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Recently, Friedman (2020) published a letter in which he
claims there are three errors and two problems in our
paper “gazeNet: End-to-end eye-movement event detection
with deep neural networks” (Zemblys et al., 2019). Here
we respond to these claims by Friedman, namely that
improper data were used for Zemblys et al. (2019) and that
performance was improperly evaluated.

Let us first recap what we presented in Zemblys et al.
(2019). gazeNet is a method that takes an existing eye-
movement data set that has been labeled (through hand-
coding or by any other means) and trains a classifier to
reproduce this event coding. The goal of gazeNet, as for
any machine learning-based classifier, is to produce coding
similar to what it observed during training. As such, the
performance of classifiers like gazeNet is evaluated on other
labeled data that was not seen during training, and the
classifier is said to perform well if it is able to produce high
agreement with the testing set (i.e., similar coding as the
testing set). As such, the classifier can be trained on any
input data, regardless of its quality, since the success of a
classifier is determined by its performance on the testing
set. In Zemblys et al. (2019), we used the procedure we
proposed and trained a specific classifier using part of the
lund2013-image data set (Larsson et al., 2013, see “Data”
section in Zemblys et al. (2019) for detailed description),
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which was then evaluated on another unseen part of the
lund2013-image data set, as well as the GazeCom (Starsev
et al., 2016, 2017) and humanFixationEvaluation (Hooge
et al. 2018, containing data from Hessels et al. 2016a).

Data quality

The first error and the two problems that Friedman (2020)
discusses are issues of data quality. Specifically, Friedman
notes that:

1. Several of the files from the lund2013-image data
set used in Zemblys et al. (2019) provided gaze data
sampled at 200 Hz instead of the 500 Hz assumed by
us and reported by the authors of the data set. Friedman
(2020, “Error 1”)

2. The intersample intervals in the lund2013-image data
set were not constant. Friedman (2020, “Problem 1”)

3. The trajectories of saccades in the lund2013-image
data set were not smooth but contained discontinuities.
Friedman (2020, “Problem 2”)

Furthermore, in footnote 4, Friedman (2020) speaks
of problems with the other data sets, GazeCom and
humanFixationEvaluation, used by Zemblys et al. (2019)
to evaluate the performance of gazeNet. Specifically,
Friedman (2020) claims that there are misclassification
errors in these data sets.

Our response to the claims by Friedman (2020) regarding
the above problems and errors in Zemblys et al. (2019)
is the following: First, it is correct that some of the files
in the lund2013-image data set provide gaze data sampled
at 200 Hz instead of 500 Hz. Furthermore, as observed
by Friedman (2020), the intersample intervals in this data
set were indeed not constant (as is frequently observed in
data from SMI eye trackers, see e.g., Hessels et al. 2015;
Niehorster et al. 2020c) and discontinuities were present
in the trajectories of saccades (see also, Holmqvist and
Blignaut, 2020), which, to our experience, they usually are
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in data from the SMI HiSpeed system with which this
data set was recorded. Given the above characteristics of
the lund2013-image data set, Friedman (2020) claims that
we used improper data in Zemblys et al. (2019) and that
our use of this data gives a “basis for concern” (p. 2).
While it remains unclear what the concern would be, his
mentioning of errors and problems in the gazeNet paper
insinuates that he is concerned that the conclusions of our
study are invalid. We disagree with this concern, and with
the notion that the data we used was improper for our
study, or that it was an error or problem to use this data.
Friedman (2020) has neither made an effort to back up
his claim by showing what the problem would be, nor
investigated whether it has a relevant impact on the analyses
and conclusions we reported. Furthermore, Friedman’s logic
that imperfect data imply that a study’s results are erroneous
is invalid. For instance, while saccades recorded with two
different eye trackers (e.g., an SMI and an EyeLink) may
appear dissimilar because their waveforms have different
characteristics, the similarities between saccades of the two
eye trackers are likely much larger than the similarities
between either of the saccades and a fixation or PSO. This
would mean that the datasets we used, despite containing
imperfections in Friedman’s (2020) view, would still enable
the training of a robust and generalizable event classifier and
a valid evaluation of its performance and the performance
of other algorithms. The analyses reported below reinforce
our argument. Despite disagreeing with Friedman’s logic
that some characteristics of the eye-tracker data we used are
problematic, we nonetheless, for the sake of argument, will
throughout this paper refer to these characteristics of our
training and evaluation data sets as “imperfections”.

