortex. Therefore, the relevance of our results to other brain regions depends on

the assumption that many of the same genes regulate electrophysiological or morphological

properties in different cell types. This assumption of generalizability across brain areas appears

to be appropriate in the case of Kcna1 and maximum firing frequency (Fig 7A and [7]). Addi-

tionally, this assumption is supported by our comparisons with the NeuroExpresso/NeuroE-

lectro dataset and PatchSeq datasets, both of which contain cells sampled from other brain

regions. However, some relationships may not generalize across brain regions due to differ-

ences in expression of other genes or the presence of post-translational modifications which

modify the consequences of expressing a given gene.

An additional caveat in the interpretation of our analysis is the likely existence of what we

might call “subclass-driven” relationships. In the same way that differences between excitatory

and inhibitory cell types can drive apparent correlations, we might expect that differences

between other categories, such as Sst and Pvalb interneurons, would have a similar effect.

However, we expect this effect to be small relative to the effects of excitatory/inhibitory cell

class (see Zeisel et al., 2018).

Another potential confounding factor in our reliance on the AIBS datasets is the uneven

balance in the count of inhibitory versus excitatory cell types. The practical consequence of

this is that the results from the class-conditional model are likely biased towards explaining

gene-property relationships within inhibitory cell types, and might be missing relationships

that are specific to excitatory cell types. Additionally, our validation of the class-conditional

model using the NeuroExpresso/NeuroElectro and PatchSeq datasets was limited to interneu-

rons for reasons of data availability. Even in the absence of a significant interaction term,

gene-property relationships may have stronger evidence in one cell class than the other. An

example of this is Lrrk2 and branchiness (Fig 7C), where despite very similar slopes between

classes and no statistical evidence of an interaction, the correlation among excitatory cells is

much tighter than that among inhibitory cells. For this reason, when prioritizing genes for

future study, we strongly recommend making a plot of gene, property, and cell class before

concluding that the overall result is likely to apply to both classes.

Future directions

The primary goal of this project was to produce a list of genes which we can recommend for

future study based on their correlations with electrophysiological and morphological proper-

ties in the AIBS dataset. We believe that some of the genes we identified are promising candi-

dates for future study.

In order to facilitate the use of our results by others in prioritizing genes for investigation,

we are providing a Jupyter Notebook file to facilitate exploration of the data (available at

https://github.com/PavlidisLab/transcriptomic_correlates). We have endeavored to make this

easy to use for researchers with little or no coding experience. The notebook runs using Binder
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[56], which allows for interactive exploration of the data within the user’s web browser without

the need for any software installation. We encourage those who are interested in a particular

electrophysiological or morphological property, gene, or set of genes, to explore the data and

to make their own judgements as to which genes are worth following through on experimen-

tally and which measures should be prioritized for recording. Our recommendation is to use

the gene list in conjunction with other sources of information about gene function, such as

Gene Ontology annotations [57,58] and previously published literature, in prioritizing genes

for future study.

Materials and methods

AIBS dataset

The RNA-seq dataset from [20] was accessed via the Allen Institute for Brain Science’s Cell

Types database (http://celltypes.brain-map.org/) on June 19, 2018, and contains 15,413 cells

isolated by microdissection and fluorescence-activated cell sorting from primary visual cortex

of mice expressing tdTomato under the control of various Cre driver lines. Electrophysiologi-

cal and morphological data were also accessed via the Allen Institute for Brain Science Cell

Types database on June 21, 2018. The dataset includes electrophysiological recordings from

1920 cells, of which 1815 are reporter-positive, from the visual cortex of mice also expressing

tdTomato driven by Cre, many of which are from the same lines represented in the RNA-seq

dataset. A subset of these cells (509, of which 471 are reporter-positive) have morphological

reconstruction data available. Cells in both the electrophysiology/morphology and RNA-seq

datasets are annotated according to the cortical layer they reside in (for electrophysiology/

morphology this is always a single layer, and for RNA-seq may be a single layer, subset of lay-

ers, or all layers), their Cre-line, and whether they express the reporter.

