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Abstract

The modelling of contact processes between hosts is of key importance in epidemiology. Current studies have mainly
focused on networks with stationary structures, although we know these structures to be dynamic with continuous
appearance and disappearance of links over time. In the case of moving individuals, the contact network cannot be
established. Individual-based models (IBMs) can simulate the individual behaviours involved in the contact process.
However, with very large populations, they can be hard to simulate and study due to the computational costs. We use the
moment approximation (MA) method to approximate a stochastic IBM with an aggregated deterministic model. We
illustrate the method with an application in animal epidemiology: the spread of the highly pathogenic virus H5N1 of avian
influenza in a poultry flock. The MA method is explained in a didactic way so that it can be reused and extended. We
compare the simulation results of three models: 1. an IBM, 2. a MA, and 3. a mean-field (MF). The results show a close
agreement between the MA model and the IBM. They highlight the importance for the models to capture the displacement
behaviours and the contact processes in the study of disease spread. We also illustrate an original way of using different
models of the same system to learn more about the system itself, and about the representation we build of it.
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Introduction

The structure of the contact network of individuals plays an

important role in the dynamic spread of infectious diseases.

Different contact structures lead to different dynamics of infection

[1,2]. We know that mean field models, which hypothesize a

constant homogeneous contact rate between susceptible individ-

uals and infectious individuals [3], can not always be taken as an

acceptable approximation. Clusters of infected individuals appear

during epidemics, implying that the infection rate can exhibit

complex spatio-temporal dynamics [4,5], which depend on the

structure of the contact network [6]. For particular situations and

scales, this structure should thus be taken into account [1,7,8].

For these reasons, many recent models consider the spread of

infectious diseases as a diffusion process within a contact network

[9,10], raising the issue of how the contact network can be drawn.

In some cases, the network is built from population surveys at the

appropriate scale (see [11] for an example in human and [12] in

animal). However, the contact network is difficult to design. In

most cases, the full population cannot be sampled and network

building relies on descriptive statistics. Using these statistics, some

models can also approximate the impact of the network structure

on the disease spread [6,13]. Unfortunately, these statistics

themselves are not always available. This is often the case in

animal health: the protocols used in ecology to build these statistics

are not always able to produce reliable statistics for epidemiology

[14]. Accordingly, a current challenge in the field of disease spread

modelling is accurately reproducing the infection dynamics at the

population level, from minimum information on the structure of

the contact network between individuals. To tackle this issue,

individual movements can be simulated to generate potential

contact patterns between individuals. Individual-based models

(IBMs) have been built for disease transmission [15–17]. IBMs are

mechanistic and often stochastic models that meet several

difficulties regarding their rigorous communication [18] and their

sensitivity analysis and parameter estimation [19]. In addition,

IBMs can not be analytically analysed at the population scale to

study asymptotic behaviours.

The motivation of this work is to provide a mathematically

tractable model which takes into accounts the dynamic contact

structure of a moving hosts population. We use a moment

approximation [20,21] of an IBM. This method has already been

used to model disease spread in networks where the structure of

contacts is known [8,22,23]. Here, we approximate an IBM that

explicitly simulates the individual movements. In this way, we take

into account the dynamics of a contact process that does not

involve any contact network. The aim of this work is to test wether

such an approximation is valid and to discuss the impact of

individual movements on epidemic dynamics. To this end, we

compare the simulation results of three models: 1. an IBM with

moving hosts, 2. a moment approximation of the IBM (called

MA), 3. a mean field approximation of the IBM (called MF). The

MA is specific to this IBM and simulates up to its second moment.
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The MF is generic and usually used in epidemiology, it simulates

only the first moment of the IBM dynamic.

We choose the example of the highly pathogenic avian influenza

virus (HPAIV) H5N1 spreading in a commercial poultry flock.

