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Accumulating evidence supports a role of various damage-associated molecular patterns
(DAMPs) in progression of lung cancer, but roles of genetic variants of the DAMPs-related
pathway genes in lung cancer survival remain unknown. We investigated associations of
18,588 single-nucleotide polymorphisms (SNPs) in 195 DAMPs-related pathway genes with
non-small cell lung cancer (NSCLC) survival in a subset of genotyping data for 1,185 patients
from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated
the findings in another independent subset of genotyping data for 984 patients from Harvard
Lung Cancer Susceptibility Study. We performed multivariate Cox proportional hazards
regression analysis, followed by expression quantitative trait loci (eQTL) analysis, Kaplan-
Meier survival analysis and bioinformatics functional prediction. We identified that two SNPs
(i.e., CLEC4E rs10841847 G>A and BIRC3 rs11225211 G>A) were independently
associated with NSCLC overall survival, with adjusted allelic hazards ratios of 0.89 (95%
confidence interval=0.82-0.95 and P=0.001) and 0.82 (0.73-0.91 and P=0.0003),
respectively; so were their combined predictive alleles from discovery and replication
datasets (Ptrend=0.0002 for overall survival). We also found that the CLEC4E rs10841847 A
allele was associated with elevated mRNA expression levels in normal lymphoblastoid cells
and whole blood cells, while the BIRC3 rs11225211 A allele was associated with increased
mRNA expression levels in normal lung tissues. Collectively, these findings indicated that
genetic variants of CLEC4E and BIRC3 in the DAMPs-related pathway genes were
associated with NSCLC survival, likely by regulating the mRNA expression of the
corresponding genes.

Keywords: non-small cell lung cancer, single-nucleotide polymorphism, variant, damage-associated molecular
pattern-related pathway, survival
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INTRODUCTION

Lung cancer remains one of the leading causes of cancer-related
mortality in the United States. In 2021, it is estimated that there
will be more than 235,000 new cases of and nearly 131,000 will
die from lung cancer in the United States (1). Histologically,
about 85% of lung cancer patients are classified as non-small cell
lung cancer (NSCLC), and the majority of these cases present
with local progression or distal metastasis at the time of diagnosis
(2). Although there are some clinical predictors and newer
treatment options for NSCLC, the clinical outcomes remain
poor, largely because of the remarkable heterogeneity in the
phenotypes of the early NSCLC, showing diverse innate
aggressiveness. Some cases with an early stage of the disease
have a favorable prognosis and could be spared the unnecessary
therapy, while for other patients with an advantaged stage, the
five-year survival rate remains poor, despite the use of all the
available targeted and immune therapies (3). Therefore,
identification of additional prognostic factors for NSCLC-
specific survival could add more value to precision medicine
of NSCLC.

Damage-associated molecular patterns (DAMPs) are special
molecules that are released from the damaged tissues or by the
activated immune cells, alerting the organism about the
incoming endogenous danger including cancer, inflammation,
and tissue repair (4). There is some convincing evidence that
DAMPs could recruit specific molecules of the innate and
adaptive immune system to tumor microenvironment,
ultimately inducing a tumor-targeting immune response (5, 6).
Accumulating evidence has revealed the role of various DAMPs
in NSCLC progression. For example, one study reported that the
high mobility group box 1, one of DAMPs, was found to enhance
NSCLC cell migration, leading to metastasis of NSCLC (7).
Other studies showed that S100 family members, which also
serve as DAMPs, drove NSCLC cell proliferation and invasion (8,
9). Recently, targeting the heat-shock protein family members
showed anticancer therapeutic potential for NSCLC patients
(10–12). Furthermore, increasing preclinical evidence has
indicated that monitoring DAMPs in NSCLC patients could
have potential prognostic value and some positive effects on the
treatment outcomes (11, 13–15).