Filtering and matching datasets

Single-cell RNA-sequencing data, summarized as counts per million reads sequenced (CPM),

were log2-transformed prior to combining with electrophysiological and morphological data.

Cells from the RNA-seq dataset were excluded if they were annotated as having failed quality

control checks, if they were negative for expression of tdTomato, or if they were labeled as

non-neuronal or unclassified. Cells in the electrophysiology/morphology dataset were

excluded if they were negative for expression of tdTomato.

Electrophysiological and morphological measures

Electrophysiological data were downloaded from http://celltypes.brain-map.org/ and summa-

rized as described previously [16] except for the features response frequency versus stimulus

intensity (input-output) curve slope, average interstimulus interval (ISI), and sag, which we

did not use previously as they were not represented in the NE dataset. All three of these new

features were pre-computed in the downloaded dataset. In order to include only sag values

which could be meaningfully compared, any cells having a value of “vm-for-sag” (the mem-

brane voltage at which sag values were measured) not between -90 and -110 mV, or having a

resting membrane potential lower than -80 mV, were excluded from analyses of sag, but were

used for analyses of other electrophysiological features. The morphological features “average_-

bifurcation_angle_local”, “max_branch_order”, “soma_surface”, “total_length”, and “total_vo-

lume” were pre-computed in the dataset. We defined “branchiness” according to the pre-

computed feature “number_branches” divided by “total_length” as a measure of how often a

given cell produces branches per unit of neurite length. For the features input resistance, tau,
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capacitance, rheobase, maximum firing frequency, AHP amplitude, adaptation ratio, input-

output curve slope, latency, branchiness, max branch order, total length, and total volume, val-

ues were log10-transformed prior to use in order to mitigate underlying skew or non-normal-

ity in these data values. Scaling and principal component analysis (PCA) were performed

using scikit-learn [59] for both the electrophysiological and morphological property sets. The

first four principal components for each set of properties were extracted, and the first three

were used in downstream analyses.

Defining cell types

Cell types in the AIBS dataset were defined according to the Cre-line they were isolated from,

whether they were excitatory or inhibitory, and in most cases either a single cortical layer or a

range of layers. Where multiple layer dissections containing a sufficient number of cells were

present for a Cre-line in the RNAseq data, we decided on whether and how to combine layers

based on the following criteria: 1) producing the maximum number of cell types, 2) producing

the most homogenous cell types possible, and 3) producing cell types containing sufficiently

large numbers of cells in both the RNA-seq and electrophysiology or morphology datasets.

The first two criteria favored splitting layers more finely, whereas the last favored combining

layers. Only cell types where both datasets contained at least 6 cells (for the electrophysiology

analysis) or at least 3 cells (for the morphology analysis) were included in the final analysis.

Cell type definitions, along with the numbers of cells meeting the criteria for each type, are

shown in S1 Table.

Splitting cells from certain Cre-lines into multiple types based on their layer location and

their identity as excitatory or inhibitory allowed us to increase the number of types in our

analysis. Splitting cell types in this way makes biological sense in that cells isolated from the

same Cre-line but different layers often belong to different transcriptomically-defined cell

types. For example, cells isolated from from the upper cortical layers of Sst-Cre mice primarily

belong to the Sst Cbln4 type, whereas the majority of cells from lower layers belong to either

the Sst Myh8 or Sst Th types [19]. We have further justified this decision based on the fact

that there are frequently electrophysiological differences between cells from the same Cre-

line but from different layers (examples of three electrophysiological properties are shown in

S1 Fig).

After the two datasets were matched, the combined dataset contained 1359 cells belonging

to 48 types with electrophysiological data, 369 cells belonging to 43 types with morphological

data, and 4403 cells belonging to 50 types with RNA-seq data (S1 Table). The remaining cells

in the original datasets were those whose types could not be matched, either because the Cre-

line or layer they were isolated from was not sampled in the other datasets, or because the

number of cells belonging to that type was below our threshold for the number of cells per

type required.

