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TRAIL/Apo-2L has shown promise as an anti-glioma drug, based on investigations of TRAIL sensitivity in established glioma cell lines,
but it is not known how accurately TRAIL signalling pathways of glioma cells in vivo are reproduced in these cell lines in vitro. To
replicate as closely as possible the in vivo behaviour of malignant glioma cells, 17 early passage glioma cell lines and 5 freshly resected
gliomas were exposed to TRAIL-based agents and/or chemotherapeutic drugs. Normal human hepatocytes and astrocytes and
established glioma cell lines were also tested. Cross-linked TRAIL, but not soluble TRAIL, killed both normal cell types and cells from
three tumours. Cells from only one glioma were killed by soluble TRAIL, although only inefficiently. High concentrations of cisplatin
were lethal to glioma cells, hepatocytes and astrocytes. Isolated combinations of TRAIL and chemotherapy drugs were more toxic to
particular gliomas than normal cells, but no combination was generally selective for glioma cells. This study highlights the widespread
resistance of glioma cells to TRAIL-based agents, but suggests that a minority of high-grade glioma patients may benefit from
particular combinations of TRAIL and chemotherapy drugs. In vitro sensitivity assays may help identify effective drug combinations for
individual glioma patients.
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The vast majority of malignant glioma patients die within 2 years
of diagnosis, regardless of treatment (Group, 2002; Stupp et al,
2005). More effective treatments are therefore urgently required.
Chemotherapy and irradiation trigger apoptosis of sensitive cells
by provoking the ‘intrinsic’ apoptosis pathway (Norbury and
Zhivotovsky, 2004). This involves the detection of DNA damage
and instigation of a self-destruction program, which is regulated
by the Bcl-2 family and executed by a molecular machinery
including cytochrome c, Apaf-1 and the apoptotic proteases
caspase-9 and caspase-3. Defects in the intrinsic pathway can
contribute to resistance to chemotherapy and radiotherapy
(Longley and Johnston, 2005). In contrast, ‘death ligands’,
members of the TNF-a superfamily including FasL/CD95 and
TRAIL/Apo2L, stimulate apoptosis through the ‘extrinsic’ pathway
(Thorburn, 2004). Ligation of death receptors (such as Fas, DR4/
TRAIL-R1 and DR5/TRAIL-R2) promotes recruitment of an
adaptor molecule, FADD, caspase-8 and/or caspase-10 to form a

complex known as the death-inducing signalling complex (DISC)
(Kischkel et al, 1995). The initiator caspases are activated within
the DISC, and acquire the ability to proteolytically activate effector
caspases (such as caspase-3), either directly or indirectly (Scaffidi
et al, 1998). The downstream caspases then destroy the cell by
digesting numerous cellular proteins.

Because this extrinsic apoptosis pathway uses distinct compo-
nents from that triggered by conventional anti-cancer treatments,
there has been substantial research interest in exploiting its
potential for treating tumour types that are unresponsive to
currently available therapies. TRAIL and agonistic anti-TRAIL
receptor antibodies are currently being evaluated in early-phase
clinical trials. Initial reports portrayed TRAIL as an exemplary
anti-cancer agent, as it induced apoptosis in many types of tumour
cells but, unlike FasL, did not kill normal cells. Subsequent studies
tempered that initial optimism somewhat. Although the extra-
cellular portion of human TRAIL (amino acids 114–281,
henceforth referred to as soluble TRAIL) was generally tolerated
by normal human cells (Ashkenazi et al, 1999), other formulations
were found to be toxic to particular normal cell types (Leverkus
et al, 2000; Nitsch et al, 2000; Pettersen et al, 2002). Freshly
isolated human hepatocytes displayed substantial sensitivity to
His-tagged TRAIL, cross-linked TRAIL formulations and agonistic
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anti-DR4 and DR5 antibodies (Jo et al, 2000; Mori et al, 2004;
Ganten et al, 2006), but survived incubation with soluble TRAIL
(Ashkenazi et al, 1999; Lawrence et al, 2001; Ganten et al, 2006).
The TRAIL sensitivity of normal brain cells is particularly relevant
for the development of TRAIL-based anti-glioma therapies.
Human astrocytes were relatively resistant to soluble untagged
TRAIL in vitro (Ashkenazi et al, 1999; Song et al, 2006). Cell death
was detected in brain slices incubated with FLAG-tagged TRAIL
that had been cross-linked with an anti-FLAG antibody (Nesterov
et al, 2002). Immunofluorescent assays suggested that the cells
killed in these experiments included isolated neurons, oligoden-
drocytes, astrocytes and microglial cells (Nesterov et al, 2002).

Established glioma cell lines vary considerably in their
responsiveness to TRAIL receptor ligation (reviewed in Hawkins,
2004). It is presently unknown how faithfully the death ligand
signalling pathways of glioma cells in vivo are mimicked by
established glioma cell lines, but it is has been shown that glioma
cells do undergo substantial phenotypic changes in vitro
(Anderson et al, 2002; Lee et al, 2006). TRAIL sensitivity of
freshly resected uncultured glioma cells has not been reported to
date. A few papers have documented the TRAIL responsiveness of
minimally cultured gliomas, most of which were resistant to
TRAIL as a sole agent (Roa et al, 2003; Song et al, 2003; Jeremias
et al, 2004; Eramo et al, 2005; Li et al, 2006; Koschny et al, 2007).
TRAIL can cooperate with other agents, including currently used
chemotherapy drugs, to kill established glioma cells that survive
exposure to TRAIL alone. It was recently published that the
proteosome inhibitor bortezomib dramatically sensitised mini-
mally passaged glioma cells to isoleucine-zipper-tagged TRAIL
(Koschny et al, 2007). Importantly, however, the sensitivity of
normal astrocytes to this co-treatment has not been reported.