As we all know, innate immune interactions in the cancer
context include recognition by innate cell populations, dendritic
cells and macrophages in response to DAMPs (16). Dying
tumor cells would express or release DAMPs for activation of
immune cells. That suggests that DAMPs could be the trigger
Abbreviations: SNPs, single nucleotide polymorphisms; NSCLC, Non-small cell
lung cancer; DAMPs, Damage-associated molecular patterns; LUAD, lung
adenocarcinoma; LUSC: lung squamous cell carcinoma; GWAS, Genome-Wide
Association Study; BIRC3, baculoviral IAP repeat containing 3; CLEC4E,C-type
lectin domain family 4 member E;PLCO, the Prostate, Lung, Colorectal and
Ovarian Cancer Screening Trial; HLCS, Harvard Lung Cancer Susceptibility; OS,
overall survival; DSS: disease-special survival; LD, linkage disequilibrium; FDR,
false discovery rate; BFDP, Bayesian false discovery probability; eQTL, expression
quantitative trait loci; TCGA, the Cancer Genome Atlas; ROC, receiver operating
characteristic; EAF, effect allele frequency; HR, hazards ratio; CI: confidence
interval; AUC, area under the receiver operating characteristic curve; GTEx,
genotype-tissue expression project; NPA, number of protective alleles.

Frontiers in Oncology | www.frontiersin.org 2
activating tumor innate immunity. But the role of DAMPs in
tumor immunity is not completely understood and presents
complicated activities of tumor immunity. For example,
HMGB1 could trigger both antitumor immunity inflammation
and immunotolerance (17).

However, the detection of singleDAMP inNSCLCpatientsmay
be possible but not be accurate enough for predicting NSCLC
prognosis or may cause conflicting results (18). Monitoring of
DAMP-associated processes would be more accurate to predict
prognosis ofNSCLCpatients butmuchdifficult (19). Recent studies
suggest that identification of single-nucleotide polymorphisms
(SNPs) in certain pathway-related genes may help identify novel
biomarkers for NSCLC progression and survival (20, 21). Such a
post-genome-wide association study (GWAS) strategy with a
pathway-based analysis is hypothesis driven, which uses available
genotyping data from previously published GWAS datasets to
identify functional genetic variants in the targeted biological
pathway genes and may clarify possible molecular mechanisms
underlying the observed associations withNSCLC survival (22, 23).
Therefore, to better understand the value of DAMPs-associated
processes in the prognosis of NSCLC survival, we hypothesize that
genetic variants of DAMPs-related pathway genes are associated
with NSCLC survival, and we tested this hypothesis using
genotyping data from two publicly available NSCLC GWASs.
MATERIALS AND METHODS

Study Populations
The discovery genotyping data were derived from a GWAS dataset
from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer
Screening Trial. The age of all the participants were between 55-74
years, who were recruited between 1993 and 2001 in the United
States. These participants were randomly assigned to a screening
group that received a trial intervention or a control group that
received usual care and followed up for 13 years from the time of
randomassignment (24, 25).During the follow-up 1,185 patients in
the screeninggroupwere diagnosedwithNSCLC, and their detailed
clinical information including histologic diagnosis, tumor stage,
treatment method, and survival time was recorded. Genomic DNA
was extracted from NSCLC patients for genotyping using the
Illumina HumanHap240Sv1.0 and HumanHap550v3.0 (dbGaP
accession: phs000093.v2.p2 and phs000336.v1.p1) (26–29). All
the subjects provided a written informed consent under a
protocol approved by the review board of each participating
institutions. In contrast, the validation dataset comprised
demographic data and clinical information on 984 Caucasian
patients with histology-confirmed NSCLC from the Harvard
Lung Cancer Susceptibility (HLCS) Study launched in 1992 (30).
Genomic DNA from the HLCS NSCLC patients was genotyped
using the Illumina Humanhap610‐Quad array. The present study
was approved by the Internal Review Board of Duke University
School ofMedicine (#Pro00054575) andwas authorized to have the
access so the GWAS datasets by the National Institutes of Health
Data Access Committee (dbGaP, #6404). Supplementary Table S1
showed the detail of clinical characteristics between the PLCO trial
October 2021 | Volume 11 | Article 717109
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and the HLCS study. Since the PLCO discovery data comprised
more available covariates than theHLCSvalidation dataset, we only
used the PLCO dataset for further multivariate analyses in the
present study.

Gene Selection and SNP Genotyping
We searched the Molecular Signatures Database of the Gene Set
Enrichment Analysis (GSEA) website (http://software.
broadinstitute.org/gsea/msigdb/search.jsp) for the genes of a
defined pathway, and we identified 195 damage-associated
molecular pattern-related pathway genes located only on the
autosomes (Supplementary Table S2).We extracted SNPs within ±
2 kilobase flanking regions of 195 damage-associated molecular
pattern-related pathway genes from the PLCO trial and performed
imputation with IMPUTE2 using the reference from the 1,000
Genomes Project European data (phase 3). As a result, a total of
18,588 SNPs (1,657 genotyped and 16,931 imputed) remained for
further analysis after quality control [presented in Figure 1: located
within gene region ± 2kb (hg19), MAF ≥ 5%, HWE P ≥ 10-5,
individual call rate ≥ 95% (for genotyping SNPs), and imputation
info score ≥ 0.8 (for imputed SNPs)]. The distribution of
imputation score was presented in Supplementary Figure S1.