Second, since the goal of the gazeNet classifier was
to reproduce the coding observed during training, below
we argue that the presence of imperfections such as non-
constant intersample intervals and discontinuities in saccade
trajectories do not invalidate the results reported in Zemblys
et al. (2019), but instead provide an important test case for
the robustness of our approach. In the “Replication using
only 500-Hz data” section below, we furthermore report on
a newly trained gazeNet classifier using only 500-Hz data,
and on new performance evaluations of all algorithms on a
testing set consisting of only 500-Hz data. These new results
furthermore underscore that the inclusion of 200-Hz data
during training and evaluation had a minimal impact on the
results reported in Zemblys et al. (2019). Their exclusion
did not change the paper’s conclusions.

Third, the imperfections in the data sets used for
training and evaluation should logically only lead to
reduced performance of the evaluated event classifiers,
which would be reflected in lower agreement between
the event classifiers’ output and the (hand-coded) event
labels in the evaluation data sets. This is logically expected

because a deep-learning classifier such as gazeNet that is
trained on a data set with specific characteristics (such as
the imperfections in the lund2013-image data set) might
perform less well on other data sets that do not contain these
same characteristics. Yet the agreement scores reported
in Zemblys et al. (2019) were very high despite the
imperfections in the data and dissimilarities of the data
set on which Zemblys et al. (2019) was trained and some
of the data sets used for evaluation. This shows that the
deep learning-based event classification method presented
in Zemblys et al. (2019) is robust to various imperfections
in the training and evaluation data sets and, importantly,
that the results reported in Zemblys et al. (2019) are not
invalidated by the presence of these imperfections in the
training data set. Friedman’s (2020) reasoning that the
presence of imperfections in the training data means that
this data was “improper” for how it was used in Zemblys
et al. (2019) is thus invalid, as is his claim that use of this
data constitutes errors and problems in the gazeNet paper.

Fourth, robustness to imperfections in the input data
is an attribute of an event classifier that is of significant
importance. Temporal and spatial noise, as well as
systematic imperfections such as the saccade discontinuities
in data from the SMI HiSpeed 1250, are present in eye-
tracking data from most systems in most applications (see,
e.g., Hessels et al. 2015, 2018; Niehorster et al. 2020a,
b; Holmqvist and Blignaut 2020) and therefore must be
dealt with efficiently and robustly. As we emphasize in
the gazeNet paper, we believe that a major limitation of
traditional hand-crafted algorithms is that they only work
for certain data sets or only when certain conditions (e.g., a
certain maximum level of RMS-S2S imprecision) are met.
As we have shown (Zemblys et al., 2018, 2019), machine
learning-based approaches to creating event classifiers
may be able to surmount this limitation of traditional
methods.

Fifth, as we explicitly state in Zemblys et al.
(2019, p. 859), gazeNet is not meant to be a
specific event classifier that one can download
and use out of the box. Instead, the goal of the gazeNet
paper was to develop a procedure for training end-to-end
classifiers for eye-tracking data. The job of this procedure
is to train a classifier that produces similar classification
of input data as would have been produced by the process
that the classifier observed during training. Simply put,
if human coders were able to code a segment even if it
contained serious imperfections (cf., Hooge et al., 2018), a
good event classifier should be able to reproduce this cod-
ing. The agreement scores reported in Zemblys et al. (2019)
show that a specific classifier trained using the gazeNet
procedure and tested on challenging data sets succeeded
well in this job. Note that it is important to use suitably clas-
sified input data for training the classifier before using it in
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a practical application because the goal of such classifiers
is to obtain similar classification (high agreement), not to
attain some unknowable “correct” classification. We there-
fore reiterate here our advice that users should train their
own classifier that is optimally suited for their own purpose
and data sets. This flexibility afforded by our approach is
a strength that, as we have shown, enables automatically
constructing event classifiers that function well also for
data with various imperfections.