Numerous mechanisms of glioma cell resistance to TRAIL have
been suggested. Some resistant glioma cell lines could be sensitised
by the treatment with the translation inhibitor cycloheximide,
implicating a labile inhibitor of TRAIL signalling in the resistance
of those cell lines (Rieger et al, 1998; Wu et al, 2000; Hao et al,
2001; Rohn et al, 2001; Fulda et al, 2002a). Lack of surface
expression of TRAIL death receptors was reported in one glioma
cell line (Arizono et al, 2003). Co-treatment of some resistant lines
with chemotherapy drugs, which raised TRAIL receptor levels,
enhanced TRAIL sensitivity (Nagane et al, 2000; Rohn et al, 2001;
Shinohara et al, 2001; Arizono et al, 2003). Expression of inhibitors
such as PKCe (Shinohara et al, 2001), cFLIP (Hao et al, 2001; Xiao
et al, 2002) or PEA-15 (Hao et al, 2001; Xiao et al, 2002) was
associated with resistance in a small number of glioma cell lines,
but causal relationships were not conclusively demonstrated. The
ability of bortezomib to sensitise early passage glioma cells to
TRAIL (Koschny et al, 2007) implies that proteosomal degradation
of critical TRAIL pathway components could contribute to
resistance in those cells. Inhibition of IAP activity in type II
glioma cells sensitised them to TRAIL (Fulda et al, 2002b),
indicating that IAP activity contributed to the TRAIL resistance of
those lines. Low levels of caspase-8 may also contribute to TRAIL
resistance (Knight et al, 2001; Ashley et al, 2005; Eramo et al,
2005).

A tenet underlying modern approaches to cancer treatment is
that combination therapies can provide better selectivity and
efficacy than single-agent treatments. To explore the possible
clinical utility of combination TRAIL/chemotherapy treatment for
malignant glioma, this study examined the responses of glioma
cells, astrocytes and hepatocytes to TRAIL-based agents and/or
chemotherapy drugs. Four TRAIL-related agents were tested: two
forms of cross-linked TRAIL (F-LZ-TRAIL and ‘Superkiller’), the
extracellular portion of TRAIL (‘soluble TRAIL’) and an agonistic
anti-DR5 antibody. Seven chemotherapy drugs used for glioma
therapy were also employed: cisplatin, carboplatin, CCNU,
temozolomide, etoposide, vincristine and procarbazine. The drug
combinations were tested on freshly resected gliomas and early

passage glioma cell lines, to mimic as closely as possible the in vivo
behaviour of malignant glioma cells.

MATERIALS AND METHODS

Glioma samples and normal cells

Table 1 provides details about the patients whose tumours were
assayed in this study. Gliomas RMH018-023 were resected at the
Royal Melbourne Hospital, Australia. Informed consent was
obtained from the patients, and approval for this study was
obtained from the ethics committees of the Royal Children’s
Hospital, Royal Melbourne Hospital and La Trobe University. To
generate a single cell suspension, tumour pieces were minced with
a scalpel, then incubated with Accumax (Sigma, St Louis, MO,
USA) and filtered through a tea stainer and 100mM filter. Viable
cells were isolated by Ficoll density centrifugation.

The ‘D’ series of early passage lines was derived from specimens
obtained from patients who had undergone tumour resection at
Duke University Hospital (Durham, NC, USA). Informed consent
was obtained from each patient prior to surgery in accordance with
Duke Internal Review Board stipulations. The tumour material was
collected in DMEM, 10% foetal bovine serum (FBS), 0.05 mg ml�1

gentamycin. Tumour samples were drained, placed in a 100 mm
tissue culture dish and minced with sterile scissors. Warm sterile-
filtered 0.4% collagenase solution (0.4% collagenase, 0.05 mg ml�1

gentamycin in zinc option-MEM, ZO-MEM) (Invitrogen, Carlsbad,
CA, USA) was added to the minced tissue and incubated at 371C
for 1 h. Collagenase solution was inactivated by the addition of ZO-
MEM, 10% FBS, 0.05 mg ml�1 gentamycin. Minced tissue was
titurated to further homogenise sample and then centrifuged
(1000 r.p.m., 5 min). Collagenase and media were removed, cells
were re-suspended in fresh media and transferred to a 60-mm
tissue culture dish and incubated at 371C, 5% CO2. Cell cultures
with a large RBC fraction were treated with haemolysis solution
(0.83% ammonium chloride) as follows: cells were trypsinized and
centrifuged (1000 r.p.m., 7 min), supernatant was discarded and
cells were re-suspended in 2 ml FBC. Haemolysis solution was
added at a ratio of 1 : 5 to 1 : 10. Haemolysis mixture was incubated
at 41C for 10 min, additional FBS was then added to bathe cells.
Solution was centrifuged (1000 r.p.m., 7 min), following which the
supernatant was discarded and the remaining cells were re-
suspended in ZO-MEM, supplemented as described earlier.
Tumour cultures were serially passaged using 0.25% trypsin-
EDTA and collected in freezing medium (12.5% DMSO, 50% FBS
and 37.5% ZO-MEM).