Modeling the relationship between gene expression and electrophysiology/

morphology

Mean expression values for each gene and mean values for each electrophysiological or mor-

phological property were calculated for each cell type as defined above. Only genes which were

expressed at a level of 1 CPM or higher in at least ten cell types were included. Out of all genes

represented in the RNA-seq dataset, ~26% passed this thresholding step. For the remaining

genes, and for each electrophysiological or morphological property, we fit one or more linear

models relating the property (P) to expression of the gene (G) and/or cell class (C). Model 1

(P~G; “class-independent model”) attempted to explain the property based on only expression
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of the gene. For genes which were expressed in both excitatory and inhibitory types, we fit

three additional models. Model 2 (P~C) related property to cell class, model 3 related the

electrophysiological parameter to the gene and cell class (P~G+C; “class-conditional model”),

and model 4 related the electrophysiological parameter to gene, cell class, and an interaction

term between gene and cell class (P~G+C+G�C; “interaction model”). Models 2 and 3, as well

as models 3 and 4, were compared to one another using an ANOVA in order to determine p-

values for the class-conditional relationship between gene and property and for the gene-class

interaction, respectively. Additionally, we ran a version of model 1 in which we only consid-

ered inhibitory cell types, as an alternative method of accounting for cross-class differences.

Beta coefficients from models 1, 3, and 4 (separately for each cell type) were recorded, as well

as p-values from model 1 and from both ANOVAs. Prior to filtering for significantly-corre-

lated genes, false discovery rate (FDR) correction was performed using the Python package

statsmodels.stats.multitest.fdrcorrection, which calculates the FDR-adjusted p-value (q-value)

based on the Benjamini-Hochberg method [60] using the formula q = p � (i/m), followed by

taking the cumulative minimum starting from the highest p-value, where p is the uncorrected

p-value, i is the rank of that p-value (the most significant having a rank of 1), and m is the

number of comparisons. Model 2 was also used directly to test for significant differences

between cell classes in the value of each property.

Non-projecting class-specific correlations in the NeuroElectro/

NeuroExpresso dataset

The NeuroElectro and NeuroExpresso datasets were described previously [16,61–63]. In order

to limit the dataset to only non-projecting cell types [18], we chose cells whose major type was

annotated as anything other than “Pyramidal,” “Glutamatergic,” or “MSN”. Cells of the types

“Ctx Htr3a” and “Ctx Oxtr” were excluded due to their lower transcriptomic quality compared

to others in the dataset [63]. After subsetting, 19 cell types remained. Average values were cal-

culated for gene expression and electrophysiological properties across cells within a type, and

linear models relating the property to expression of the gene were calculated for each combina-

tion of gene and electrophysiological property.

In order to assess cross-dataset consistency, we calculated a Spearman correlation between

the beta coefficients (slopes) calculated based on the NE dataset versus those resulting from the

class-independent or class-conditional model in the AIBS. If there was a significant positive

correlation between the AIBS slope and the NE slope, we concluded that the results of the two

analyses were consistent (although this does not imply that they were highly consistent). For

those comparisons which were consistent, we considered one method to be “more consistent”

than the other if the AIBS/NE correlation value was higher (p< 0.05 based on 100 bootstrap

resamples) than that derived using the second method.

Data analysis and visualization

All statistical analyses and data visualization were performed using Jupyter Notebook [64] and

Python 2.7, and the following packages: scipy.stats, numpy [65], pandas [66], matplotlib [67],

mpl_toolkits, matplotlib_venn, seaborn, statsmodels.stats.multitest.fdrcorrection, mygene

[68,69], sklearn.decomposition.PCA [59], sklearn.preprocessing.StandardScaler.