Statistical Methods
In the discovery PLCO dataset, we first assessed associations
between all available candidate SNPs and NSCLC survival in a
single-locus Cox proportional hazards regression analysis using
the GenABEL package of R software. SNPs were coded under an
additive genetic model according to the number of minor alleles.
We performed Cox analyses with adjustment for available
covariates in the PLCO trial (including age, sex, histology,
Frontiers in Oncology | www.frontiersin.org 3
smoking status, tumor stage, chemotherapy, surgery,
radiotherapy and the first four principal components). The
dependent variables included survival time and survival status
recorded during the follow-up or at the endpoint of the PLCO
trial. In consideration of the high level of linkage disequilibrium
(LD) among these candidate SNPs, instead of using the stringent
false discovery rate (FDR) method for multiple test correction, we
also employed Bayesian false discovery probability (BFDP) with a
cutoff value of 0.80 for multiple testing correction to lower the
probability of potentially false positive results, as is recommended
(31, 32). We assigned a prior probability of 0.10 and a detectable
upper boundaryHRof 3.0 for an associationwith variant genotypes
or minor alleles of the SNPs with P< 0.05 (33).

By using the HLCS validation dataset, we replicated the
associations of the discovered significant SNPs associated with
NSCLC survival in multivariate Cox regression models
comparably with a significance level of P< 0.05. To identify
independent SNPs associated with NSCLC survival, we
subsequently performed a multivariate stepwise Cox regression
model with the PLCO trial. In addition to available clinical
variables, other 28 previously published SNPs associated with
NSCLC survival in the same PLCO dataset were also included in
the model for further adjustment.

Next, we performed a meta-analysis to combine the identified
SNPs from the PLCO trial with those in the HLCS dataset using
the Cochran’s Q statistics and I2 to assess the heterogeneity.
Since no heterogeneity was observed between discovery trial and
validation datasets (Phet> 0.10 and I2 < 50%), we implemented
fixed-effects model for the meta-analysis. After that, we evaluated
cumulative effects of all identified SNPs on NSCLC survival
probability. For those remained in the final model, we combined
FIGURE 1 | The overall procedures of the present study. DAMP, damage-associated molecular pattern; SNPs, single-nucleotide polymorphisms; MAF, minor allelic
frequency; HWE, Hardy-Weinberg Equilibrium; PLCO, The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; HLCS, the Harvard Lung Cancer
Susceptibility Study; NSCLC, non-small cell lung cancer.
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the protective alleles into one variable as a genetic score. NSCLC
patients were categorized into four groups (i.e., 0, 1, 2, and 3-4)
according to the number of their protective alleles (NPA). For
the stratified analyses by subgroups, we calculated inter-study
heterogeneity and evaluated possible effect modification or
interaction. We constructed a survival prediction model by
using the receiver operating characteristic (ROC) curve with
the “survival” and “time ROC” packages of R software (version
3.6.2). Sensitivity, specificity, and time-dependent area under the
curve (AUC) were used to measure the ability of survival models
to predict NSCLC survival in association with both clinical and
genetic variables (34). To evaluate the genotype-phenotype
correlation between genotypes of identified SNPs and mRNA
expression levels of the corresponding genes, we employed
expression quantitative trait loci (eQTL) analyses with a
general linear regression model using data from the 373
European descendants included in the 1,000 Genomes Project
(Phase 3) (35), the genotype-tissue expression (GTEx) project
(http://www.gtexportal.org/home; version V8) (36), and The
Cancer Genome Atlas (TCGA) database. Additional
bioinformatics functional prediction for the tagging SNPs were
performed with SNPinfo (37), RegulomeDB (v2.0.3) (38) (http://
www.regulomedb.org) and HaploReg V4.1 (39) (http://archive.
broadinstitute.org/mammals/haploreg/haploreg.php).