The early passage lines LM-G-2, LM-G-4 and LM-G-8 were made
from tumours resected at the Austin Hospital (Heidelberg, VIC,
Australia). Patients with known or suspected glioblastoma multi-
forme (GBM) were prospectively entered into a clinical trial after
written informed consent was obtained. Ethics approval was
granted by the Austin Hospital Human Research Ethics Commit-
tee. After intra-operative confirmation of a diagnosis of GBM,
fresh tissue samples were obtained by biopsy or resection of
tumour. Samples were mechanically disaggregated using the
Medimachine (DAKO Diagnostika GmbH, Hamburg, Germany)
(Brockhoff et al, 1999) and introduced into pre-warmed DMEM
(Life Technologies, Grand Island, NY, USA) containing 10%
FBS (CSL, Melbourne, VIC, Australia), 2 mM glutamine (Sigma
Chemical Co, St Louis, MO, USA) and 50 U ml�1 penicillin/
50 mg ml�1 streptomycin, respectively (Life Technologies). After
24 h, any non-adherent cells and material were discarded and the
media replenished. Media were replenished twice weekly or more
frequently if required. When cells appeared to have reached 50%
confluence or maximal confluency in a T25 flask for that cell line,
they were expanded into a T75 flask (passage 2). Cells were also
expanded into a T75 (passage 3) flask when they reached 50%
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Table 1 Patient and cell line features

Tumour/
cell line

Sex, age
(years)

Tumour
grade
(WHO)

Passage
number

p53
genotypea

Treatment before
sample obtained Treatment after sample obtained

Progression
free
survival Patient status

D2234 M, 52 IV 10 M Radiotherapy,
temozolomide

BCNU wafer, O6BG, cloretazine, AP23573 2 months Died 7 months post-resection

D2235 F, 20 III 9 M Nil Radiotherapy, temozolomide, CCNU, tamoxifen 35+months Stable 35 months post-resection
D2238 F, 31 III 7 W Nil Radiotherapy, temozolomide, CCNU, tamoxifen 34+months Stable 34 months post-diagnosis
D2239 M, 56 IV 7 W Nil Radiotherapy, temozolomide, hydroxyurea, imatinib mesylate 3 months Died 4 months post-resection
D2245 M, 44 III 9 W Temozolomide Radiotherapy, CCNU, tamoxifen, imatinib mesylate,

hydroxyurea, CCNU, bevacizumab, CPT-11
18 months Stable 32 months post-resection

D2247 M, 51 IV 8 W Radiotherapy,
temozolomide

BCNU wafer, O6BG, CPT-11, imatinib mesylate, hydroxyurea 4 months Died 9 months post-resection

D2248 M, 44 III 6 W Nil Unknown Data not available Data not available
D2259 M, 27 III 7 W Nil Radiotherapy, temozolomide, CCNU 31+months Stable 31 months post-resection
D2261 M, 52 III 5 W Nil Radiotherapy, temozolomide, CCNU, cloretazine 7 months Died 10 months post-resection
D2262 F, 40 III 5 W Nil Radiotherapy, temozolomide 3 months Unknown
D2264 F, 45 IV 4 ND Nil Radiotherapy, temozolomide, CCNU, CPT-11, tamoxifen 30+months Stable 30 months post-resection
D2268 M, 59 IV 6 M1 Nil Radiotherapy, temozolomide, CCNU, CPT-11, imatinib mesylate,

hydroxyurea/PTK787, bevacizumab, carboplatin
7 months Stable 26 months post-resection

D2301 M, 51 IV 1 M2 Nil BCNU wafer, radiotherapy, temozolomide, cilengitide, CCNU,
imatinib mesylate, hydroxyurea, PTK787

3 months Stable 13 months post-resection

D2302 M, 40 IV 3 ND Nil Radiotherapy, temozolomide, etoposide, re-resection 24+months Stable 24 months post-resection
LM-G-2 M, 54 IV 4 ND Nil Sub-total resection then radiotherapy 4+months Alive 4 months post-resection
LM-G-4 M, 69 IV 3 M Nil Gross total resection then radiotherapy 12 months Died 20 months post-resection
LM-G-8 M, 74 IV 3 M Nil Radiotherapy 2 months Died 5 months post-resection
RMH
018 M, 54 III ex vivo ND Nil Recurrence, resection data not available Alive 6 months post-resection
RMH
019 M, 62 IV ex vivo ND Nil Radiotherapy and temozolomide data not available Alive 6 months post-resection
RMH
020 F, 52 IV ex vivo ND Resections,

radiotherapy,
temozolomide

Chemotherapy, radiotherapy data not available Alive 6 months post-resection

RMH
021 M, 66 IV ex vivo ND Nil Radiotherapy and temozolomide data not available Alive 4 months post-resection
RMH
022 F, 54 IV ex vivo ND Nil Radiotherapy data not available Died 3 months post-resection
RMH
023 M, 58 IV ex vivo ND Nil Radiotherapy and temozolomide data not available Alive 4 months post-resection

but recurrence

HRM¼ high-resolution melt; M¼mutation possibly affecting p53 function; ND¼ not done; WT¼wild type; M1¼ silent mutation; M2¼mutation predicted by HRM analysis but not identified by sequencing. For details see
Supplementary Figure 1. ap53 genotype, as determined by HRM analysis and sequencing.
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confluence or maximal confluency for that cell line. Thereafter,
cells were expanded into T175 flask (passage 4) for cryostorage,
experimentation or propagation as required.