Bootstrapped confidence intervals and significance between models for correlations

between the NE and AIBS datasets were calculated as follows: Starting with the list of paired

beta coefficients for a given electrophysiological feature and model (class-independent or

class-conditional), in which each pair represented a single gene and each value in that pair was

calculated using one of the two datasets, a new list of paired correlation values of the same
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length was calculated by resampling with replacement. A new Spearman correlation was then

calculated based on the resampled list. The resampling procedure was repeated 100 times, and

the upper and lower ends of the confidence intervals were calculated by finding the values at

the 2.5th and 97.5th percentiles. Significance was determined by finding the difference

between each pair of resampled correlations from the two models, and then again finding the

values at the 2.5th and 97.5th percentiles. If this interval did not contain zero, the two consis-

tency metrics were said to be significantly different from one another at p < 0.05.

Hierarchical clustering in Fig 7D was performed using the seaborn.clustermap tool using

the “average” (UPGMA) method and the euclidean metric [70,71].

Analysis of PatchSeq datasets

Overview of datasets used. Our analysis of the PatchSeq datasets builds on our analysis

described previously [27]. Here, we made use of four previously published PatchSeq datasets

that have characterized interneurons of the mouse forebrain, described in detail in Table 1.

(“Cadwell,” “Földy,” “Fuzik,” “Muñoz”; [12–15]). Our analysis also includes one novel dataset

of 19 Pvalb-Cre positive interneurons recorded in region CA1 of the mouse hippocampus,

reported here for the first time. Cells in this dataset (referred to as the Bengtsson Gonzales

dataset), were treated, processed, and analyzed using the same methodology as described in

[15].

Datasets were processed and normalized as described in [27] with a small number of excep-

tions. First, datasets employing unique molecule identifiers (UMIs), including the Fuzik,

Muñoz and Bengtsson Gonzales datasets, were normalized to a total library size of two thou-

sand UMIs per cell. Similarly, the Cadwell and Földy datasets were normalized to counts per

million (CPM), to be more directly comparable with how we have normalized the AIBS data-

sets here. Second, because PatchSeq sampled cells varied considerably in amount of mitochon-

drial and other non-coding mRNAs, when normalizing cells to the total count of reads

detected in each cell, we only quantified reads mapping to protein coding genes, as defined by

biomaRt [72]. Furthermore, we used biomaRt to help reconcile gene names between PatchSeq

datasets.

Assigning PatchSeq single cells to transcriptomically-defined cell types. We imple-

mented a nearest-centroid classifier to map PatchSeq transcriptomes to transcriptomically

defined clusters, as defined in the Tasic 2018 cortical and Muñoz-Manchado 2018 striatum ref-

erence atlases (e.g., Sst Cbln4 and Sst Myh8). Specifically, for each transcriptomically-defined

cluster in these reference datasets, we first calculated the mean expression level across all cells

assigned to the cluster. Next, using the two thousand most variable genes amongst inhibitory

cell types in the Tasic dataset (described in the section below), we calculated the Spearman cor-

relation of each PatchSeq cell to every cluster in the dissociated cell dataset and assigned cells

to the cluster that they were most correlated with (we compared all PatchSeq datasets except

the striatum Muñoz dataset to the Tasic cortical dataset). For cortical and hippocampal cell

types, to increase the number of cells defined per transcriptomic type, we utilized the “sub-

class” mappings of each transcriptomically defined cluster using mappings provided in the

Tasic 2018 dataset, mapping neurons to the Pvalb, Sst, Vip, Lamp5, and Sncg major interneu-

ron cell types. For example, a neuron mapped to the Sst Cbln4 would belong to the Sst sub-

class. To estimate transcriptome quality we used the “quality score” metric from our prior

analysis, using the full set of “on” and “off” marker genes.