Finally, we depicted the associations between the mRNA
expression levels of genes where SNPs are located and NSCLC
survival using the Kaplan-Meier (KM) survival curves from the
online TCGA database (http://ualcan.path.uab.edu; last updated
by 09/23/2019) and from Human Protein Atlas database
Frontiers in Oncology | www.frontiersin.org 4
(https://www.proteinatlas.org/; Version: 20.1). All statistical
analyses were performed with SAS software (version 9.4; SAS
Institute, Cary, NC), unless specified otherwise.
RESULTS

Associations Between SNPs in DAMPs-
Related Pathway Genes and NSCLC in the
PLCO Trial and the HLCS Study
Baseline characteristics of NSCLC patients from the PLCO trial
and the HLCS study are described elsewhere (40), and an overall
flowchart of the present study is presented in Figure 1. Among
the acquired 18,588 SNPs in195 DAMPs-related pathway genes,
we found 315 SNPs to be significantly associated with the
NSCLC overall survival (OS) in the PLCO trial in an additive
model (Supplementary Table S3A), of which 9 SNPs remained
significant as replicated in the HLCS dataset with multiple test
correction by the BFDP (Supplementary Table S3B).

Identification of Independent SNPs Among
the Nine Significant SNPs
In stepwise multivariable Cox regression analyses, we assessed
effects of the nine validated SNPs on NSCLC survival in the
PLCO trial. We then expanded this prediction model with
adjustment for 28 previously reported SNPs in the PLCO trial.
Finally, we identified two SNPs (CLEC4E rs10841847 G>A and
BIRC3 rs11225211G>A) that remained significantly associated
with NSCLC OS (P=0.019 and 0.012) (Table 1). The results of
TABLE 1 | Two independent SNPs in a multivariate Cox proportional hazards regression analysis with adjustment for other covariables and additional 28 previously
published SNPs for NSCLC in the PLCO Trial.

Variables Category Frequency HR (95% CI)a Pa HR (95% CI)b Pb

Age Continuous 1185 1.04 (1.02-1.05) <0.0001 1.04 (1.03-1.06) <0.0001
Sex Male 698 1.00 1.00

Female 487 0.77 (0.66-0.89) 0.0005 0.71 (0.61-0.84) <0.0001
Smoking status Never 115 1.00 1.00

Current 423 1.70 (1.26-2.26) 0.0004 1.88 (1.39-2.54) <0.0001
Former 647 1.74 (1.32-2.29) <0.0001 1.90 (1.43-2.54) <0.0001

Histology Adenocarcinoma 577 1.00 1.00
Squamous cell 285 1.20 (1.00-1.45) 0.057 1.21 (1.00-1.48) 0.053
others 323 1.31 (1.10-1.55) 0.002 1.38 (1.15-1.65) 0.0005

Tumor stage I-IIIA 655 1.00 1.00
IIIB-IV 528 3.00 (2.46-3.65) <0.0001 3.45 (2.82-4.23) <0.0001

Chemotherapy No 639 1.00 1.00
Yes 538 0.57 (0.48-0.68) <0.0001 0.56 (0.47-0.68) <0.0001

Radiotherapy No 762 1.00 1.00
Yes 415 0.95 (0.81-1.12) 0.569 0.99 (0.83-1.72) 0.880

Surgery No 637 1.00 1.00
Yes 540 0.21 (0.17-0.28) <0.0001 0.20 (0.15-0.26) <0.0001

CLEC4E rs10841847 G>A GG/GA/AA 495/544/146 0.88 (0.80- 0.98) 0.019 0.88 (0.79- 0.98) 0.019
BIRC3 rs11225211 G>A GG/GA/AA 368/579/248 0.81 (0.71- 0.93) 0.003 0.83 (0.72- 0.96) 0.019
October
 2021 | Volume 11 | Article
SNP, single-nucleotide polymorphisms; NSCLC, non-small cell lung cancer; PLCO, the Prostate, Lung, Colorectal and Ovarian cancer screening trial; HLCS, Harvard Lung Cancer
Susceptibility Study; HR, hazard ratio; CI, confidence interval.
aAdjusted for age, sex, tumor stage, histology, smoking status, chemotherapy, radiotherapy, surgery, and PC1, PC2, PC3, PC4.
bOther additional 28 published SNPs were included for further adjustment: rs779901, rs3806116, rs199731120, rs10794069, rs1732793, rs225390, rs3788142, rs73049469,
rs35970494, rs225388, rs7553295, rs1279590, rs73534533, rs677844, rs4978754, rs1555195, rs11660748, rs73440898, rs13040574, rs469783, rs36071574, rs7242481,
rs1049493, rs1801701, rs35859010, rs1833970, rs254315, rs425904.rs13040574, rs469783, rs36071574, rs7242481, rs1049493, rs1801701, rs35859010, rs1833970,
rs254315, rs425904.
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meta-analysis for these two independent SNPs in each and
combined datasets are presented in Table 2, showing the
absence of heterogeneity across these two datasets.