HPAIV H5N1 is still of great public concern today owing to the

risk of zoonosis [24]. Theoretically, a transmissible infectious

disease may persist within a network of epidemic units [2]. For

HPAIV H5N1, surveillance and control of the disease must be

considered at regional or national scales considering a network in

which epidemic units are poultry flocks. From this point of view,

experience in Thailand showed that different poultry production

types play different roles in sustaining transmission [25]: backyard

poultry flocks have a different impact from commercial poultry

flocks. In this context, we consider that it is important to provide

new simulation models for these different poultry production

types. These models must (i) accurately simulate disease spread

dynamics, and (ii) not incur a too-high computation cost, so that

they can be included in wider meta-population models represent-

ing the epidemics at national or regional scales. Here, we focus on

commercial poultry flocks. We consider a flock of broiler chickens

where poultry are free to move about in a closed environment like

a shed. This kind of system is easier to model than backyard

poultry flocks because it is composed of a fixed, homogeneous

population (a mono-specific cohort) maintained in a closed space.

It is an interesting example of an epidemic system with moving

individuals that can be simulated with a limited number of rules. It

is important to accurately capture the dynamics of disease spread

in such poultry production flocks, because outbreaks in commer-

cial poultry have been found to be disproportionately infectious

[25].

Individual-based Model

1. Description of the Model Approaches
We consider a population of N individuals. Each individual is

identified by a unique number i such that 1ƒiƒN, and has two

attributes: its position in two-dimensional space (x[R2) and an

epidemiological state (noted s[fS,E,I ,Rg). Epidemiological state

separates the host population into four sub-populations of

individuals: (i) susceptible individuals (S), which are disease-free

but can become infected when exposed to the virus, (ii) exposed

individuals (E), which have been infected but are not yet

themselves infectious during a so called latency period (they

harbour the multiplying virus but do not shed it), (iii) infectious

individuals (I), which shed the virus and can transmit the infection

to susceptible individuals, and (iv) removed individuals (R), which

have been infected and have either been killed by the disease or

have recovered from infection and are now permanently

immunized. Note that the removed individuals are still accounted

for in the population. We use formal notations to describe the

IBM. Position and epidemiological states of individual i at time t

are respectively noted xt
i and st

i . We assume that we simulate a

representative area of the space and that we have a fixed

population in a closed space. For this reason we use a toroidal

space. This assumption fits the scenario of a disease spreading in a

poultry flock in which no individual enters or leaves the

population.

Although we have chosen the example of HPAIV H5N1, we

only consider direct transmission. Indirect transmission has been

many times discussed for this disease (including transmission

through water). A recent study in complex artificial aquatic

biotopes shows that persistence of infectious HPAIV do not exceed

4 days in rain water, and that there is no evidence of such

infectious virus in mud samples even if viral RNA can be found

[26]. Even if the environment is still considered as being a

potential reservoir, we assume here it has a negligible effect when

compared with direct transmission during an outbreak.

The model dynamics comprises four processes: (i) individual

movement, (ii) infection of susceptible individuals by infectious

individuals, (iii) an incubation process for exposed individuals

whereby they become infectious and start shedding the virus, and

(iv) recovery or death of infectious individuals.

2. Individual Movement
The same movement process is used for all individuals (S, E and

I). We assume that each individual moves following a kernel

function v1. The kernel function can be Gaussian or simply a local

window. In our case, the kernel is a local uniform kernel. The

instantaneous probability that during an infinitesimal time dt, an

individual moves to some location x from its previous location xt
i is

given by the function PM with:

Vx,Vi,PM (xtzdt
i ~x)~lv1(x{xt

i ) ð1Þ

The movement rate l[½0,1� represents the probability that an

individual moves during dt.

3. Infection Process
This is the process whereby a susceptible individual becomes

exposed due to infectious contact with infectious individuals. We

assume that the expected contact rate between two individuals i

and j is given by a normalized kernel function v2(xi{xj)
multiplied by a basic contact rate k. Hence we consider that a

contact structure exists instantaneously: at any time, any individual

i is linked to any individual j by a valued link with the value

kv2(xi{xj). We also assume that each contact with an infectious

individual has a probability c of exposing it to the virus.