Identifying highly variable genes per cell type. We used the ‘decomposeVar’ function

from the ‘scran’ R package [73] to identify highly variable genes in each subclass in the Tasic

2018 dataset and each cell type in the Muñoz-Manchado reference datasets.
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Mixed effects statistical model to identify gene-property relationships in PatchSeq cell

types. We used a mixed effects model of the following form with gene expression as a fixed

effect and dataset and cell type as random effects:

m1 ¼ ephys prop � Beta�log2ðnorm gene exprÞ þ ð1jdataset�cell typeÞ

where we used an anova to test for the significance of the beta associated with the gene expres-

sion term by comparison to an equivalent statistical model without the gene expression term.

We used the quality score as a weight in the regression analysis, and normalized these across

datasets. We used the ‘lmer’ function within the ‘lme4’ R package for fitting mixed-effects

models. We performed this analysis on the top 250-most variable genes per cell type and for

genes that were highly variable in at least one cell type across at least 2 (of the 5 total) PatchSeq

datasets used here. In addition, we did not use PatchSeq cell types where gene expression was

detected in fewer than 33% of cells and with fewer than 5 cells expressing the gene.

Supporting information

S1 Fig. Justification for cell type definitions in the AIBS dataset. Cell types defined based on

the same Cre line but different layers and/or excitatory/inhibitory identity show differences in

electrophysiological features. Data are represented as mean ± SEM.

(TIFF)

S2 Fig. Correspondence between principal components and raw neuronal properties. (A)

Spearman correlations between the first 3 principal components (PC) calculated based on the

set of electrophysiological properties (E_PC1-3) versus the properties themselves. (B) Percent

overlap between each electrophysiological property with each PC. In other words, out of the

genes which are significantly associated with the property at FDR = 0.1, the percentage which

are also significantly associated with the indicated PC at FDR = 0.1. Properties for which there

were no significant genes are not shown. (C) Vector map showing the strength of the associa-

tion between each electrophysiological property and the first two PCs. Points represent indi-

vidual cells types plotted according to their values of the first two PCs. (D-F) Same as A-C, but

for morphological properties.

(TIFF)

S3 Fig. Interactions do not result primarily from low gene expression in one cell class.

Between-class differences in gene expression plotted against differences in gene-property slope

in the interaction model for the property AHP amplitude. Each point represents a single gene;

grey points do not have a significant interaction and others are colored according to their sig-

nificance level in the interaction model. For clarity of visualization only a random subset of the

data (10% of the total number of genes) are plotted.

(TIFF)

S1 Table. Criteria used for defining cell types from the AIBS dataset according to the cre

line and layer they were isolated from as well as excitatory/inhibitory identity. For each cell

type, the number of cells meeting the criteria which were profiled for each of the three data

modalities are indicated. For electrophysiology and morphology, blank cells indicate that not

enough cells meeting the criteria were present in that dataset, so that cell type was not included

in the analysis.

(CSV)

S2 Table. Overlap between class-independent and class-conditional models. Comparison of

the number of genes showing a significant result (at FDR = 0.1) for each electrophysiological
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or morphological property in the class-independent or class-conditional model, and extent of

overlap between these two sets of genes. Definitions of electrophysiological properties are

reproduced from [16], except for input-output curve slope, latency, ISI CoV, average ISI, and

sag, which are described based on the Allen Cell Types database (http://celltypes.brain-map.

org/). Morphological features are described based on [1].

(CSV)

S3 Table. Overlap between class-conditional and interaction models. Comparison of the

number of genes showing a significant result (at FDR = 0.1) for each electrophysiological or

morphological property in the class-conditional or interaction model, and extent of overlap

between these two sets of genes.

(CSV)

S4 Table. Listing of subclasses defined by dissociated cell single-cell RNAsequencing data-

sets used for mapping in PatchSeq analysis. “Muñoz-Manchado” refers to the dissociated

cell dataset [15] which was used as a reference atlas to define the cell types in the PatchSeq

dataset from the same work. The Allen Institute dataset [20] was used as the reference atlas

for all other PatchSeq datasets, which were obtained from neocortical or hippocampal cell

types.
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