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Dynamic cultivation using a radial flow bioreactor (RFB) has gained increasing interest as a method of
achieving bone regeneration. In order to enhance bone generation in large bone defects, it is necessary to
use an RFB to expand the primary cells such as bone marrow cells derived from biotissue. The present
study aimed to evaluate the cell expansion and osteogenic differentiation of rat bone marrow cells
(rBMC) when added to basic fibroblast growth factor containing medium (bFGFM) or osteogenic dif-
ferentiation factor containing medium (ODM) under dynamic cultivation using an RFB. Cell proliferation
was evaluated with a DNA-based cell count method and histological analysis. An alkaline phosphatase
(ALP) activity assay and immunohistochemistry staining of osteogenic markers including BMP-2 and
osteopontin were used to assess osteogenic differentiation ability. After culture for one week, rBMC cell
numbers increased significantly under dynamic cultivation compared with that under static cultivation
in all culture media. For different culture media in dynamic cultivation, bFGFM had the highest increase
in cell numbers. ALP activity was facilitated by dynamic cultivation with ODM. Furthermore, both BMP-2
and osteopontin were detected in the dynamic cultivation with ODM. These results suggested that
bFGFM promotes cell proliferation and ODM promotes osteogenic differentiation of rBMC under dynamic
cultivation using an RFB.
© 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

Bone tissue engineering is a rapidly developing field aimed at
satisfying the need for replacing diseased or damaged bone.

Large bone defects caused by trauma, inflammation, tumors, or
congenital abnormalities are often treated with bone grafts. Cur-
rent treatments of large bone defects are based on autologous or
allogeneic bone grafts that have several limitations. Autologous
bone grafts are preferred but the treatment suffers from a limited
supply and donor site morbidity [1]. Allogeneic bone grafts,
although in more abundant supply, have been implicated in disease
transmission [2].
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Furthermore, it is well accepted that ideal bone transplants involve
cell-scaffold constructs in which target cells are able to expand and
develop according to their type. Transplantation of rat bone
marrow cell-scaffold constructs in cranial defect models leads to a
substantial increase in bone formation compared to that in scaf-
folds containing no cells at all [3]. However, the scaffolds intended
to bridge such defects would be sufficiently large to complicate
in vitro culture, because bone defects that require such surgical
correction are large. Diffusion of nutrients into the scaffold and
excretion of metabolites may not satisfy the metabolic re-
quirements of the seeded cells and might result in the suppression
of cell growth. Accordingly, a solution to this problem is to culture
seeded scaffolds in a system that can enhance nutrient delivery,
and various culturing systems have been developed as a result.
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Bioreactors, of which spinner flasks [4] and rotating wall vessels
[5] are two examples, provide the necessary conditions for pro-
moting and maintaining tissue culture. In these types of bio-
reactors, scaffolds are fixed or allowed to float and the culture
medium is changed at specific intervals. However, cell growth and
mineralization for spinner flasks and rotating wall vessels is limited
to the outside of the scaffolds because the limitations on internal
nutrient transport are not eliminated. The perfusion bioreactor is
another example. In this device, the scaffolds are fixed and the
medium is continuously circulated throughout the chambers
[6—10].

The radial flow bioreactor (RFB) is one type of perfusion biore-
actor [11—14]. This type has the ability to maintain an ideal cell
culture environment by radial provision of the medium, enabling
the construction of comparatively larger tissues. Furthermore, the
RFB offers highly functional 3D cultivation. To allow an even dis-
tribution of oxygen, the medium is pumped to the center of the
chamber from the periphery under low shear stress.

In a previous study, it was reported that osteoblast-like cells and
human mesenchymal stem cells (hMSCs) were expanded uniformly
over a 3D scaffold under dynamic cultivation using an RFB, and the
cellular characteristics of the hMSCs were not changed when
compared to static cultivation in DMEM without bone differentia-
tion medium [11,12] In addition, it was reported that both the
proliferation and bone differentiation of hMSCs were accelerated in
3D culture with dynamic cultivation by osteogenic differentiation
factor [13].