PEDt(s
tzDt
i ~Ejst

i~S) is the probability that the susceptible

individual i becomes infected during Dt. We can then compute

kI , the expected contact rate with infectious individuals as:

kI~k
X

jjsj~I

v2(xi{xj)

and the expected number of contacts with infectious individuals

during Dt is kI|Dt. The probability that a susceptible individual i

is not infected during Dt is then [27]:

1{PEDt(si~E)~(1{c)kI |Dt ð2Þ

We then compute the instantaneous probability of infection

PE(stzdt
i ~Ejst

i~S) as the limit of Equation 2 when Dt tends to

zero. If we note b~{k:log(1{c), we obtain the following

expression for PE (Equation 3):

PE(stzdt
i ~Ejst

i~S)~b
X

jjst
j
~I

v2(xt
i{xt

j) ð3Þ

The constant b is called the infection rate. This limit

computation, and the whole hypothesis and principles leading to

Equation 3, are quite usual in epidemiology (details can be found

in [27] chapter 2 box 2.1.). We detail them here because we want

Approximation in Epidemics with Moving Hosts
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to describe how the contact structure is computed through the

distances between individuals, and how it drives the infection

process.

4. Incubation Process
The incubation process (virus multiplication inside a host) is

characterized by the fact that at the end of the latency period, an

exposed individual i (si~E) becomes infectious (si~I ). Hence we

only represent the event leading to the change in the individual

epidemiological state. The instantaneous probability that this

event occurs, noted PI , is constant over the latency period, as

shown by Equation 4:

PI (stzdt
i ~I jst

i~E)~a ð4Þ

where a is called the incubation rate.

5. Removal Process
The instantaneous probability PR that an infectious individual i

(si~I ) becomes removed (si~R) is given by Equation 5:

PR(stzdt
i ~Rjst

i~I)~c ð5Þ

where c is the recovery rate parameter.

Moment Approximation

We use a moment approximation closed at the third moment.

The first moment is a statistic on a ‘‘mean’’ individual (here its

expected infectious state), the second moment is a statistic on pairs

of individuals, and the third moment is a statistic on triplets of

individuals. The first moment is the expected mean densities of S,

E, I and R individuals in the space (see Section 1). The second

moment is the distribution of the distances between pairs of

different types of individuals (see Section 2). The third moment is

the distribution of triplet configurations of different types of

individuals (see Appendix B.1 in Appendix S1). The first and the

second moment are simulated considering all of the processes

described in the IBM and the third moment is approximated using

a combination of the values of the first and second moments.

1. Mean Densities of the Infectious States
We note NS,NE ,NI ,andNR the mean densities of individuals S,

E, I and R in the population. The dynamics of NS is specified in

Equation 6

dNS

dt
~{b

ð
v2(j)CSI (j)dj ð6Þ

where CSI (j) is the expected ‘‘susceptible individuals - infectious

individuals’’ pair (SI-pair) density with locations situated at a

vector j M 2 apart. For a given set of individuals and a given

configuration j, the pair density is defined as:

cSI (j)~
XNS

i~1

XNI

j~1

d(xS
i {xI

j {j) ð7Þ

with d(x)~1 if x~0 and d(x)~0 otherwise. CSI (j) is the

mathematical expected value of the function cSI (j) regarding the

possible distributions of the individuals and their probabilities (A

formal definition and an account of the utility of the CSI (j)
pattern summary can be found in [20]).

For E and I individuals, mean dynamics are respectively

specified by Equations 8 and 9:

dNE

dt
~b

ð
v2(j)CSI (j)dj{aNE ð8Þ

dNI

dt
~aNE{cNI ð9Þ

Finally, as we consider a static density of individuals N, the

density of removed individuals can be simply computed as follows:

NR~N{(NSzNIzNE) ð10Þ

The dynamics of mean densities of infectious states depend on

the mean local density of infectious individuals around the

susceptible individuals. This mean local density is traduced by

the pair correlation densitiy CSI which appears in the infection

terms of Equations 6 and 8. Its dynamics is developed in the next

section.

2. Mean Densities of the Pair Correlations
In this section we explain how we built the equation of the CSI

dynamics from the IBM mathematical specification (see Equation

11). Other necessary pair correlation dynamics, as well as triplet

dynamics, are described in appendices (see Appendix B in

Appendix S1)

dCSI (j,t)

dt
~

Movement
z2l

Ð
v1(j’)CSI (jzj’)dj’

{2ljv1(j)jCSI (j)

�

Infection
{b

Ð
v2(j’)TSII (j,j’)dj’

{bv2(j)CSI (j)

�

Recovery
{cCSI (j)

�

Latency
aCSE(j)

�

ð11Þ

where for all (h,i,j)[fS,E,I ,Rg3
, Tijh(j,j’) represents the corre-

lation density of triplets as shown in Figure 1. CSI dynamics

depends on the four processes presented in the above equation:

N The movement terms can be split into two terms. The first one

computes the expected number of new pairs. A pair at distance

jzj’ is considered here. When an individual of this pair

moves to a distance j’, a new pair is created with a distance j.

