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Abstract

The development of high-throughput genomic technologies associated with recent genetic
perturbation techniques such as short hairpin RNA (shRNA), gene trapping, or gene editing
(CRISPR/Cas9) has made it possible to obtain large perturbation data sets. These data sets
are invaluable sources of information regarding the function of genes, and they offer unique
opportunities to reverse engineer gene regulatory networks in specific cell types. Modular
response analysis (MRA) is a well-accepted mathematical modeling method that is precisely
aimed at such network inference tasks, but its use has been limited to rather small biological
systems so far. In this study, we show that MRA can be employed on large systems with
almost 1,000 network components. In particular, we show that MRA performance surpasses
general-purpose mutual information-based algorithms. Part of these competitive results
was obtained by the application of a novel heuristic that pruned MRA-inferred interactions a
posteriori. We also exploited a block structure in MRA linear algebra to parallelize large sys-
tem resolutions.

Author summary

The knowledge of gene and protein regulatory networks in specific cell types, including
pathologic cells, is an important endeavor in the post-genomic era. A particular type of
data obtained through the systematic perturbation of the actors of such networks enables
the reconstruction of the latter and is becoming available at a large scale (networks com-
prised of almost 1,000 genes). In this work, we benchmark the performance of a classical
methodology for such data called modular response analysis, which has been so far
applied to networks of modest sizes. We also propose improvements to increase perfor-
mance and to accelerate computations on large problems.

Introduction

The expression and activity of genes and proteins in cells are controlled by highly complex reg-
ulatory networks involving genes and proteins themselves, but also non-coding RNAs, metab-
olites, etc. Despite tremendous efforts in research, including all the developments of high-
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throughput genomic technologies, a significant portion of this machinery remains uncharted.
Dysregulations in such networks are related to many diseases. Moreover, healthy cells of a
same organism often feature adjusted regulatory networks depending on their types and states.
Techniques, both experimental and computational, that enable the inference of regulatory net-
works for different cells are obviously of great interest.

Reference databases such as Reactome [1], KEGG [2], IntAct [3], or STRING [4] compiling
our knowledge of biological pathways or protein interactions have been established and pro-
vide valuable reference maps. Due to their universal nature, these maps do not reflect natural
and pathologic variations of regulatory networks though some chosen disease pathways might
be included [5,6]. In principle, researchers should generate data specific to the biological sys-
tem of interest to assess the actual wiring of its regulatory network. Specific data can be com-
bined with reference databases in some algorithms, while others only rely on de novo
inferences. The field of systems biology has proposed many algorithms for such a purpose
involving different approaches [7-9]. Obviously, algorithms must match the type of data avail-
able to perform their inferences such as a transcriptomes or proteomes obtained under multi-
ple conditions, time series, or perturbation data.

In this work, we are interested in the inference of regulatory networks based on systematic
perturbation data. That is, given a biological system of interest, which could be the whole cell,
but also a small set of related genes or proteins such as a pathway or part of a pathway, we have
access to information reporting the activity level of every component (gene/protein). Typical
examples are transcript, protein, or phosphorylated protein abundances. This information is
available in basal condition as well as under the systematic perturbation of each single compo-
nent. When this type of data are obtained from a biological system in a steady state, modular
response analysis [10] (MRA) has been widely and successfully applied [11]. The elegance of
MRA is that it provides an efficient mathematical framework to estimate a directed and
weighted network representing the system regulatory network. Most applications of MRA are
limited to networks comprised of a modest number of modules (<10). In this study, we want
to explore the application of MRA to medium- (>50) and large-size (>>500) systems. It entails
a particular implementation of the linear algebra at the heart of MRA to parallelize computa-
tions as well as the introduction of a heuristic to prune the inferred networks a posteriori to
improve accuracy.

As stated above, rewiring of regulatory networks is natural and necessary to yield a multi-
tude of cell types in higher organisms, and to adapt to distinct environmental conditions.
Rewiring is also associated with several diseases [12,13], an extreme case being cancer [14-16].
For instance, kinase signaling cascades might be redirected in certain tumors to achieve drug
resistance or to foster exaggerated cell growth. MRA has been applied to a number of such can-
cer-related investigations [17,18] considering rather small networks. Here, we take advantage
of two published data sets that involve cancer cell lines and provide systematic perturbation
data compatible with MRA requirements. The first-medium-size-data set [19] reports the
transcriptional expression of 55 kinases and 6 non kinases under 11 experimental conditions
(unstimulated plus 10 distinct stimulations). Under every condition, the transcript levels of all
the 61 genes were obtained by shallow RNA sequencing, including wild type cells and cells
with individual KOs of each gene. These data hence enable us to infer one network per condi-
tion (11 networks) to discover how those 61 genes regulate themselves transcriptionally. The
second-large-size-data set was generated by the next generation of the Connectivity Map
(CMap) using its new L1000 platform [20]. Both shRNA- and CRISPR/Cas9-based systematic
perturbations of roughly 1,000, respectively 350, genes in 9, respectively 5, cell lines were
released. These data enable us to infer 9+5 = 14 networks. To complement performance esti-
mations based on real data sets, where complete and exact knowledge of the interaction is not
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available, we also generated medium to large, realistic synthetic networks [21] and correspond-
ing perturbation data.