Unfair evaluation

A further “error” discussed by Friedman et al. (2020, “Error
2”) is that it is unfair to compare an event classifier trained
on a data set with other classifiers that were not trained on
or developed using that data set. In our case specifically,
Friedman claims that gazeNet had an unfair advantage when
it was evaluated on the lund2013-image-test data set. Our
evaluation however used established best practice of both
the machine learning and the eye-movement classification
fields (e.g., Larsson et al., 2013; Startsev et al., 2019a;
Friedman et al., 2018). Specifically, first, evaluation was
performed on a subset of the complete lund2013-image
data set (called the testing set) that the gazeNet algorithm
had not seen during the training process. Second, we have
evaluated gazeNet and the other algorithms also on other
data sets (GazeCom and humanFixationEvaluation) that
neither gazeNet nor the other algorithms had seen before,
and reported good performance of the gazeNet classifier
also on these data sets. Together, these two standard
procedures ensure that good performance reported on the
testing data set is not the mere result of overfitting (e.g., the
classifier learned the peculiarities of the particular training
data set while the competitor algorithms did not have that
chance). Instead, using this procedure, good performance
across data sets indicates that the classifier is robust to the
peculiarities of individual data sets and shows that it is able
to generalize to other substantially different data sets.

Event-level agreement analysis

There is one final “error” discussed by Friedman et al.
(2020, “Error 3”), which concerns the implementation of
our per-event event-related agreement analysis and the logic
behind it. Friedman (2020) claims that this error inflates the
per-event event-level agreement scores reported in Tables 7
and 8 of Zemblys et al. (2019). In this section, we investigate
this claim.

First, the claim that the code posted online by us to
compute per-event event-level agreement scores does not
match the intended procedure described in the method

section of Zemblys et al. (2019) may be due to an oversight
in our method description. Specifically, in Tables 7 and
8 in Zemblys et al. (2019), we report event-level (binary)
agreement scores for fixation, saccade, and PSO events
separately, along with an overall agreement score in Table
7. Code implementing both per-event and overall agreement
scores was made available at https://github.com/r-zemblys/
ETeval. The procedure for the overall agreement score
was described in the “Novel event-level evaluation” section
on page 845 of Zemblys et al. (2019), but we have
discovered that the procedure for per-event (binary) event-
level agreement score computation was not described in the
methods section. We therefore provide here the description
of this procedure, as an addendum to this section of Zemblys
et al. (2019, p. 845):

Besides evaluating overall event-level agreement for
all events (fixations, saccades and PSOs) together, it
is also informative to examine the extent of agreement
for each event individually. To do so, the following
procedure was used. We first turn the ground truth
and algorithm event streams into binary streams
denoting events of interest and other events. Below,
we will refer to these as positive events (the event
under evaluation, e.g., a fixation) and negative events
(the other events that are not under evaluation, e.g.,
saccades and PSOs), respectively. Adjacent events of
the same type are merged. We then perform the same
matching procedure as above, i.e., matching events in
the ground truth stream with those in the algorithm
stream that have the most overlap. The remaining
unmatched positive events are then labeled as false
negatives or false positives, depending on whether
they occur in the ground truth or algorithm event
streams. Unmatched negative events are labeled as
true negatives, so that these events do not penalize
the per-event-agreement score for misclassification of
events other than the event that is being evaluated.
This relabeling procedure also enables all input
events to count towards the agreement score, while
enabling the outcome of the evaluation procedure to
be summarized by a Cohen’s kappa score.

Analysis of binary event matching

Friedman (2020) claims (“Error 3”) that when evaluating the
per-event event-level agreement score between two streams
of events, it is incorrect to count unmatched negative events
as true negatives as that increases the Cohen’s kappa score,
indicating higher agreement. Instead, Friedman (2020)
claims that these unmatched negative events should be
counted as false negatives or false positives, depending
on whether they occur in the ground truth or algorithm
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event streams so as to drive Cohen’s kappa lower. Friedman
(2020) furthermore states that we could have used an F1
score to assess per-event event-level agreement and that this,
due to the nature of how an F1 score is calculated, would
have avoided the problem of how to deal with unmatched
negative events.

We agree with Friedman (2020) that the procedure we
followed in Zemblys et al. (2019) to count unmatched
negative events as true negatives may inflate the Cohen’s
kappa score. We however disagree with Friedman’s framing
of this issue as a dichotomy between correct and incorrect,
since different agreement evaluation approaches make
different trade-offs to optimize for different aspects of
evaluating event-level agreement, and thus merely provide
a different view of agreement between two event streams.
In this context, it is worth noting that despite that the
development of event-level agreement scores has started
only very recently in the eye-tracking field, there are already
multiple different approaches available (see, e.g., Hooge
et al., 2018; Zemblys et al., 2019; Hoppe and Bülling 2016;
Kothari et al., 2020; Startsev et al., 2019a, b). Each of
these approaches found in the literature only provides a
different view of agreement between two event streams and
may be appropriate to use in some situations but not in
others.