Furthermore, as shown in Table 3, we noticed that the
CLEC4E rs10841847 A allele and the BIRC3 rs11225211 A
allele were protective alleles for NSCLC OS in the PLCO
dataset (Ptrend= 0.012 and 0.006, respectively) with similar
results for NSCLC disease-specific survival (DSS) in the PLCO
dataset (Ptrend= 0.049 and 0.017, respectively). All identified
SNPs in the present study are depicted in Manhattan plots for
both PLCO and HLCS (Supplementary Figure S2) datasets, and
regional association plots for these two independent SNPs (also
Frontiers in Oncology | www.frontiersin.org 5
including all SNPs located in their 100-kb flanking regions) are
displayed in Supplementary Figure S3.

Combined Protective Alleles of the
Two Independent NSCLC
Survival-Associated SNPs
To clarify collective effect of the two independent SNPs on
NSCLC survival, we combined their protective alleles (i.e.,
CLEC4E rs10841847 A allele and BIRC3 rs11225211 A allele)
into one variable as a genetic score. NSCLC patients were
categorized into four groups (i.e., 0, 1, 2, and 3-4) according to
the number of their protective alleles (NPA). Similarly, an
TABLE 3 | Associations of the protective alleles of two independent SNPs with OS and DSS of NSCLC in the PLCO Trial.

Alleles Frequency OSa DSSa

Death (%) HR (95% CI) P Death (%) HR (95% CI) P

CLEC4E rs10841847 G>Ab

GG 361 248 (68.70) 1.00 361 (60.66) 1.00
GA 597 396 (66.33) 0.88 (0.75-1.04) 0.134 597 (60.30) 0.92 (0.77-1.09) 0.323
AA 217 145 (66.82) 0.77 (0.62-0.95) 0.014 217 (59.91) 0.80 (0.64-0.99) 0.047

Trend test 0.012 0.049
BIRC3 rs11225211 G>Ac

GG 812 559 (68.84) 1.00 812 (61.82) 1.00
GA 325 206 (63.38) 0.79 (0.67-0.93) 0.004 325 (56.92) 0.80 (0.67-0.95) 0.010
AA 37 23 (62.16) 0.82 (0.54-1.25) 0.351 37 (56.76) 0.86 (0.55-1.33) 0.488
Trend test 0.006 0.017

NPAd,e

0 246 176 (71.54) 1.00 246 (62.20) 1.00
1 519 342 (65.90) 0.83 (0.69-0.99) 0.042 519 (60.69) 0.87 (0.71-1.05) 0.153
2 323 219 (67.80) 0.74 (0.60-0.91) 0.004 323 (59.75) 0.76 (0.61-0.74) 0.012
3-4 86 51 (59.30) 0.58 (0.42-0.80) 0.0008 86 (54.65) 0.64 (0.46-0.90) 0.009

Trend test 0.0002 0.002
Dichotomized NPA
0-1 765 518 (67.71) 1.00 765 (61.18) 1.00
2-4 409 270 (66.01) 0.80 (0.69-0.93) 0.004 409 (58.68) 0.81 (0.69-0.95) 0.009
October 2021
 | Volume 11 | Article 7
SNP, single nucleotide polymorphism; NSCLC, non-small cell lung cancer; PLCO, Prostate, Lung, Colorectal and Ovarian cancer screening trial; HR, hazard ratio; CI, confidence interval;
OS, overall survival; DSS, disease-specific survival. NPA, number of protective alleles.
aAdjusted for age, sex, smoking status, histology, tumor stage, chemotherapy, surgery, radiotherapy and principal components.
b10 missing date were excluded.
c11 missing date were excluded.
d11 missing date were excluded.
eProtective alleles were CLEC4E rs10841847_A and BIRC3 rs11225211_A.
TABLE 2 | Associations of two significant SNPs with overall survival of patients with NSCLC in both discovery and validation datasets from two previously published GWASs.