Instead, in large bone defects, it is necessary to expand the
primary cells derived from biotissue using an RFB in order to
enhance bone generation. Bone marrow-derived cells can be
induced to follow one of many lineages by the addition of various
induction factors to their growth medium. Specifically, directed
differentiation of rat bone marrow cells toward osteogenic lineage
in vitro is facilitated in the presence of dexamethasone, b-glycerol
phosphate, and ascorbic acid [15].

However, there have been no reports primary cells such as bone
marrow cells being cultured using an RFB and evaluating their
biological characteristics. Therefore, the present study aimed to
evaluate the cell expansion and osteogenic differentiation of rat
bone marrow cells when added to growth factor or osteogenic
differentiation factor under dynamic cultivation using an RFB.

2. Materials and methods
2.1. Isolation and culture of rBMC (bone marrow cells)
The animal experiments in this study were conducted in

accordance with the Guidelines for the Treatment of Experimental
Animals in Tokyo Dental College (Approval number: 272701).

Table 1
Culture medium.

Rat bone marrow cells were isolated and cultured using the
method modified by method of Maniatopoulos et al. [15]. Briefly, 6-
week-old male SD rats (Sankyo Labo Service, Tokyo, Japan) were
sacrificed by deep anesthesia with sodium pentobarbital (Kyor-
itsuseiyaku, Tokyo, Japan) and the humeri, femora, and tibiae
removed. The soft tissue was removed from the humeri, femora,
and tibiae. The humeri, femora, and tibiae were washed twice in
DMEM (Gibco Massachusetts USA) with 0.5 mg/mL gentamycin
(Wako Osaka Japan) and 3 mg/mL Fungizone (Gibco, Massachu-
setts, USA). The epiphyses were cut off and the diaphyses flushed
out with 10 mL osteoblast induction medium (Table 1). The
released cells were collected in a 75-cm? plastic culture flask con-
taining 10 ml of Osteoblast induction medium. The medium was
changed after 3 days to remove the non-adherent cell population.
The cells were subcultured every 7 days.

Osteoblast induction medium was used for primary culture and
GM was used for culture of passage 1 and 2 (Table 1). Cells were
removed from the culture flask by trypsinization, then counted and
seeded in new 75-cm? plastic tissue flasks at a density of
5 x 10 cells/cm?.

2.2. Preculture

The method used for cell seeding was based on studies by Arano
and Katayama et al. [12,13] in order to optimize the initial cell
attachment with high rate of cell density into the collagen sheets
that have high porosity ratio and 3-mm thickness, and a preculture
assay was performed that involve turning over the sheets. After
passaged 2 times, the cells were harvested by 0.25% trypsin-EDTA
treatment and seeded onto type 1 collagen sheets (Gunze, Kyoto,
Japan) (pore size, 70—110 pm; porosity ratio, 80%—95%; diameter,
18 mm; thickness, 3 mm). Briefly, collagen sheets were placed in a
12-well plate and cell suspension (80 pL) containing 2.5 x 10° cells
was seeded onto them. The sheets were then incubated in a hu-
midified atmosphere at 37 °C with 5% CO, for 6 h. Next, the sheets
were turned over and a further cell suspension (80 uL) was added
before another incubation for 6 h (Finally, the total cell seeding
density was 5 x 10 cells per sheet).

2.3. Dynamic cultivation

Dynamic cultivation was carried out according to previous
studies [11—13]. Figs. 1 and 2 and Table 2 were based on those
studies.

Fig. 1 shows the RFB (Able, Tokyo, Japan) and the RFB cell culture
system used.

Cultivation condition for dynamic and static cultivation is
shown in Table 2. GM, bFGFM or ODM was used for both dynamic
and static cultivation.