We furthermore underline here that the occurrence
of unmatched negative events in per-event event-level
agreement evaluation necessitates a change in the procedure
to compute the Cohen’s kappa score. These unmatched
negative events must be relabeled to include them in the
per-event event-level Cohen’s kappa score since unmatched
events do not feature in the confusion matrix underlying
the measure. In Zemblys et al. (2019), we opted for the
approach of relabeling unmatched negative events as true
negatives in order to be able to include all events from the
two streams in the evaluation of agreement. This decision
enabled us to keep the agreement evaluation procedure for
the per-event case as similar as possible to the procedure
used for the overall agreement score, thereby providing a
per-event Cohen’s Kappa score that remained comparable
to the overall agreement Cohen’s kappa. We opted to not
use the F1 score for assessing per-event agreement for the
same reason of being able to report a per-event event-level
agreement score that is comparable to the overall event-level
agreement score.

Another approach we could have chosen for dealing
with unmatched negative events was proposed by Friedman
(2020), i.e., to penalize the agreement score by relabeling
unmatched negative events as false negatives and false
positives. However, we do not think that his proposal to
penalize the event-level agreement score for mismatches
in negative events, i.e., events other than the one for
which the algorithm is being evaluated, provides a desirable

view of algorithm performance for the event-type under
evaluation.

Besides the approach we originally employed in Zemblys
et al. (2019) of counting unmatched negative events as true
negatives and the approach suggested by Friedman (2020)
of counting unmatched negative events as false negatives
and false positives (we will refer to this approach as the
“unmatched as error” approach), there is a possible third
approach when relaxing the restriction that all input events
must count in the resulting agreement score. Specifically,
our proposed procedure is to disregard the unmatched
negative events in the calculation of the agreement score, so
that these events which are not of interest neither increase
nor penalize agreement between two event streams (see
also, Startsev et al. 2019b). Here, we will refer to this
as the “disregarding unmatched” approach. We think the
disregarding unmatched approach, for our purposes, best
reflects agreement on only the positive events, which is
what we aimed to assess with the per-event agreement
score. The potential drawback of this approach is that not
all input events count in the evaluation of agreement and
that the procedure therefore yields an approximate Cohen’s
kappa score. For reference, for the per-event agreement
scores reported in Table 7 of Zemblys et al. (2019, p. 855),
unmatched negative events made up between 1.0% and
1.7% of all negative events for fixations and saccades,
and between 7.0% and 11.7% for PSOs. These unmatched
negative events would be ignored using the disregarding
unmatched approach.

To provide the reader with insight into the impact of
these three different approaches to per-event event-level
agreement scores, we have augmented the ETEval code
available at https://github.com/r-zemblys/ETeval to also
produce agreement scores using the disregarding unmatched
and unmatched as error approaches. We used this updated
version to recompute the per-event event level agreement
scores that were presented in Tables 7 and 8 in Zemblys
et al. (2019). The per-event agreement scores in Table 7 of
Zemblys et al. (2019, p. 855) can be compared to Table 1 in
this paper and the values in their Table 8 (p. 856) to Table 2
here. For the latter table, like in Zemblys et al. (2019),
three different data sets, lund2013-image-test, GazeCom
and humanFixationEvaluation were used to evaluate the
performance of gazeNet along with three other algorithms:
Nyström and Holmqvist (2010, referred to as NH2010),
Friedman et al. (2018, referred to as MNH), and two
versions of Zemblys et al. (2018, referred to as IRF and
IRF-spec).