SNPs Allelea Gene PLCO (n = 1185) HLCS (n = 984) Combined-analysis

FDR BFDP EAF HR (95% CI)b Pb EAF HR (95% CI)c P c P het
d I 2 HR (95% CI)e Pe

rs10841847f G/A CLEC4E 0.61 0.79 0.44 0.88 (0.79-0.97) 0.012 0.42 0.89 (0.80-0.99) 0.039 0.870 0 0.89 (0.82-0.95) 1.41x10-3

rs11225211f G/A BIRC3 0.61 0.69 0.17 0.82 (0.72-0.95) 0.006 0.16 0.81 (0.68-0.98) 0.029 0.940 0 0.82 (0.73-0.91) 3.75x10-4
SNPs, single-nucleotide polymorphisms; NSCLC, non-small cell lung cancer; GWAS, genome-wide association study; PLCO, the Prostate, Lung, Colorectal and Ovarian cancer screening
trial; HLCS, Harvard Lung Cancer Susceptibility Study; EAF, effect allele frequency; HR, hazard ratio; CI, confidence interval; FDR, false discovery rate; BFDP, Bayesian false discovery
probability; LD, linkage disequilibrium.
aReference/effect allele.
bAdjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2, PC3 and PC4.
cAdjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2 and PC3.
dPhet: P value for heterogeneity by Cochrane’s Q test.
eMeta-analysis in the fix-effects model.
fImputed SNP in the PLCO trial.
17109
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increased NPA was associated with better NSCLC OS and DSS in
the PLCO dataset (Ptrend= 0.0002 and 0.002, respectively) after
adjustment for available covariates (Table 3). Furthermore, we
also dichotomized all NSCLC patients into two groups: 0-1 or 2-
4 NPA. As shown in Table 3, compared with the 0-1 NPA group,
the 2-4 group had a significantly favorable NSCLC OS and DSS
in the PLCO dataset (Ptrend= 0.004 and 0.009, respectively). In
addition, we further constructed KM survival curves to visualize
the associations between NPA and NSCLC survival. As shown in
Figures 2A, B, compared with the 2-4 NPA group, NSCLC KM
survival curves of the 0-1 NPA group significantly declined (Log-
rank P= 0.024 for DSS and Log-rank P= 0.027 for OS).

Stratified Analysis for the Effect of NPA on
NSCLC Survival
To evaluate whether the effect of NPA on NSCLC survival was
confounded by other clinical covariates, we performed stratified
analysis in the PLCO dataset. Compared with NSCLC patients
having 0-1 NPA, those with 2-4 NPA had a significantly better
NSCLC survival, except for the subgroup with age>71, female,
former smoking status, late tumor stage, and clinical therapy. No
significant interactions between protective alleles and each
covariate on NSCLC survival were observed (Supplementary
Table S5).

Time-Dependent AUC and ROC Curves of
the Two Independent SNPs for NSCLC
Survival Prediction
To further evaluate predictive value of the two independent SNPs,
time-dependent AUC and ROC curves were performed for NSCLC
patients in the presence of available clinical covariates. In the PLCO
trial, although the time-dependent AUC increased when protective
alleles were added, the predictive performance of 60-month (5-year)
NSCLC survival ROC curves was non-significantly improved
(P=0.074 for DSS and P=0.070 for OS) (Supplementary Figures
S4B, D). However, the predictive performance of 120-month (10-
year) NSCLC survival ROC curves was significantly improved by
adding protective alleles (P=0.028 for DSS and P=0.046 for OS)
(Figures 2C, D).

Bioinformatics Functional Prediction of the
Two SNPs
To assess specific biological functions of the two independent SNPs
associated with NSCLC survival, we explored SNP-related
genomics data using an online bioinformatics tool (HaploReg,
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.
php). It appears that CLEC4E rs10841847 is located in a DNase
district, and a G>A change may be involved in modifying
several protein motifs; BIRC3 rs11225211 is predicted to be
located in an enhancer histone marker district and a G>A change
may be involved in disturbing several proteins’ expression
(Supplementary Table S6). According to the data extracted from
the Encyclopedia of DNA Elements (ENCODE) project, CLEC4E
rs10841847 is probably located on the H3K4Me1 motif, while
BIRC3 rs11225211 is located in the region with enriched
H3K4Me1 and H3K4Me3 as well as the possible binding site of
Frontiers in Oncology | www.frontiersin.org 6
Txn factor (Supplementary Figure S5). These findings imply a
strong possibility that these two SNPs may modulate their gene
expression levels through transcriptional regulation.