The second term computes the expected number of destroyed

Figure 1. Tijh(j,j’) triplet configuration. Individuals i and j are
separated by a distance j, and individuals i and h by a distance j’.
doi:10.1371/journal.pone.0051760.g001
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pairs. When an individual of an SI-pair at distance j moves, it

destroys the pair. These terms are multiplied by 2 because we

are considering the potential movement of both individuals.

N The infection terms correspond to the exposure to virus of the

individual S of the SI-pair. There are two possibilities. The first

one depends on the triplet configuration between a susceptible

and two infectious individuals (TSII ) and on the interaction

kernel v2. When the S individual of a SI-pair is infected by

another infectious individual located at distance j’, it destroys

the pair. The second possibility lies in a too-short distance of

the I and S individuals of a SI-pair, following the interaction

kernel v2. In this case, the SI-pair is destroyed by the infection

of the susceptible individual.

N In the recovery term, we consider the number of infectious

individuals in situation j with respect to a susceptible

individual. This individual has a probability c of recovering

and thus destroying a SI-pair.

N The latency term corresponds to the number of exposed

individuals that are in a configuration at a distance j with a S

individual and hence create a new SI-pair at a distance j if

they become I.

The description of the CSI (j,t) dynamics is important for an

understanding of the different mechanisms that construct the

contact network; it let us view the contact network indirectly.

Interestingly, it depends on the CSE(j,t) dynamics and on the

triplet configuration TSII (j,j’).

Mean Field Approximation
In the first moment approximation, we consider that the spatial

structure is uniform at any time. In this case, we can express the

second moment as a function of the first moments:

CSI (j)~NS:NI . Information about the spatial structure is lost.

In this case, the equations of the first moments are simplified:

dNS

dt
~{bNSNI ð12Þ

dNE

dt
~bNSNI{aNE ð13Þ

dNI

dt
~aNE{cNI ð14Þ

It is noteworthy that this system is the same as the most classic

mean field model used in epidemiology, usually called the SEIR

compartmental model. It has been widely developed and is still of

considerable interest [28]. In this model, the number of individuals

is stationary and the space is not represented. The force of

infection l(I)~bNI is termed density-dependent because it

depends only on the infectious individual mean density NI .

For the same reasons as explained in the ‘‘Individual Based

Model’’ Section (Subsection 3), we can write the instantaneous

infection probability for any susceptible individual as follows (as

shown in [27, box 2.1]):

I~log(1{c):kI ð15Þ

where kI is the expected contact rate with infectious individuals

and c is the probability of being infected if a contact occurs.

Equation 12 is the computation of the expected number of new

infectious individuals during dt and can be written as:

dNS

dt
~I|NS ð16Þ

Hence when we use Equation 12, we assume that for each

susceptible individual,

kI~k:NI

where k in units of contact:s{1:area:ind{1 is a constant contact

rate per unit of infectious individual density. In other words, using

the mean field model, we assume that the contact structure is a

complete graph in which all link values are equal (the value is:
k

surface
).

Experimental Design

1. Objective
The objective is to compare the simulation results of the IBM,

MF and MA. Comparison between IBM and MF results tells us

whether the spatial pattern plays a role in the dynamics. We have

seen in the model presentations that MF considers a homogeneous

spatial structure and that the MA simulates the contact process

and a part of the spatial structure dynamics. Conversely, the IBM

is our reference and simulates the dynamics of the entire spatial

structure. Thus if MA results are closer than MF results to IBM

results, we can assume that MA successfully incorporates spatial

pattern dynamics.

For each parameters values combination, we simulate the MF,

the MA and the IBM. For the IBM, five simulations are run each

time and only the mean result is reported. The model

discretization used for implementation is presented in Appendix

A in Appendix S1. The grid definition is equal to [1506150]. A

convergence study was conducted on the grid size, and this value is

sufficient to obtain adequate discretization.