Normal human hepatocytes and astrocytes were purchased from
Cambrex (East Rutherford, NJ, USA). The established glioma cell
lines D270 and U373 have been characterized previously (Knight
et al, 2001, 2004). LN18 cells were purchased from the ATCC
(Manassas, VA, USA).

Drug treatments

We endeavoured to use physiologically relevant drug concentra-
tions in this study. Cells were exposed to doses corresponding to
100% and 10% of peak plasma or tumour concentrations (Table 2).
Data regarding the pharmacokinetics of the various TRAIL
formulations in humans have not yet been published. We used
soluble TRAIL (Peprotech, Rocky Hill, CT, USA) at concentrations
commonly employed in vitro (1 mg ml�1 and 100 ng ml�1). We
arbitrarily chose to use F-LZ-TRAIL (Knight et al, 2001) at 10-fold
lower doses than soluble TRAIL (100 and 10 ng ml�1), because our
previous in vitro analyses showed that it is more potent than the
untagged formulation (data not shown). Superkiller TRAIL (Alexis
Biochemicals, Lausen, Switzerland) was used at 100 ng ml�1.

Cell death/survival assays

During the experiments performed for this study, all cells were
cultured in ZO-MEM supplemented with 10% FBS (SAFC
Biosciences, Sydney, NSW, Australia). Cells were incubated with

drugs for 48 h. The CellTiter-Glo kit (Promega, Madison, WI, USA)
was used to quantitate survival, according to the manufacturer’s
instructions. Five hundred cells were used per treatment. Fifty
thousand cells were used per condition for propidium exclusion
assays (Knight et al, 2001), which were analysed using an LSRII
(BD Biosciences, San Jose, CA, USA).

Caspase activity assay

Ten thousand cells were incubated with normal media or TRAIL-
based drugs in 96-well plates for 6 h, then caspase (DEVDase)
activity was detected using the Caspase-Glo 3/7 kit (Promega),
according to the manufacturer’s instructions. Cell-specific lumi-
nescence signals were obtained by subtracting the signal generated
from plates containing media or drugs but no cells from the signal
obtained from wells containing cells and drugs.

Immunoblotting

One hundred thousand cells were lysed, subjected to SDS– PAGE,
immunoblotted and signals quantitated using previously published
protocols (Ashley et al, 2005). The following antibodies were used:
rabbit anti-DR4 and anti-DR5 from ProSci (San Diego, CA, USA)
(no. 1139 and no. 2019, respectively), mouse anti-caspase-8 and
anti-cFLIP from Alexis (Lausen, Switzerland) (clones 12F5 and
NF6, respectively), mouse anti-FADD from BD Transduction
Laboratories (San Jose, CA, USA) (clone 1/FADD), mouse anti-
XIAP from MBL (Woburn, MA, USA) (clone 2F1), mouse anti-
GAPDH from Chemicon (North Ryde, NSW, Australia) (clone
6C5), rabbit anti-p53 from Cell Signaling (Danvers, MA, USA) (no.
9282), goat anti-mouse-HRP (Sigma, no. A2304) and goat anti-
rabbit-HRP (BD Biosciences no. 554021). Control lysates from
293T cells transiently transfected with plasmids directing the
expression of caspase-8, FADD, cFLIPL were generated as
previously reported (Ashley et al, 2005). Similar control lysates
were made using expression plasmids encoding XIAP, DR4 (kindly
provided by Paul Ekert) and DR5. pIRES-PL-XIAP was synthesised
as follows. Oligonucleotides 1 and 2 were annealed and ligated into
pIRES-Neo (Clontech, Mountain View, CA, USA) cut with BamHI
and NotI, to yield pIRES-PL. The coding region of XIAP was
amplified with primers 3 and 4, cut with EcoRI and NotI and
ligated into EcoRI/NotI cut pIRES-PL, generating pIRES-PL-XIAP.
pIRES-Neo-DR5 was made by amplifying the DR5 coding region
with primers 5 and 6, cutting with EcoRI and BamHI and ligating
into pIRES-Neo (Clontech).

Oligonucleotides:

1: 50-GGCCGAATTCGCGGGATCCGCGCGCTAGCAGCTGCGG
CCGCAGGCCT-30;

2: 50-GATCAGGCCTGCGGCCGCAGCTGCTAGCGCGCGGATC
CCGCGAATTC-30;

3: 50-GGAATTCCGCCATGACTTTTAACAGTTTTGAAGG-30;
4: 50-CCCCCGCGGCCGCTTAAGACATAAAAATTTTTTGCTTG-30;
5: 50-GGAATTCCGCCATGGAACAACGGGGACAG-30; and
6: 50-GCGGATCCTTAGGACATGGCAGAGTC-30.