Two Independent SNPs and Their
Corresponding mRNA Expression
To further investigate molecular mechanisms underlying the
associations between two identified SNPs and NSCLC survival,
we explored correlations between protective alleles of two
identified SNPs and their corresponding mRNA expression
levels using eQTL analyses. In the RNA-Seq data on
lymphoblastoid cell lines from 373 European descendants
(obtained from the 1000 Genomes Project), the rs10841847 A
allele showed a significant correlation with increased expression
levels of CLEC4E mRNA in additive and dominant models
(P=0.001 and P=0.0002, respectively) (Figures 2E, F), but not
in recessive models (Supplementary Figure S6A). The
rs11225211 A allele showed no correlation with BIRC3 mRNA
expression in any of additive, dominant, or recessive models
(Supplementary Figures S6B–D). Moreover, we also performed
the eQTL analysis by extracting data from the GTEx Project. The
results showed that rs10841847 A allele was significantly
associated with elevated CLEC4E mRNA expression levels in
normal whole blood samples (P<0.0001) (Figure 2G), but not in
normal lung tissues (Supplementary Figure S6E). The
rs11225211 A allele was significantly correlated with lower
BIRC3 mRNA expression levels in normal lung tissues
(P=0.027) (Figure 2H), but not in normal whole blood
samples (Supplementary Figure S6F).

CLEC4E and BIRC3 Expression Levels and
Lung Cancer Survival
Finally, we explored mRNA expression of CLEC4E and BIRC3 in
normal lung tissues and primary lung cancer tissues available
from the TCGA database (data obtained from http://ualcan.path.
uab.edu/index.html). As shown in (Supplementary Figures
S7A–D), compared with normal lung tissues, mRNA
expression levels of CLEC4E were significantly lower in both
primary lung adenocarcinoma tissues and lung squamous cell
carcinoma tissues; mRNA expression levels of BIRC3 were
significantly higher in primary lung adenocarcinoma tissues,
but lower in lung squamous cell carcinoma tissues. Notably, as
shown by the KM survival curve in Supplementary Figures S7G, H,
lower mRNA expression levels of BIRC3 were significantly
associated with better survival of lung adenocarcinoma in two
different online databases. However, mRNA expression levels of
CLEC4E showed no association with NSCLC survival in these
databases (Supplementary Figures S7E, F, I).
DISCUSSION

In the present study, we evaluated the associations between
18,588 SNPs of a set of 195 DAMPs-related pathway genes and
NSCLC survival by using available genotyping and clinical
outcome data from two previously published NSCLC GWAS
October 2021 | Volume 11 | Article 717109
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datasets. Using this pathway approach, we identified two SNPs
(i.e., CLEC4E rs10841847 G>A and BIRC3 rs11225211 G>A) that
were independently associated with NSCLC survival. In addition,
we found that the rs10841847 A allele and rs11225211 A allele
Frontiers in Oncology | www.frontiersin.org 7
were associated with significantly higher CLEC4E (in peripheral
blood lymphocytes from 1000 Genomes) and lower BIRC3
mRNA expression (in normal lung tissues) levels, respectively.
Moreover, we observed that levels of both CLEC4E and BIRC3
A B

D

E F

G H

C

FIGURE 2 | Two independent SNPs in DAMP-related pathway genes predict NSCLC patient’s survival and eQTL analysis. Kaplan-Meier survival curves of the
combined risk alleles (0-1 vs. 2-4) of CLEC4E rs10841847 G>A and BIRC3 rs11225211 G>Ain the PLCO trial for DSS (A) and OS (B). The ten-year NSCLS DSS
prediction by ROC curve based on clinical variables plus protective alleles (C). The ten-year NSCLS OS prediction by ROC curve based on clinical variables plus
protective alleles (D). The correlation of rs10841847 genotypes and CLEC4E mRNA expression in additive (E) and dominant model (F) from the 1000 Genomes
Project. The correlation of rs10841847 and CLEC4E mRNA expression in whole blood samples from the GTEx (G). The correlation of rs11225211 and BIRC3 mRNA
expression levels in normal lung tissues from the GTEx (H). PLCO, The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; DSS, disease-specific
survival; OS, overall survival; NSCLC, non-small cell lung cancer; ROC, receiver operating characteristic; GTEx, Genotype-Tissue Expression project.
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mRNA expression were altered in NSCLC tissues and that a
higher expression level of BIRC3 mRNA was significantly
associated with a poorer survival in NSCLC patients.