The initial configuration represents an epidemic situation in

which several individuals are already infectious when the

simulation starts. In our example of HPAIV, it represents a case

where an infected breeder supplied the flock and consequently a

part of the population is infected. The initial state consists in 9000

individuals S and 1000 individuals I which are randomly

distributed in the space. Due to these initial conditions, variability

is low for the IBM because we have many individuals and several

infected individuals at the beginning of the simulation. Thus, even

if we have only five replicates for each set of parameter values, the

differences between the aggregated models (MA and MF) and the

IBM are not due to the stochastic property of the IBM.

2. Parameters Values
We identify possible intervals for the values of each parameter

(a,b,c and l) and we test four values taken with a regular step in

each interval: intervals of parameters a and c are estimated from

laboratory experiments results published in [29]; intervals of

paramters b and l are calibrated using field data published in

[30,31]. Table 1 summaries the intervals and the sources used to

build the intervals.

Approximation in Epidemics with Moving Hosts
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2.1. Estimation of a-and c-parameters. For

a{parameter we choose a lower boundary corresponding to

the mean latency period
1

a

� �
observed for this virus (correspond-

ing to a 6-hour period [29]), and an upper boundary correspond-

ing to no latency period. For parameter c, we choose an interval

corresponding to the minimum and maximum infectious periods

1

c

� �
observed during laboratory experiments for this virus [29].

2.2. Calibration of b-and l-parameters. b{parameter
incorporates many characteristics of the system under study and so

there is no single value of b that depends only on the H5N1 virus.

Such transmission parameters are difficult to estimate and are

usually calibrated to fit prevalence data observed on the field. In

the same way, the mobility characterized by parameter l has not

been evaluated in poultry flocks. For this reason, we use the IBM

to calibrate the intervals for these parameters. We simulate

outbreaks by changing initial conditions to one infectious

individual and 9999 susceptible individuals: we want to make

sure that the intervals chosen for b and l keep us within a realistic

situation for H5N1 outbreaks observed on the field in poultry

flocks [30,31]. We choose intervals that keep us within situations

where we observe from 90% mortality in 6 days (worst cases

observed in [30,31]) to situations where no epidemic starts.

3. Comparison Criterion
The criterion used to compare simulation results is defined

according to our application example and to the dynamic features

of the system. It is based on the first moment dynamics because we

assume that it is determinant to consider the interaction of the

poultry flock with a wider system. The infectious potential of a

poultry flock depends on the density of exposed and infectious

individuals in the poultry flock. Also, control measures require

outbreak detection, which depends on the proportion of animals

showing symptoms of the disease (infectious state), and of dead

animals (removed state), but does not depend on animals

incubating the virus (exposed state). Thus what is important to

estimate is not so much the time lag after which the outbreak

detection occurs, as the proportion of individuals exposed to the

virus when the detection occurs.

Ideally, we would like to compare trajectories of the first

moments, namely of the variables NS,NE ,NI and NR. However,

for the low values of the infectious rate b, trajectories of IBM

replicates can be significantly different. Indeed, the epidemics start

more or less quickly due to the stochastic nature of the model.

Except for this time shift, the replicates exhibit very similar results

because many individuals are considered (10000 individuals).

Consequently, we use a criterion which is independent of time and

takes directly into account the relative densities of the different

infectious states. The criterion is the function f
dif

j,k (where

(j,k)[ffIBM,MA,MFg2jj=kg), which compares the integrands

of the dynamics. It is defined by Equation 17:

f
dif

j,k ~

ð
Nk

S(Nk
E)dNE{

ð
N

j
S(N

j
E)dNE

����
����

z

ð
Nk

S(Nk
I )dNI{

ð
N

j
S(N

j
I )dNI

����
����

z

ð
Nk

I (Nk
E)dNE{

ð
N

j
I (N

j
E)dNE

����
����

ð17Þ

We note that the dynamics of NR is not considered, in order to

have a criterion based on three independent variables (NR can be

deduced from the other dynamics and is redundant). The value of

f
dif

j,k is calculated until the number of exposed individuals and the

number of infectious individuals are both equal to 0 (i.e. when the

system is considered as stationary).