p53 genotyping

Genomic DNA was extracted from frozen cell pellets (D2234MG,
D2235MG, D2238MG, D2245MG, D2247MG, LM-G-4 and LM-G-8)
or frozen cell suspensions (D2239MG, D2248MG, D2259MG,
D2261MG, D2262MG and D2268MG, D2301MG) using the QIAamp
DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. PCR cycling and high-resolution melt
(HRM) analysis were performed on the Rotor-Gene 6000 (Corbett
Research, Sydney, NSW, Australia). Each sample was analysed in
triplicate. High-resolution melt analysis of exons 5–8 was
performed as described previously (Krypuy et al, 2007). The

Table 2 Chemotherapy drugs and doses used in this study

Drug

Concentrations
used in this
study

Published human peak
intratumour or plasma
concentrations

Soluble TRAIL 1mg ml�1

100 ng ml�1
Not reported

F-LZ-TRAIL 100 ng ml�1

10 ng ml�1
Not reported

Superkiller
TRAIL

100 ng ml�1 Not reported

Anti-DR5 3mg ml�1

0.3 mg ml�1
Not reported

Cisplatin 54 mg ml�1

5.4 mg ml�1
Peak tumour concentration after embolisation
was 54 mg ml�1, after perfusion was
11.4 mg ml�1 (Tegeder et al, 2003). Peak
plasma concentrations ranged from 1.5 mg ml�1

(Riva et al, 2000; Urien et al, 2005) to around
4 mg ml�1 (Siegel-Lakhai et al, 2005; Watanabe
et al, 2003)

Carboplatin 44 mg ml�1

4.4 mg ml�1
Peak glioma concentration was 13 mg ml�1,
peak
plasma concentration was 44 mg ml�1 (Whittle
et al, 1999)

CCNU 9mg ml�1

900 ng ml�1

90 ng ml�1

Peak plasma concentration of active
metabolites was reported to be 9 mg ml�1 (Lee
et al, 1985) or 1–2 mg ml�1 (Kastrissios et al,
1996)

Temozolomide13.7 mg ml�1

1.37 mg ml�1
Peak plasma concentration was 13.7 mg ml�1

(Brada et al, 1999)
Etoposide 10.5 mg ml�1

1.05 mg ml�1
Peak tumour concentration was 1.04–
4.80 mg g�1. Peak plasma concentration was
7–10.5 mg ml�1 (Kiya et al, 1992)

Vincristine 40.4 ng ml�1

4 ng ml�1
Peak plasma concentration was 40.5 ng ml�1

but rapidly decreased to 5 ng ml�1 (Groninger
et al, 2005)

Procarbazine 540 ng ml�1

54 ng ml�1
Peak plasma concentration was 540 ng ml�1

(He et al, 2004)
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amplicon of exon 4 (176 bp) covers the DNA binding domain and
was generated using the primers TP53-Exon4-DBD-F, 50-
CCCCTGCACCAGCAGCTCCTA-30 and TP53-Exon4-DBD-R, 50-
CAGCCCCTCAGGGCAACTGA-30. The amplified region corre-
sponds to GenBank accession number AC087388, nucleotides
78962–79137. PCR was performed in a 100 ml PCR tube (Corbett
Research) with a final volume of 20 ml, containing 200 nmol l�1 of
the forward primer, 300 nmol l�1 of the reverse primer,
200mmol l�1 of each dNTP, 0.5 U of HotStarTaq DNA Polymerase
(Qiagen) in the supplied PCR buffer containing 2.0 mmol l�1

MgCl2, 5 mmol l�1 SYTO9 (Invitrogen) and 2.5 ng of genomic DNA
as template. The initial denaturation (951C, 15 min) was followed
by 11 cycles of 15 s at 951C, 15 s at 65–601C touchdown (0.51C per
cycle), 20 s at 721C and 39 cycles of 15 s at 951C, 15 s at 601C, 20 s at
721C; one cycle of 1 min at 951C, 721C for 1.5 min and a HRM step
from 72 to 951C rising at 0.21C per second, and holding for 1 s after
each stepwise increment. To confirm the mutation positive HRM
results, PCR products of the entire exon 5 (exons 5a and 5b) and
the HRM products of exons 6 and 8 were purified, directly
sequenced in both directions and analysed as described previously
(Krypuy et al, 2007).

RESULTS

TRAIL sensitivity

Cells from freshly resected gliomas, minimally passaged glioma cell
lines, established glioma cell lines, normal astrocytes and

hepatocytes were exposed to three formulations of TRAIL or an
agonistic antibody, alone or in combination with seven chemo-
therapy drugs. Table 1 provides details of the glioma cells used and
the patients from whom they were obtained. The normal cells
tolerated exposure to ‘hepatosafe’ soluble TRAIL, the anti-DR5
antibody and the lower dose of cross-linked TRAIL (Figure 1A).
Higher concentrations of cross-linked TRAIL and superkiller
TRAIL were lethal to both types of normal cells, with hepatocytes
being especially sensitive. As sole agents, the TRAIL formulations
and anti-receptor antibody induced negligible cell death in most of
the glioma samples tested. Only one of the early passage lines,
D2247, was efficiently killed by the two cross-linked formulations
of TRAIL and the anti-DR5 antibody. This line also displayed
intermediate sensitivity to soluble TRAIL. Two other lines, D2234
and D2245, were somewhat sensitive to the cross-linked TRAIL
formulations and the agonistic antibody, but not to soluble TRAIL.
None of the ex vivo samples was substantially sensitive to any of
the TRAIL-based treatments. As reported previously, LN18 and
D270 were TRAIL-sensitive, but U373 was TRAIL-resistant
(Hawkins, 2004). Consistent with the notion that apoptosis was
responsible for the reductions in ATP levels observed in some
drug-treated cells, caspase activity in D2247 cells but not in D2302
cells increased following exposure to TRAIL or anti-DR5
(Figure 1B).