General medium(GM)

Osteoblast induction medium

Basic fibroblast growth factor containing medium (bFGFM)

Osteogenic differentiation factor containing medium (ODM)

D-MEM (gibco Massachusetts USA)
+ 10% FBS (Sigma-Aldrich Missouri USA)
+ 30units/ml gentamycin (Wako Osaka Japan)
General medium(GM)
+ 50ug/ml ascorbic acid—2-phosphate (Wako Osaka Japan)
+ 10mM Na B-glycerophosphate (Sigma-Aldrich Missouri USA)
+ 10M dexamethasone (Sigma-Aldrich Missouri USA)
General medium(GM)
+ 10ng/ml bFGF (R&Dsystems Minnesota USA)
General medium(GM)
+ 50ug/ml ascorbic acid—2-phosphate (Wako Osaka Japan)
+ 10mM Na B-glycerophosphate (Sigma-Aldrich Missouri USA)
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Fig. 1. Radial flow bioreactor (RFB) system used in this study. (A) Schematic of total system. Medium was circulated between RFB and medium reservoir using a circulation pump.
During the experiment, dissolved oxygen (DO), pH, and temperature in the medium were monitored and controlled. The volume of the chamber medium was maintained at 100 mL,
and fresh medium was added continuously. (B) Schematic of RFB. Medium in the RFB flows from the periphery to the center of the reactor chamber.
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Fig. 2. Cross section of scaffolds (six layered collagen sheets cultured in the RFB) used
for each analysis. Scaffolds in the RFB were divided horizontally and perpendicularly
into nine areas consisting of six sheets (from top to bottom: upper, middle, and
lower) x three areas (inside, middle, and outside). DNA-based cell count and ALP
activity were evaluated using three sheets (upper, middle, and lower). Histological
analysis and immunocytochemical analysis were performed using the middle area of
the middle sheet (shaded area).

Table 2
Cultivation conditions.
Dynamic Static
Number of cells 5.0 x 10° cells/sheet
Temperature 37 °C
CO, — 5%
pH 74 -
DO 6.86 —
Medium flow rate 3 ml/min
Medium volume 100 ml/day 2 ml/well
Medium change Changed daily after 3 days Every 3 days

Scaffold 6 sheets/reactor 1 sheet/well

To form a scaffold, six precultured sheets were placed in the RFB
in layers. The temperature (37 °C), pH (7.4), and dissolved oxygen
(DO, 6.86 ppm) in the medium reservoir were controlled and
monitored. The medium volume was maintained at 100 mL. After
initiation of culture, the medium was changed every day beginning
on the third day. The medium flow rate was set at 3 mL/min. Cul-
ture was continued for a total of 7 days.

Cross sections of scaffolds (six layered collagen sheets cultured
in the RFB) were used for each analysis (Fig. 2). The scaffolds in the
RFB were divided horizontally and perpendicularly into nine areas
each consisting of six sheets (from top to bottom: upper, middle,
and lower) x these areas (inside, middle, and outside). DNA-based
cell counts and ALP activity were evaluated using three sheets
(upper, middle, and lower). Histological analyses and immunocy-
tochemical analyses were performed using the middle area of the
middle sheet (shaded area).

2.4. Static cultivation

An individual precultured sheet was placed in each well of a 12-
well plate. The culture medium was maintained at 2 mL. Culture
was carried out in a humidified atmosphere at 37 °C and 5% CO,
without control of DO or pH values. The culture medium was
changed every 3 days. Culture was carried out for a total of 7 days.

Individual sheets cultured in the well were used for the DNA-
based cell counts, histological analyses. ALP activity, and immu-
nocytochemical analyses in static cultivation.

2.5. DNA-based cell count

DNA-based cell counts were performed according to previous
studies [11—13] for dynamic cultivation.

Total DNA was quantified with the NanoDrop 1000 Spectro-
photometer (ND-1000, Thermo Fisher Scientific, Massachusetts,
USA). Finally, cell numbers were calculated using a previously
constructed working curve based on cell numbers determined with
the Z1 Coulter Counter (Beckman Coulter, California, USA) and total
DNA.

The mean DNA-based cell count of the three areas under dy-
namic cultivation was compared with that of a single collagen sheet
under static cultivation.

2.6. Histologic examinations

Scaffolds that were harvested after culture were fixed with 10%
neutral-buffered formalin and dehydrated through a series of
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ethanol washes. After being embedded in paraffin, the specimens
were sliced into 3-um thick sections and stained with hematoxylin
and eosin (H-E staining) according to standard protocols. The
samples were then morphologically observed using a universal
photomicroscope (Axiophot 2, Carl Zeiss, Oberkochen, Germany).