Results

1. Influence of the Parameters on the Spatial Structure
Values obtained for the difference criteria f

dif
IBM,MF are

presented in Figure 2. These values characterize the difference

between the IBM results and the MF model results for the tested

parameters. We recall that the IBM considers the whole spatial

structure of the population and its dynamics, and that the MF

model does not consider any spatial structure. Consequently, these

results tell us about the influence of the parameter values on the

impact that the spatial structure of the population has on the

disease spread dynamics. Comments on these results follow:

N Influence of the latency (a) and the infection (b): these

parameters control the transition of the state of an individual

from S to I. For high values of a and b, a susceptible individual

rapidly becomes an infectious individual. This leads to clusters

of infectious individuals. Before discussing the observed results,

we explain what usually happens with static hosts. When

individuals do not move, spatial autocorrelation of I individ-

uals reduces the numbers of infectious contacts, because

infectious individuals are surrounded by other infectious

individuals and cannot reach susceptible individuals. Thus,

increasing the values of parameters a and b parameters

intensifies this process and increases the distance between

individual-based models and mean field models. Here, when

individuals move, the interactions are more complex. For low

values of a and b, the difference between IBM and MF are

higher than for high values. We note that in our model a high

correlation density of II-pairs does not entail a low correlation

density of SI-pairs. The determinant relation in the infection

dynamics is the density of SI-pairs, which drives the potential

infectious contacts. The MA presented in the next section

describes the dynamics of these pair densities and gives a better

prediction of the IBM dynamics. In Section 2 we illustrate the

differences observed between the three models regarding the

density of SI-pair correlations of individuals observed in the

IBM simulations.

N For b~0:01, the difference is very high. This is because the

disease spread does not begin in several simulations of the IBM

owing to the low value of b.

N Influence of l: this parameter has a marked influence on the

spatial structure: for high values of l, the mobility is high and

the population distribution is very similar to a uniform

distribution. In this case, it decreases the difference between

Table 1. Parameters values.

par name unit interval sources

a incubation rate min21 [1/360, 1] [29]

b infection rate min21.ind21 [0.001, 0.1] [30,31]

c recovery rate min21 [1/2880, 1/720] [29]

l mobility rate min21 [0.1, 1] [30,31]

doi:10.1371/journal.pone.0051760.t001

Approximation in Epidemics with Moving Hosts
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IBM and MF; it is noticeable on the first column for l~0:1,

where the difference is considerable.

N Influence of c: classical values of c are low. This leads to a

weak influence of c except in the case of low values of b
(b~0:034) and high values of a (aw0:2). In this case, low

values of c lead to lower differences. This is the expected trend,

considering that a longer infectious period (small value of c)

decreases the effect on spatial structure. We note that when

mobility increases, the relative effect of c decreases. This is

because all spatial structure influence is decreased by

increasing the mobility.

The above comments apply only to the tested values of the

parameters (see Table 1).

2. Comparison of the Moment Approximation with the
IBM

Values obtained for the difference criteria f
dif

IBM,MA are

presented in Figure 3. These values characterize the difference

between the IBM results and the MA model for the tested

parameters. From these results we can study the ability of the MA

to reproduce the IBM results:

N The distribution of f
dif

IBM,MA is qualitatively very similar to the

distribution of f
dif

IBM,MF . This means that the parameter values

for which the MF model least successfully reproduces the IBM

results are also those for which the MA model least successfully

reproduces them. This can be explained by the fact that the

MA simulates the spatial structure dynamics, but when the

spatial structure becomes somehow too complex, the moment

approximation does not fully capture the spatial structure: we

have a second moment approximation, and it is not sufficient

in the case of complex spatial structures.

N The difference between the IBM and the MA is less than the

difference between the IBM and the MF. The moment

approximation gives a better approximation of the dynamics

than the mean field approximation because the MA takes into

account the spatial structures.

N The influence of the movement rate l is the same as for

f
dif

IBM,MF . The similarity of the results increases with the rate of

movement.

To compare the three approaches, dynamics were plotted on

Figure 4 in the case of a spatial structure where the difference

between the MA and the IBM is high. We can note that the MA is

very close to the IBM results and that the MF is not sufficient to

approximate the IBM. We note that this figure shows the case

where the difference between the IBM and the MA is the highest.