Cooperation between TRAIL and chemotherapy drugs

Previous studies have shown that co-treatment with traditional
anti-cancer agents can sensitise some cells to TRAIL, in vitro and
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Astrocytes
Hepatocytes
D2234
D2235
D2238
D2239
D2245
D2247

D2247

D2248
D2259
D2261
D2262
D2264
D2268
D2301
D2302
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Figure 1 In vitro responses of glioma cells, astrocytes and hepatocytes to TRAIL. (A) Cells from the indicated early passage or established glioma cell lines,
ex vivo gliomas, normal astrocytes or normal hepatocytes were incubated in vitro with TRAIL or with anti-DR5 antibody. Black triangles indicate high and low
drug concentrations, when applicable (see Table 2 and the Materials and Methods section). Survival was assayed using the CellTiter Glo kit and depicted
using ‘bubble’ graphs. The areas of the circles denote net survival following each treatment, relative to untreated cells (set at 100%, left column). Small circles
indicate efficient killing, large circles reflect survival and/or proliferation, as illustrated in the graphical legend. Glioma assays were performed in duplicate (data
are represented by circles). Four replicates were performed for hepatocytes and eight replicates for astrocytes. For astrocyte and hepatocyte data, grey
circles depicting average survival are overlaid upon black circles indicating average survival plus standard error. (B) DEVDase activity in D2247 and D2302
cells was monitored 6 h following treatment with the specified TRAIL formulations, anti-DR5 antibody or normal media.
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in vivo. We tested the ability of the various TRAIL formulations to
kill glioma cells in conjunction with a number of chemotherapy
drugs used in glioma therapy (Table 2). Figure 2 illustrates the
effect of these combination treatments on D2247 (the most TRAIL-
sensitive line), D2235 and D2248 (two of the TRAIL resistant lines)
and RMH020 (one of the uncultured tumours). Average responses
across all early passage lines and ex vivo tumours are shown in
Figure 3. Many samples were killed by high-dose cisplatin,
however a 10-fold lower concentration was much less effective.
The higher dose of vincristine was weakly toxic to many of the
glioma samples. Only the D2235 cells were markedly sensitive to
temozolomide. The other drugs were ineffective as sole agents. All
chemotherapy drugs tested further sensitised D2247 to F-LZ-
TRAIL and anti-DR5 (Figure 2), but only additive toxicity was
observed when TRAIL-resistant cells were exposed to the
combination treatments (Figures 2 and 3 and data not shown).
The possibility that prior treatment with chemotherapy drugs may
enhance sensitivity to TRAIL was also explored. Cells from a

TRAIL-resistant early passage line, D2302, were incubated with
chemotherapy drugs only for 24 h, then TRAIL or anti-DR5
antibody was added for an additional 48 h period. These
treatments had similar effects on cellular ATP levels to co-
incubations with TRAIL plus chemotherapy drugs for either 48 or
72 h (Supplementary Figure 1), indicating that prior exposure to
chemotherapy drugs did not sensitise D2302 cells to TRAIL.
Propidium iodide uptake assays were performed on many of the
samples, using selected drug combinations. This method, which
gives a direct measure of the proportion of cells killed, yielded
similar data to the CellTiter-Glo assay, which quantifies cellular
ATP (Figure 4).

Normal cells

As previously published (Ashkenazi et al, 1999; Jo et al, 2000;
Lawrence et al, 2001; Mori et al, 2004; Ganten et al, 2006), normal
human hepatocytes were sensitive to cross-linked TRAIL formula-
tions, but not to soluble untagged TRAIL (Figure 1). Hepatocytes
were also efficiently killed by cisplatin and carboplatin (Figure 5).
In general, chemotherapy drugs did not further sensitise
hepatocytes to TRAIL, although treating hepatocytes with high-
dose F-LZ-TRAIL and the chemotherapy drugs elicited a slightly
superadditive effect (Figure 5). Normal human astrocytes were also
sensitive to cross-linked TRAIL, cisplatin and carboplatin, but not
to the same extent as hepatocytes. No significant cooperation in
astrocyte lethality was noted between TRAIL and the chemotherapy
drugs (Figure 5).