2.7. Alkaline phosphatase (ALP) activity

Scaffolds were harvested from the RFB and well plate, and
placed in another 12-well plate. The scaffolds were rinsed with cold
phosphate-buffered saline (PBS), cut into small fragments, and
sonicated for 30 s after application of 200 pL Triton-X/PBS. The
lysates obtained were centrifuged at 15,000 rpm for 15 min, and the
supernatant was used as sample. ALP activity was assayed using
LabAssay ALP (Wako, Osaka, Japan). Sample absorbance was
measured in a 96-well plate at 405 nm. The amount of total protein
in the sample was then examined with a Pierce BCA Protein Assay
Kit (Thermo Fisher Scientific,c Massachusetts, USA). Finally, ALP
activity was expressed as units/ug protein.

The mean ALP activity of the three areas under dynamic culti-
vation was compared with that of a single collagen sheet under
static cultivation.

2.8. Immunohistochemical staining

Proteins in the collagen sheet were visualized with antibodies of
BMP-2 and osteopontin. The sections were washed in 10 nmol/L
with pH 7.4 phosphate-buffered saline (PBS) and endogenous
peroxidase activity was blocked by incubating sections with 0.3%
H,0, in methanol for 30 min.

The sections were then reacted with the primary antibodies,
BMP-2 polyclonal antibody diluted 1:50 (Proteintech Group, Chi-
cago, USA) and Anti-Osteopontin (rabbit) polyclonal antibody (R&D
Systems, Minnesota, USA) diluted 1:100, by incubating at 37 °C for
60 min. The sections were washed in PBS and then incubated with
the secondary antibody, peroxidase-labeled anti-mouse IgG poly-
clonal antibody (Histofine Simple Stain Rat MAX-PO [MULTI];
Nichirei, Tokyo, Japan) for 30 min and washed with PBS. Subse-
quently, the sections were stained with 3,3’-diaminobenzidine
(DAB substrate kit, Nichirei, Tokyo, Japan), washed in sterilized
water, and counterstained with hematoxylin. The sections were
then dehydrated according to established protocol and the sections
were examined and photographed using a universal photo-
microscope (Axiophot 2).
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2.9. Statistical analysis

The DNA-based cell count and ALP activity were statistically
analyzed using a two-way analysis of variance (ANOVA), followed
by Tukey's multiple comparison test.

3. Results
3.1. DNA-based cell count

Fig. 3 shows a comparison of the number of cells (DNA-based
cell count) in each area under dynamic cultivation. The number of
cells increased over that at the initial seeding (5.0 x 10° cells) in all
areas and all media. Among each area of all culture media, no sig-
nificant differences were observed in the number of cells.

Comparison of cell numbers among GM, bFGFM, or ODM under
dynamic and static cultivation at 7 days is shown in Fig. 4. In each
culture medium, a significant increase was noted in the number of
cells under dynamic cultivation over that under static cultivation
(**p < 0.01), despite the small difference in number of cells that
was observed between dynamic cultivation and static cultivation
in GM.
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Fig. 4. Comparison of cell numbers among GM, bFGFM, and ODM under dynamic and
static cultivation. Under dynamic cultivation, the mean of three areas was chosen for
comparison with that under static cultivation. No significant differences were observed
in the number of cells among each area of all culture media (p > 0.05). Data are

expressed as mean + SD.
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Fig. 3. Comparison of cell numbers (DNA-based cell count) in each area under dynamic cultivation No significant difference was observed among the three areas (p > 0.05). Data are

expressed as mean + SD.
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Under dynamic cultivation, the numbers of cells cultured in the
different media were significantly greater in the order of
bFGFM > ODM > GM (**p < 0.01). In contrast to dynamic cultiva-
tion, no significant differences were observed in the number of cells
among the culture media under static cultivation.

3.2. Histological analysis

Fig. 5 shows optical micrographs of hematoxylin-eosin staining.

A greater number of cells were observed in the collagen sheets
under dynamic cultivation than under static cultivation in all cul-
ture media.