In other cases, the dynamics of the IBM and the MA are

superimposed. For this case (same parameters and initial

conditions), we chose a simulation of the IBM and plotted the

SI-pair correlation density evolution during the simulation (see

Figure 2. Difference between the IBM and the mean field (f dif
IBM,MF ). b is the infection rate, l is the mobility rate, a is the incubation rate and c

is the recovery rate. Hot colours stand for higher difference than cold colours.
doi:10.1371/journal.pone.0051760.g002
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Figure 5). Densities are normalized. This means that a density of 1

for a given distance implies that the density of pairs at this distance

is the expected density if the population is homogeneously

distributed. We can use the evolution of the SI-pairs correlation

densities of individuals in the IBM (Figure 5) to discuss phase

trajectories (Figure 4). Figure 5 shows that the average distance

between S individuals and I individuals is increased at some time

during the simulation. We can observe a clear pattern for the

column that corresponds to the 4th hour, for instance: the smallest

densities are observed for the smallest distances. This means that a

spatial structure appeared during the simulation. This spatial

structure is responsible for the difference observed between the

curves in Figure 4. The longer average distance between infectious

and susceptible individuals leads to a smaller force of infection.

This effect cannot be reproduced by the mean field model, and so

the MF overestimates the number of I individuals. We note that

when the simulation goes further, the spatial structure tends

toward a uniform distribution.

Discussion and Conclusion

We compared the simulations of the three models IBM, MA

and MF for different values of parameters chosen through a

regular exploration of the parameter space. As we develop it in the

model presentation, the MF model does not consider any spatial

structure. The MF approximation corresponds to a moment

closure at the second moment, thus the same probability of contact

Figure 3. Difference between the IBM and the moment approximation (f dif
IBM,MA). b is the infection rate, l is the mobility rate, a is the

incubation rate and c is the recovery rate. Hot colours stand for higher difference than cold colours.
doi:10.1371/journal.pone.0051760.g003

Figure 4. Plane of phases of the IBM (averaged over five
replicates), the MA and the MF simulations. b~0:1, a~1=360,
c~3:472e{4 and l~0:1.
doi:10.1371/journal.pone.0051760.g004
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is considered for any pair of individuals. Conversely, in the IBM,

the probability of contact for a pair of individuals depends on the

distance between the individuals, which in turn depends on the

system history. Hence the comparison between IBM results and

MF results give us a measurement of the influence of spatial

structure on the disease spread dynamics for different values of the

parameters. Doing this, we note that for the situation considered,

the influence of spatial structure is not trivial and can not be

summarized as the effect of spatial autocorrelation of infectious

individuals.

In the MA, a part of the spatial structure is taken into account

through the simulation of the second moment (dynamics of pair

correlations densities). We observe that the simulation results of

the MA are closer than the MF results to the IBM results. We also

observe that in regard to our comparison criterion, MA results and

IBM results are very close, and so we conclude that MA correctly

integrates the dynamic spatial structure, even when mobility is

low. Note that this model only considers direct transmission. As a

consequence, the model applicability is limited to environmental

conditions where the indirect transmission of HPAIV (through

faeces or feathers for instance) is negligible.

As an application, we used the MA model to simulate HPAIV

spread in a commercial poultry flock. Our comparison criterion

takes into account the evolution of the relative proportions of the

different states in the population. These relative proportions can

be considered to evaluate the impact of surveillance and control

measures: they enable to establish a relation between the detection

process (linked to the proportion of I and R individuals) and the

infection process (linked to the proportion of I and E individuals).

We showed that especially for some of the parameter values, the

MF model was unable to reproduce the IBM behaviour perfectly

and that we obtained better results with the MA model than with

the MF model. One of our ultimate aims was to produce a model

that could be included in a wider model representing several

poultry production units connected together. This study is a first

step towards this goal, and shows that the MA model can be a

good candidate over its range of validity. However, it is not

stochastic, and so simulation results represent expected situations

and do not enable us to discuss rare events. Also, the MA model

considers mean values and so it is not relevant for small population

sizes. Consequently, an epidemic starting with a single infected

individual cannot be modelled with the MA model. Here, we

chose to consider situations where we have 10% prevalence when

the epidemics starts. In this way we studied the MA model within

its validity domain. We note that this validity domain limits its use

within a wider model, because an accidental infection of the flock,

in which a single individual would be infected, cannot be

considered. The same issue should be considered for the MF

model, which also considers mean values. In response, it is possible

to associate an IBM and a MA model. This was done in [32],

Figure 5. Dynamics of the normalized SI-pair correlation densities in the IBM for simulation of Figureô 4. Pair correlation density (colour
code) is computed for distances from 1 cell to 10 cells each simulated half-hour (30 time steps) until there are 10 susceptible individuals left (12 hours
here).
doi:10.1371/journal.pone.0051760.g005
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where a hybrid epidemic model is built, changing from individual-