On average, the minimally cultured and uncultured glioma cells
were as sensitive or less sensitive than the normal cells to TRAIL-
based drugs, alone or in combination with chemotherapeutic
agents. However, isolated examples of selective toxicity to glioma
cells relative to normal cells were observed (Figure 6). TRAIL
formulations combined with platinum-based drugs killed cells
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Figure 2 In vitro sensitivity of three early passage glioma cell lines and
one ex vivo tumour to TRAIL in combination with chemotherapy drugs.
Cells from the early passage lines D2235 (A), D2247 (B) and D2248 (C)
and the freshly resected glioma RMH020 (D) were incubated in vitro with
the stated formulations of TRAIL or anti-DR5 antibody, alone or together
with the listed chemotherapy drugs as described in the Materials and
Methods section and Table 2. The resulting survival was assayed and
graphed as described in the legend to Figure 1.
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Figure 3 In vitro sensitivity of glioma cells to TRAIL in combination with
chemotherapy drugs. Cells from 17 early passage glioma cell lines (A) and 5
uncultured gliomas (B) were incubated in vitro with the stated formulations
of TRAIL or anti-DR5 antibody, alone or together with the listed
chemotherapy drugs. The resulting survival was assayed and graphed as
described in the legend to Figure 1. Grey circles depicting average survival
are overlaid upon black circles indicating average survival plus standard
error.
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from a few gliomas (D2234, D2247, LM-G-8 and LM-G-2) at least
10 times more efficiently than normal astrocytes and hepatocytes.
Temozolomide cooperated with TRAIL to kill D2235 cells more
efficiently than the normal cells. Some selectivity of TRAIL/
etoposide and TRAIL/vincristine combinations was observed for
D2247 relative to normal cells.

Pathway analyses

To explore potential mechanisms underlying the resistance of most
of the gliomas to TRAIL-induced apoptosis, we surveyed mini-
mally passaged gliomas for the expression of the TRAIL pathway
components DR4 (TRAIL-R1), DR5 (TRAIL-R2), FADD and
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Figure 4 Propidium iodide uptake assay of glioma cell sensitivity to
combination treatments. Cells from the indicated early passage glioma cell
lines or ex vivo gliomas were incubated in vitro with soluble TRAIL at
100 ng ml�1 (þ ) or 1000 ng ml�1 (þ þ ) alone or together with
temozolomide (13.7 mg ml�1) or cisplatin (54 mg ml�1) for 48 h. Flow
cytometry measurement of propidium iodide exclusion was used to
quantitate the proportion of surviving cells. The areas of the circles denote
survival following each treatment. Small circles indicate efficient killing, large
circles reflect survival.
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Figure 5 In vitro sensitivity of astrocytes and hepatocytes to TRAIL in
combination with chemotherapy drugs. Normal human hepatocytes (A)
and astrocytes (B) were incubated in vitro with the stated formulations of
TRAIL or anti-DR5 antibody, alone or together with the listed
chemotherapy drugs. The resulting survival was assayed and graphed as
described in the legend to Figure 1. (A) Quadruplicate assays were
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depicting average survival are overlaid upon black circles indicating average
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caspase-8, along with potential modulators of TRAIL signalling
(cFLIP and XIAP) (Figure 7A–7D). None of the lines expressed
detectable DR4 (data not shown) or cFLIPS (Figure 7E). Expression
of the other components varied widely between samples. Four of
the early passage lines that were TRAIL-resistant (D2259, D2261,

D2262 and D2264) did not express detectable FADD. The TRAIL-
sensitive line D2247 expressed relatively high levels of DR5 and
XIAP and detectable, if relatively low, levels of FADD, caspase-8
and cFLIPL. D2235 and D2301 also expressed low levels of cFLIPL.
The p53 status of the majority of lines was also examined.
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Figure 7 Immunoblot analyses of candidate TRAIL signalling regulators. Immunoblotting was performed on lysates from the indicated glioma early passage
cell lines or 293T cells transiently transfected with expression plasmids encoding the various apoptotic pathway components. (A–D) Anti-DR5 (A), anti-
caspase-8 (B), anti-FADD (C) and anti-XIAP (D) signals were quantitated using a chemidoc instrument and plotted relative to the 293T transfectant lysates
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signals too weak to be detected by chemidoc (þ ). Illustrative immunoblots are inset within each graph. (E) Autoradiography was used to assay cFLIPL and
p53 expressions in early passage lines and 293T cells transfected with the cFLIPL expression plasmid (cFLIPL, GAPDH immunoblots) or empty vector (p53
immunoblot). Irrelevant lanes separating the 293T transfectant signals from those of the early passage lines have been removed.
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Mutations that may affect function were identified in four of the
lines (D2234, D2235, LM-G-4 and LM-G-8) (Supplementary data).
D2247 was the only line of those tested to express sufficient p53 to
detect by immunoblotting (Figure 7E).

DISCUSSION

Two conditions would have to be met for TRAIL to be clinically
effective for treating malignant glioma: (a) a route of administration
must be used that delivers concentrations of TRAIL that are lethal
to the patient’s glioma cells in vivo and (b) the glioma cells must be
markedly more sensitive to TRAIL than normal cells exposed via
that mode of delivery. Any treatment for brain tumours must
transverse or bypass the blood–brain barrier. This means that any
future TRAIL-based therapies for glioma would probably be
administered intracranially. Intracranial delivery may also lessen
hepatocyte exposure and thus reduce hepatotoxicity. Multiple
intracranial delivery systems are being developed. The post-
resection tumour cavity can be lined with drug-impregnated
wafers (Westphal et al, 2006). Convection-enhanced delivery is a
promising new technique in which drugs are infused at the tumour
site under pressure, thus improving distribution into the mass of
the tumour (Lopez et al, 2006). Mice bearing intracranial glioma
xenografts were successfully treated with TRAIL administered
using this approach (Saito et al, 2004).