3.3. Alkaline phosphatase activity

Fig. 6 shows a comparison of ALP activity in each area under
dynamic cultivation. No significant difference was observed in ALP
activity among each area of all culture media.

A comparison of ALP activity among GM, bFGFM, or ODM under
dynamic and static cultivation at 7 days is shown in Fig. 7. ALP
activity cultured in ODM was significantly higher than that in GM
and bFGFM under both dynamic and static cultivation (**p < 0.01).

In ODM, ALP activity under dynamic cultivation was signifi-
cantly higher than that under static cultivation (**p < 0.01). No
significant difference in ALP activity was found between dynamic
cultivation and static cultivation in GM and bFGFM.

3.4. Immunocytochemical analysis

The results of immunocytochemical analysis stained with BMP-
2 and osteopontin are shown in Figs. 8 and 9, respectively.

BMP-2 and osteopontin were confirmed by color development
in both the dynamic and static cell cultures. The expression of BMP-
2 was observed in only ODM under both dynamic cultivation and
static cultivation (Fig. 8C, F). The expression of osteopontin was
observed in ODM under dynamic cultivation, but not under static
cultivation (Fig. 9C).

4. Discussion

In this study, dynamic and static cultivations of rat bone marrow
cells (rBMC) loaded onto scaffolds were performed using rBMC
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Fig. 7. Comparison of ALP activity among GM, bFGFM, and ODM under dynamic and
static cultivation. Under dynamic cultivation, the mean of three areas was chosen for
comparison with that under static cultivation. No significant difference was observed
in ALP activity among each area of all culture media. (p > 0.05). Data are expressed as
mean + SD.

Fig. 5. Typical optical micrographs of specimens stained with hematoxylin—eosin (7 days). (A) GM dynamic cultivation, (B) bFGFM dynamic cultivation, (C) ODM dynamic
cultivation, (D) GM static cultivation, (E) bFGFM static cultivation, (F) ODM static cultivation (Scale bar: 100 pm).
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Fig. 8. Typical optical micrographs of specimens stained with BMP-2 antibodies. (A) GM dynamic cultivation, (B) bFGFM dynamic cultivation, (C) ODM dynamic cultivation, (D) GM
static cultivation, (E) bFGFM static cultivation, (F) ODM static cultivation (Scale bar: 50 um).
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Fig. 9. Typical optical micrographs of specimens stained with osteopontin antibodies. (A) GM dynamic cultivation, (B) bFGFM dynamic cultivation, (C) ODM dynamic cultivation, (D)
GM static cultivation, (E) bFGFM static cultivation, (F) ODM static cultivation (Scale bar: 50 um).

when added the growth factor or osteogenic differentiation factor
under dynamic cultivation.

bFGF was added to the culture medium for both dynamic and
static cultivations. Noff et al. reported that bFGF promoted cell
proliferation, while it had no effect on osteogenic differentiations
[16]. Hori et al. reported that the combination of bFGF, ascorbic acid,
B-glycerol phosphate, and dexamethasone promoted cell prolifer-
ation as well as osteogenic differentiation of rBMC [17]. In this
study, we used bFGFM in order to verify that adding bFGF alone to a
culture medium succeeds in the proliferation and osteogenic dif-
ferentiation of rBMC in dynamic cultivation.

Only ascorbic acid and B-glycerol phosphate were added to the
culture medium as osteogenic differentiation factors in this study.
Holtorf et al. found that dynamic cultivation induced osteoblastic
differentiation of marrow stromal cell-scaffold constructs in the
absence of dexamethasone [10]. After three-dimensional culture
for a long time (more than 1 week) in ODM including dexameth-
asone in an RFB culture system, mineralization was observed and

ODM could not be distributed evenly in the scaffold [18]. Accord-
ingly, we used ODM without dexamethasone in order to prevent
the mineralization that it caused.

In the present study, increased proliferation and high density of
BMC was present in dynamic cultivation compared with static
cultivation. In dynamic cultivation, essential nutrients, gas ex-
change, and removal of metabolites are all necessary for cell pro-
liferation [14,19,20]. Moreover, 3D cell culture using a bioreactor
prevents low-oxygen conditions and cell death [14,21]. This study is
believed to have obtained the same rBMC' proliferation as the re-
sults of previous studies that used an RFB.