based to mean field equation-based model during a simulation,

depending on the size of the infectious population to be simulated,

which evolves in the course of the simulation. Using such methods

it is possible to use stochastic IBMs for epidemic start or specific

perturbations and MA models for other situations.

We note that for each specific application, the comparison

between IBM and MA models must be studied, and we would

need to define a specific criterion that would enable us to

discriminate when the MF model is sufficient, when the MA is

necessary and sufficient, and when only an IBM is able to describe

the dynamics. Such a criterion should be defined according to the

modelling objectives. It can be a qualitative output, which tells us,

for instance, wether the disease will become endemic in the

population or wether it will vanish after an epidemic. This kind of

behaviour can be observed, for instance, in the case of models with

reintroductions of susceptible individuals. The system can fall into

an equilibrium state where the number of infectious individuals

never recedes to zero.

More theoretically, this first study shows that in cases where we

cannot depict the contact network, the MA method does provide a

compromise between the simulation of every individual movement

and the simulation of a MF model, which would ignore any

structure in the population.

Lack of information on contacts between animals has already

led modellers to build IBMs based on animal behaviours provided

by ethologists. They then use the outputs of the IBM to calibrate a

metamodel that reproduces IBM dynamics. We define a

metamodel (a model of a model) as a mathematical function that

approximatively simulate the model response, has a negligible

computation cost, and can accurately predict new responses [33].

A complete applied example of such a study is presented in [16]

and [34]. In these papers, the authors first presented an IBM at the

herd level [16], and then used a metamodel to simulate the herd

level model in a wider model [34]. The IBM they use is more

complex than ours, but is based on the same processes (rules for

movement, contact, infection and recovery). The difference

between these studies and the method we used here is that in

our case we build the approximated model based on the processes

modelled and not based on the outputs obtained, as is the case

when modellers calibrate metamodels with model outputs. We can

see in our discussion that the differences between the models and

the approximated models can be explained by the level of

complexity considered by the approximation.

With this study, we emphasize the advantages of using the MA

method versus metamodelling methods based on calibration. We

can see here that the MA method forces the modeller to focus on

the processes driving the system. In our case, it gives the modeller

an explicit formulation of contact dynamics. We consider that in

those cases where such approximation is possible, models obtained

with MA should be preferred to calibrated metamodels because of

their transparency feature. Here, our approach to building the MA

was to transfer the individual rules to pair-wise rules, and then to

triplet-wise rules. In future work, it would be of interest to assess

whether the same approach can be used for other existing IBMs

with moving individuals that are used in epidemiology. We

consider that such approach would be successful insofar as the

IBM is clearly specified. However, tests remain to be done to assess

what kind of individual rules (such as complex logical rules) are

compatible with MA method and what kind in not compatible

because too complex.

We may add that a deterministic model such as a MA model

can be complementary to an IBM model, which is stochastic. In

the context of epidemiological models, a stochastic model can be

used to apprehend the uncertainty of the output of a decision

when a deterministic model is used to understand and discuss

determinants of a complex dynamics.

Apart from improving understanding and precision, we

consider that simulating some features of the spatial patterns is

valuable. These features are in our case the distance distribution

between pairs of different types of individuals. It has been shown

that these features can be used to evaluate models [35], and thus to

better calibrate it. Moreover, new methods are developed to infer

epidemics dynamics from distance distribution between pairs of

infectious individuals in the case of static individuals [36]. We

consider that if we can simulate the second moment successfully

we will be able to use the same methods in the case of moving

individuals.

To conclude, this study highlights the fact that MA techniques

are not the prerogative of networks-based models: this technique

can be useful in the case of infection dynamics in a population of

moving hosts.
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