To date, there was no published report that described an
association between genetic variants of CLEC4E and NSCLC
survival. Because monitoring of the DAMPs-associated processes
is difficult, we instead investigated SNPs in DAMPs-related
pathway genes as independent prognostic biomarkers for
NSCLC survival in a multivariate analysis. This multivariate
model included adjustment for available covariates (i.e., age,
sex, tumor stage, histology, smoking status, chemotherapy,
radiotherapy, and surgery) as well as 28 previously published
NSCLC survival-associated SNPs. As a result, we identified these
two SNPs (i.e., rs1084147 and rs11225211) of the pathway genes,
which collectively predicted prognosis of NSCLC patients.

CLEC4E is a C-type lectin domain family 4 member E (also
known as MINCLE) that has been implicated in stimulating cell
death-induced DAMPs, known to play a key role in antifungal
and antibacterial immunity (41). It is known that CLEC
receptors have potential regulatory effects on immune cell
trafficking and modulatory effects on cancer cell activity in
tumor microenvironment (TMB). But so far, there is no study
about the role of CLEC4 as an immune regulator of TMB.
Recently, it has been shown that CLEC4E is involved in
enhancing the aggressiveness of urothelial cancer (42), and a
new reported inhibitor of cancer cell invasion was identified
based on its role in binding to the CLEC4E receptor (43).
However, few studies have investigated the roles of CLEC4E in
NSCLC. To our knowledge, the present study is the first to report
an association between genetic variants of CLEC4E and NSCLC
survival. Notably, the CLEC4E rs10841847 G>A showed a
significant protective effect on NSCLC survival and a
significant association with increased CLEC4E mRNA
expression levels in both normal lymphoblastoid cells and
whole blood cells. Moreover, CLEC4E mRNA expression was
much more weakened in NSCLC tissues than in normal lung
tissues. These observations imply that CLEC4Emay function as a
suppressor gene in NSCLC but additional functional studies are
needed to support this speculation.

BIRC3 (also known as baculoviral IAP repeat containing 3)
encodes the protein c-IAP2, an inhibitor of an apoptosis-associated
proteins family. BIRC3 has been shown to regulate the molecular
signaling cell apoptosis, inflammatory signaling, cell proliferation
and migration (44, 45). Previous studies have revealed that
accumulated BIRC3 contributes to tumor progression in several
malignancies (46, 47), and the expression levels of BIRC3 have been
shown to be correlated with prognosis of patients with different
cancers (48, 49). In the present study, we evaluated associations
between genetic variants of BIRC3 and NSCLC survival and found
that the BIRC3 rs11225211 G>A had a significant protective effect
on NSCLC survival. Interestingly, we also found that BIRC3mRNA
expression was accumulated conspicuously in lung adenocarcinoma
tissues but weakened in lung squamous cell carcinoma tissues in the
TCGA dataset. Additional studies are needed to explore if BIRC3
may serve as a potential biomarker of lung adenocarcinoma.
Furthermore, the lower BIRC3 mRNA expression was obviously
Frontiers in Oncology | www.frontiersin.org 8
associated with a better survival in patients with lung cancer in the
Human Protein Atlas database. A previous study suggested that
BIRC3 might play a role of tumor suppressor, because its deficiency
was associated with poor prognosis of the patients (50), which is
consistent with our data. Taken together, these results suggest that
BIRC3 may function as a suppressor gene in NSCLC, but this
speculation also needs to be substantiated in additional molecular
biology experiments and clinical studies in the future.

Despite the above-mentioned significant observations, there are
several limitations in the present study. First, NSCLCpatients in both
discovery and validation datasets were recruited only fromCaucasian
populations, further validation in other NSCLC patient cohorts of
different ethnicities should be pursued. Additionally, the PLCO
discovery and HLCS replication datasets had differences in the
distributions of baseline characteristics, which may partially
influence the replication results, leading to fewer significant SNPs
being identified. Finally, the sample sizes of these two datasets were
still not large enough toperformtheFDRtest formultiple comparison
correction; however, considering that nearly 91% of selected SNPs
were imputed in the present study, the BFDP test might be more
appropriate for these highly correlated SNPs under investigation.
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