In this study, the number of cells cultured in different media
were greater in the order of bFGFM > ODM > GM under dynamic
cultivation. In the bioreactor culture system, osteogenic differen-
tiation factors together with the mechanical stimuli produced by
the bioreactor synergistically promoted rBMC' proliferation [10].
The interaction between bFGF and its receptor was reported to
increase cell proliferation via activation of the MAPK/ERK pathway
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[22]. Ascorbic acid also accelerated cell proliferation [23]. These
actions were consistent with our results. After bFGF was added in
the dynamic cultivation, the mechanical stimuli and bFGF syner-
gistically promoted the greatest amount of cell proliferation.

In this study, ALP activity increased only in the ODM group,
regardless of dynamic and static cultivations. Hanada et al. reported
that Treatment with bFGF in the absence of dexamethasone results
in no osteogenesis [24]. Audin et al. reported that the addition of
dexamethasone in the primary culture of rBMC and the removal of
dexamethasone at passage 2 did not compromise the expressions
of ALP and osteopontin [25]. However, osteocalcin, the marker of
mineralization was not detected. B-glycerol phosphate was re-
ported to promote the differentiation of BMC into osteoblasts by
up-regulating the expression both mRNA and protein of osteo-
pontin [26]. In this study, B-glycerol phosphate in ODM is believed
to promote the osteogenic differentiation of rBMC. On the other
hand, only a basal medium or basal medium containing bFGF did
not promote osteogenic differentiation of rBMC.

The present study showed that ALP activity was promoted in
dynamic cultivation when rBMC were cultured in ODM. Expres-
sions of BMP-2 and osteopontin were also detected in dynamic
cultivation in ODM. Holtorf et al. reported that osteogenic differ-
entiation factors (ascorbic acid, B-glycerol phosphate, and dexa-
methasone) combined with shear stress accelerated osteogenic
differentiation and increased ALP activity [10]. Gomes et al. re-
ported that when cells were cultured in ODM with dynamic culti-
vation, BMP-2 expression of rBMC was enhanced by the mechanical
stimuli produced by the bioreactor [6]. Bancroft et al. also reported
that osteopontin expression of rBMC was up-regulated by the shear
stress when cells were cultured in ODM with dynamic cultivation
[27]. These studies suggest that the addition of osteogenic differ-
entiation factors and shear stress to the mechanical stimuli of an
RFB promote the osteogenic differentiation of rBMC under dynamic
cultivation.

Based on this study, cell proliferation and osteogenic differen-
tiation are promoted in dynamic cultivation by adding bFGF and
ODM, respectively. There is no consensus about which condition,
cell proliferation or osteogenic differentiation, has a greater effect
on bone regeneration. The results in this study suggested that the
addition of bFGF is effective in the cases that focus on cell prolif-
eration whereas ODM is effective in the cases that focus on osteo-
genic differentiation for in vivo transplantation scaffolds after
dynamic cultivation with an RFB. Further studies are needed to
confirm whether cell proliferation or differentiation of BMC is more
significant for bone regeneration.

It is necessary to expand the primary cells in order to enhance
the bone generation in large bone defects, because the primary cells
harvested in bone marrow are extremely limited [28]. The results in
this study showed that cell proliferation and osteogenic differen-
tiation were promoted in dynamic cultivation by adding bFGF and
ODM, respectively, indicating that the dynamic cultivation using
RFB believe to be effective for bone generation in large bone
defects.

5. Conclusion

The results of evaluating the cell expansion and osteogenic
differentiation of rat bone marrow cells when added to growth
factor or osteogenic differentiation factor under dynamic cultiva-
tion using an RFB support the following conclusions.

1. Dynamic cultivation promoted more cell proliferation than did
static cultivation in all types of culture media. The addition of
bFGF increased the cell proliferation of rBMC the most.

2. Dynamic cultivation accelerated the osteogenic differentiation
of rBMC by adding osteogenic differentiation factors.
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