Numerous studies have concluded that TRAIL is a promising anti-
glioma drug based on the investigation of TRAIL sensitivity and
signalling in established glioma cell lines. However, it has been
reported that melanoma cells exhibited enhanced TRAIL sensitivity
following in vitro culture (Nguyen et al, 2001). To minimise the
potential for in vitro culturing artefacts, in this study we tested the
TRAIL sensitivity of minimally cultured and freshly resected gliomas.
Our analyses imply that minimally passaged and uncultured gliomas
respond similarly to TRAIL. It is, however, possible that prolonged
in vitro culturing, as with the commonly studied established glioma
lines, may significantly affect TRAIL sensitivity.

Minimally cultured and uncultured glioma cells were generally
resistant to the TRAIL formulations tested. None of the tumours
tested was efficiently killed by the ‘hepatosafe’ formulation of TRAIL
currently being evaluated in early-phase clinical trials. Three of the
gliomas were sensitive to cross-linked formulations of TRAIL:
D2234, D2245 and D2247. Intriguingly, the patients from whose
tumours those lines were derived had all received chemotherapy
before surgery. In contrast, only one patient whose tumour was
TRAIL-resistant received treatment prior to resection (RMH020).
Unfortunately, normal astrocytes and hepatocytes were also sensitive
to cross-linked TRAIL. Only one glioma (D2247) was killed by cross-
linked TRAIL more efficiently than normal astrocytes.

Four of the early passage lines lacked detectable FADD, possibly
accounting for their TRAIL resistance. The TRAIL-sensitive line
D2247 bore only low levels of FADD and caspase-8, arguing that
low concentrations of these pathway components can be sufficient
for TRAIL-induced apoptotic signalling. D2247 was one of a
number of lines lacking mutations in p53, and the only line tested
to express p53 levels detectable by immunoblotting. Consistent
with this observation, D2247 also expressed high levels of DR5, a
known p53-inducible protein (Wu et al, 1997). LM-G-4, a TRAIL
resistant line, expressed higher levels of DR5, caspase-8 and FADD
than D2247, arguing that factors other than the levels of these
proteins influence TRAIL sensitivity in glioma cells. The expres-
sion of the potential TRAIL inhibitors XIAP and cFLIP was higher
in the TRAIL-sensitive D2247 cells than the resistant lines, arguing
against overexpression of these proteins as a mechanism of
resistance in gliomas that survived incubation with TRAIL.
Definition of the molecular mechanisms contributing to the
resistance of the majority of the gliomas to TRAIL will require

additional investigation, but it seems unlikely that a single
resistance mechanism, perhaps amenable to therapeutic mani-
pulation, will be found to account for the widespread survival of
glioma cells following exposure to TRAIL.

Better therapies are urgently needed for malignant glioma.
In vitro sensitivity assays could be used for preclinical evaluation
of the anti-glioma potential of new drugs. In the future, such assays
could also assist in the selection of the most effective drug
combinations for individual patients. Our data imply that few
glioma patients would benefit from TRAIL-based therapies;
perhaps in vitro sensitivity testing could help identify the minority
of patients most likely to respond. The luminescence assay used in
this study is rapid, high-throughput and requires fewer cells than
the commonly employed MTT and flow cytometric assays, thus
allowing more drug doses and combinations to be tested per
sample. The accuracy with which in vitro sensitivity testing
predicts in vivo responses may be influenced by the mechanism of
action of the particular drug as well as the degree to which cellular
environment influences the toxicity of each agent to glioma cells.
For example, glioma cell interactions with surrounding cells and
the extracellular matrix could modulate the apoptosis-inducing
capacity of anti-cancer drugs in vivo. For these reasons, it is also
important to examine orthotopic models of cancer. Notwithstand-
ing these considerations, in vitro apoptosis data do tend to
correlate with patient responses in cancer types for which truly
effective drugs exist (Nagourney, 2006). The dearth of effective
drugs for treating glioma has limited assessment of the predictive
value of in vitro sensitivity testing for this tumour type. Never-
theless, available evidence does argue that in vitro sensitivity
testing can assist in selecting treatments for glioblastoma patients
(Iwadate et al, 2003).

Currently, the majority of glioblastoma patients receive surgical
resection, radiotherapy and temozolomide. Although temozolo-
mide may benefit some patients, it is well recognised that the
majority of patients do not respond to this drug. Temozolomide
administration only extended median survival of glioblastoma
patients from 12.1 to 14.6 months post-diagnosis, boosting 2-year
survival from 10.4 to 26.5% (Stupp et al, 2005). Given this subtle
effect in vivo, it is perhaps not surprising that only one of the
tumours tested in this study (D2235) was efficiently killed by
temozolomide in vitro. Cisplatin was the most effective of the
drugs tested in vitro, however strong toxicity was triggered only by
the higher of the doses employed, which corresponded to the peak
intratumoral cisplatin level following embolisation (Tegeder et al,
2003). Only partial sensitivity was observed using a 10-fold lower
concentration, which resembles peak tumour and plasma levels
achieved following systemic cisplatin administration (Riva et al,
2000; Tegeder et al, 2003; Watanabe et al, 2003; Siegel-Lakhai et al,
2005). A few gliomas were more sensitive than normal cells to co-
treatments with TRAIL and chemotherapy drugs.

In conclusion, our data indicate that TRAIL-based therapies
would be unlikely to benefit the majority of glioma patients. This
study does, however, suggest that particular patients may respond
to specific combinations of TRAIL and chemotherapy drugs.
In vitro sensitivity assays may prove useful in identifying such
patients and predicting effective drug combinations.
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