Comparing the scores in the “Unmatched as true
negative” sections of Tables 1 and 2 to the values reported
in Zemblys et al. (2019) reveals that they are identical,
confirming that the changes made when augmenting the
ETEval code did not alter the output of the algorithm. It
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Table 1 Per-event event-level Cohen’s kappa values for each event class when treating unmatched negative events as true negatives (cf. Table 7 of
Zemblys et al. 2019, p. 855), when disregarding them, and when counting unmatched negative events as errors (false positives or false negatives)

Comparison Unmatched as true negative Disregarding unmatched Unmatched as error

Fixations Saccades PSO Fixations Saccades PSO Fixations Saccades PSO

Experts

testSet 0.966 0.983 0.844 0.965 0.983 0.836 0.952 0.956 0.715

gazeNet vs:

trainSet 0.972 0.978 0.654 0.971 0.977 0.623 0.949 0.944 0.446

valSet 0.978 0.978 0.790 0.978 0.978 0.772 0.956 0.956 0.609

testSet RA 0.966 0.966 0.774 0.966 0.966 0.760 0.936 0.946 0.631

testSet MN 0.973 0.970 0.795 0.973 0.969 0.783 0.943 0.943 0.661

Data are plotted in Fig. 1

can furthermore be seen that the strategy of disregarding
unmatched events, which we argue is the approach that is
most suitable for our aim of evaluating agreement on the
event class under evaluation, produced event-level scores
that are very similar in magnitude to those originally
published in Zemblys et al. (2019), and identical in terms of

relative ranking of algorithm performance. The unmatched
as error approach suggested by Friedman (2020) on the
other hand leads to systematically much lower agreement
scores, that in a few cases even become negative. We think
that this reflects significant overpenalization on the part of
this agreement evaluation scheme.

Table 2 Per-event event-level Cohen’s kappa values for each event class when treating unmatched negative events as true negatives (cf. Table 8 of
Zemblys et al. 2019, p. 856), when disregarding them, and when counting unmatched negative events as errors (false positives or false negatives)

Data set Algorithm Unmatched as true negative Disregarding unmatched Unmatched as error

Fixations Saccades PSO Fixations Saccades PSO Fixations Saccades PSO

lund2013-image-test gazeNet 0.959 0.947 0.776 0.957 0.945 0.762 0.840 0.889 0.632

IRF 0.780 0.848 0.616 0.755 0.842 0.582 0.558 0.743 0.405

IRF-spec 0.783 0.844 0.693 0.759 0.836 0.668 0.563 0.733 0.503

MNH 0.837 0.759 0.598 0.814 0.741 0.561 0.577 0.579 0.375

NH2010 0.639 0.798 0.350 0.563 0.789 0.289 0.231 0.697 0.099

GazeCom gazeNet 0.915 0.845 - 0.908 0.835 - 0.753 0.714 -

IRF 0.844 0.779 - 0.831 0.774 - 0.665 0.727 -

IRF-spec 0.843 0.774 - 0.829 0.768 - 0.664 0.718 -

MNH 0.921 0.771 - 0.914 0.765 - 0.747 0.709 -

NH2010 0.647 0.745 - 0.577 0.735 - 0.259 0.660 -

HumanFixation- gazeNet 0.700 - - 0.650 - - 0.340 - -

Classification IRF 0.707 - - 0.664 - - 0.376 - -

IRF-spec 0.701 - - 0.657 - - 0.368 - -

MNH 0.389 - - 0.248 - - –0.149 - -

NH2010 0.477 - - 0.355 - - –0.103 - -

genSet gazeNet 0.918 0.884 0.719 0.907 0.877 0.700 0.678 0.760 0.522

IRF 0.719 0.702 0.436 0.663 0.688 0.390 0.347 0.572 0.200

IRF-spec 0.720 0.701 0.465 0.663 0.687 0.419 0.350 0.571 0.220

MNH 0.792 0.606 0.340 0.742 0.579 0.287 0.381 0.401 0.106

NH2010 0.326 0.543 0.087 0.149 0.509 0.014 –0.405 0.325 –0.162

Kappa values are shown for five event classification algorithms and four data sets. The highest-scoring algorithm in each cell is printed in bold,
while the runner-up is underlined. Data are plotted in Fig. 2
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Table 3 Per-event event-level Cohen’s kappa for each event class, overall event-level Cohen’s kappa and event error rate (EER) for gazeNet
(trained including trials recorded at 200 Hz, cf. Table 1) and gazeNet-500 (trained excluding these trials)

Data set gazeNet gazeNet-500

Fixations Saccades PSO All EER′ Fixations Saccades PSO All EER′

trainSet/-500 0.971 0.977 0.623 0.840 10.20 0.982 0.973 0.733 0.869 8.05

valSet/-500 0.978 0.978 0.772 0.881 7.10 1.000 1.000 0.774 0.909 6.02

testSet RA/-500 0.966 0.966 0.760 0.861 7.60 0.966 0.955 0.749 0.859 8.04

testSet MN/-500 0.973 0.969 0.783 0.871 6.85 0.958 0.944 0.754 0.854 7.08

EER′ = EER*100. Unmatched negative events were disregarded for the per-event values. For gazeNet, each of the data sets on which performance
was tested were as originally used in Zemblys et al. (2019), while for gazeNet-500, data sets excluding 200 Hz data were used. Data are plotted
in Fig. 3

Replication using only 500-Hz data

In this section, we assess the impact of the inclusion of trials
from the lund2013-image data set that were recorded at 200
Hz on the results reported in Zemblys et al. (2019). We do
so in two ways. First, we retrained the gazeNet classifier
using only data from trails recorded at 500 Hz. Second,
we evaluated the performance of the retrained gazeNet
classifier, as well as all the algorithms used by Zemblys
et al. (2019), on a testing data set containing only data
recorded at 500 Hz. In this section, data sets containing only
500 Hz data, or classifiers trained on only 500 Hz data will
be identified by the suffix -500.

To retrain gazeNet, the same training and valida-
tion sets were used as in Zemblys et al.’s (2019,
see their Table 9), except that trails recorded at 200
Hz were removed. Specifically, data from the files
TL48_img_Europe_labelled_RA.mat and TL48_img_

Rome_labelled_RA.mat were removed from the training
set, and the files UH47_img_Europe_labelled_RA.mat

and UH47_img_Europe_labelled_MN.mat from the val-
idation set. This left 36.6s of data in the training set,
compared to 43.8s originally, and 2 × 19.8 s, compared to
2×23.8 s in the validation set (see Table 1 in, Zemblys et al.
2019). The same procedure as reported in Zemblys et al.
(2019) was used to train this new classifier. Specifically,

first a new gazeGenNet was trained using only the 500-Hz
data. The resulting gazeGenNet-500 was then used to gen-
erate a new genSet-500 and gazeNet-500 was then trained
using this genSet-500. All model and training parameters
for gazeGenNet-500 and gazeNet-500 were the same as in
Zemblys et al. (2019), except that 1500 instead of 2000
training steps were used when training gazeGenNet-500
because the removal of the trials recorded at 200 Hz left less
input data.

Tables 3 (cf. Table 7 of Zemblys et al. 2019) and Table 4
(cf. Table 8 of Zemblys et al. 2019) report comparisons
between the event-level agreement scores achieved with
the original gazeNet classifier and with gazeNet-500. As
can be seen in Tables 3 and 4, gazeNet-500 performed
nearly identical to gazeNet across all overall and per-event
event level agreement scores. The single exception is that
gazeNet-500 performed substantially better than gazeNet
on PSOs in the training set (Table 3). These results show
that the inclusion of 200-Hz data when training gazeNet
had only minimal impact on the results reported in Zemblys
et al. (2019), and underscores that training on a data set that
contained imperfections is not an error.

We furthermore evaluated gazeNet-500, as well as
the original gazeNet classifier and the other three algo-
rithms on only the trials in the lund2013-image-test
data set that were recorded at 500 Hz. Specifically,

Table 4 Per-event event-level Cohen’s kappa values for each event class for gazeNet (trained including trials recorded at 200 Hz, cf. Table 2) and
gazeNet-500 (trained excluding these trials). Kappa values are shown for four data sets

Data set gazeNet gazeNet-500

Fixations Saccades PSO Fixations Saccades PSO

lund2013-image-test/-500 0.957 0.945 0.762 0.954 0.936 0.745

GazeCom 0.908 0.835 - 0.909 0.829 -

humanFixationClassification 0.650 - - 0.719 - -

genSet/-500 0.907 0.877 0.700 0.939 0.898 0.647

Unmatched negative events were disregarded. For gazeNet, the original data sets from Zemblys et al. (2019) (including 200-Hz data) were used,
while for gazeNet-500, data sets lund2013-image-test-500 and genSet-500 excluding 200-Hz data were used. Data are plotted in Fig. 4
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Table 5 Per-event event-level Cohen’s kappa values for each event class for testing sets including trials recorded at 200 Hz (lund2013-image-test,
cf. Table 2) and excluding these trials (lund2013-image-test-500). Kappa values are shown for six classifiers

Algorithm lund2013-image-test lund2013-image-test-500

Fixations Saccades PSO Fixations Saccades PSO

gazeNet-500 0.952 0.939 0.748 0.954 0.936 0.745

gazeNet 0.957 0.945 0.762 0.956 0.940 0.769

IRF 0.755 0.842 0.582 0.788 0.861 0.625

IRF-spec 0.759 0.836 0.668 0.788 0.855 0.700

MNH 0.814 0.741 0.561 0.858 0.803 0.635

NH2010 0.563 0.789 0.289 0.591 0.821 0.318

Unmatched negative events were disregarded. Data are plotted in Fig. 5

the files UL47_img_konijntjes_labelled_RA.mat

and UL47_img_konijntjes_labelled_MN.mat were
removed from the testing data set. Table 5 presents a
comparison of the per-event event level agreement scores
obtained with all classifiers on the lund2013-image-test
data set including trials recorded at 200 Hz as origi-
nally reported in Table 8 of Zemblys et al. (2019), to the
lund2013-image-test-500 set excluding these 200 Hz trials.
It is readily appreciated from the table that while some of
the classifiers (MNH and NH2010 especially) produced
higher agreement scores for lund2013-image-test-500 than
lund2013-image-test, the ranking of classifiers by agree-
ment was not affected. It is furthermore seen that the
agreement scores for the machine learning-based classifiers
was almost identical for the two data sets, showing that they
were robust to the inclusion of 200-Hz data.

Conclusions

In summary, we have discussed the claims of Friedman
(2020) of errors and problems with our gazeNet paper (Zem-
blys et al., 2019). First, we have discussed that the imperfec-
tions in the training and testing data sets discussed by Fried-
man (2020) underscore that our procedure to create event
classifiers through deep learning methods is sound. Indeed,
our results consistently show that the gazeNet architecture
delivers an event classifier that is robust to these imper-
fections and flexible enough to generalize and attain high
agreement when evaluated on different data sets. Second,
we have pointed out that the evaluations in the gazeNet
paper were carried out according to standard practice on
separate unseen data from the same set as the training set,
and on completely different data sets provided by other
research groups. Third, we have discussed and evaluated
three different approaches to binary event-level agreement
scoring. We found that our suggested new approach of dis-
regarding missed classifications of events other than the

event being evaluated yielded an agreement score that best
reflects agreement on only the event of interest, which was
our purpose for this procedure. This approach also yields
only minimal differences from the agreement scores using
the approach of Zemblys et al. (2019), and does not lead
to different conclusions than those reported in that paper.
We find that, in contrast, the approach suggested by Fried-
man (2020) significantly overpenalizes the agreement score
in this situation. Last, we report results that are nearly iden-
tical to those in Zemblys et al. (2019) both when training
gazeNet with only 500-Hz data and when evaluating the per-
formance of all classifier algorithms with only 500-Hz data.
These findings underscore that the “errors” in the data sets
indicated by Friedman (2020) had minimal impact on our
results and did not affect our conclusions.
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Appendix

The data in Tables 1–5 are presented in figure form in
Figs. 1–5.
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Fig. 1 Visualization of the data in Table 1. Per-event event-level Cohen’s kappa values for each event class for the three different agreement
evaluation approaches

Fig. 2 Visualization of the data in Table 2. Per-event event-level Cohen’s kappa values for each event class for the three different agreement
evaluation approaches. Kappa values are shown for five event classification algorithms in each panel and, across the rows of panels, for four data
sets
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Fig. 3 Visualization of the data in Table 3. Per-event event-level Cohen’s kappa values for each event class and event error rate (EER) values
for gazeNet (trained including trials recorded at 200 Hz) and gazeNet-500 (trained excluding these trials). Unmatched negative events were
disregarded

Fig. 4 Visualization of the data in Table 4. Per-event event-level Cohen’s kappa values for each event class for gazeNet (trained including trials
recorded at 200 Hz) and gazeNet-500 (trained excluding these trials). Kappa values are shown for four data sets. Unmatched negative events were
disregarded

Fig. 5 Visualization of the data in Table 5. Per-event event-level
Cohen’s kappa values for each event class for testing sets includ-
ing trials recorded at 200 Hz (lund2013-image-test) and excluding

these trials (lund2013-image-test-500). Kappa values are shown for six
classifiers. Unmatched negative events were disregarded
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