We compare the performance of MRA, with and without the proposed pruning heuristic,
to mutual information (MI)-based methods that have found broad acceptance. The adapted
MRA implementation with optional heuristic post-processing is made available as an R script.

Results
Network inference algorithms

The availability of large functional genomics data collections (transcriptomes and/or prote-
omes) has led to the development of a number of algorithms aimed at inferring interaction
networks [9]. An essential ingredient of most algorithms is the co-expression of genes (or pro-
teins)[22], which can be captured by simple correlation coefficients [23], mutual information
(MI), or diverse statistical models [24]. There are too many such algorithms to review them all
here, but MI-based approaches seem to have provided off-the-shelf, robust solutions that are
widely used. We hence compare MRA to representatives of this category such as CLR [25],
MRNET [26], and ARACNE [27].

MI is often preferred over Pearson correlation for its ability to detect nonlinear relation-
ships. With a network involving n genes whose expression levels are measured in m transcrip-
tomes, we write X; the discrete distribution representing gene i expression. The MI between
genes i and j is given by

MI; = H(X;) + H(XJ) - H(Xan)a

where H(X) = =), _.p(x,)In (p(x,)) is the entropy of a discrete random variable X. There
exist different estimators for H(X) that use the m available transcriptomes [28]. Networks of
interactions identified though MI, imposing a minimal threshold on MI values, are commonly
called relevance networks [29,30]. The CLR algorithm improves over relevance networks by
introducing a row- and column-wise z-score-like transformation of MI;; to normalize the MI
matrix into a Z = (z;;) matrix before thresholding. Namely, for each gene i CLR computes

MI,;; — mean(MI, )
z; = maxq 0; —

sd(MI, )

and then

— 2 2
z;=/% +7.

MRNET applies a greedy maximum relevance strategy to link each gene i to the gene j that
has maximum MI with it (j = arg max MI;;). Additional links are added recursively maximiz-
ing MI with both the gene i and the already linked genes until a stop criterion based on redun-
dancy is met. A further approach by pruning was proposed by ARACNE authors, where as in
relevance networks a common threshold is applied to all the M;; followed by the application of
a pruning rule. This rule states that, if gene i interacts with gene j through gene k, then
M;; < min{M,,; M, ;}. Consequently, among each triplet of nonzero MI after initial threshold-

ing, the weakest interaction is removed.

The MRA and MRA+CLR algorithms

Due to its ability to model biological systems at various resolutions, the MRA terminology for
a system component is a module. We follow this terminology and consider that the n modules
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composing the system have their activity levels denoted by x€R". Here, modules are genes and
x; stands for gene i transcript abundance. If we make the rather nonrestrictive assumption that
relationships between modules are modeled by a dynamical system

i = ()

(f(.) must exist but it does need to be known), and the system is in a steady state at the time of
experimental measurements (X = 0), MRA theory lets us compute an #xn matrix of local

— %

interaction strengths r = (r;;) from a gene j to a gene i (r,. = o xi). The matrix r is obtained

from linear algebraic computations based on the observed activity of each module in an unper-
turbed state, and under the individual, successive perturbations of each module. Details are
provided in MRA original publication [10], reviews of MRA developments [11], or in our
recent publication [17]. We use the notations of this recent paper. In Materials and Methods,
we provide a brief overview of MRA along with a description of the particular way we imple-
mented the linear algebra to take advantage of parallel computing.

Returning to the regulatory network inference problem, the MRA local interaction matrix r
provides us with a direct estimate of this network. Interactions are signed with positive coeffi-
cients representing activation and negative coefficients representing inhibition. Given the fact
that we want to apply MRA to large systems, where every module does not necessarily have a
direct influence on all the others, we also face the problem of thresholding or pruning. Within
the context of this study, we call MRA the direct use of MRA computations followed by a
threshold on the absolute values of r coefficients (values below a given threshold in absolute
values are set to 0). We also adapted CLR heuristic (z-score-like computation) to bring r coeffi-
cients to a more uniform scale before thresholding. We call this algorithm MRA+CLR, see
Materials and Methods for details.

Application to synthetic data sets

In order to have access to an exact reference when testing inference algorithms, it is customary
to generate realistic synthetic data. To start evaluating MRA and MRA+CLR, we took advan-
tage of a recent network data generator called FRANK [21]. FRANK has the ability to generate
regulatory networks that reach a steady-state and to output simulated expression data includ-
ing individual perturbations, which obviously match our needs to test our application of MRA.
FRANK-generated networks are defined by specifying the numbers of transcription factors
(TFs) and target genes (TAs). TAs are genes that do not influence the expression of the other
genes, while TFs do. Biologically speaking, FRANK’s TFs do not need to be actual transcrip-
tion factors, but they should rather be regarded as genes that can control the expression of
other genes (including other TFs in FRANK). TFs hence include target genes that loop back
into the regulatory network. We considered synthetic networks of different sizes and TF/TA
ratios: 50TFx50TA, 100TFx100TA, 500TFx500TA, 1000TFx1000TA, and 75TFx1000TA.

We applied MRA, MRA+CLR, CLR, MRNET, and ARACNE to these networks. CLR and
MRNET implementations were provided by the minet BioConductor package [28]. ARACNE
implementation was provided by the parmigene BioConductor package [31]. To estimate per-
formance, we compared inferences with the reference matrix used to generate each synthetic
network data. To apply a uniform selection mechanism to all of the algorithms, we simply
took the top 5%, 10%, 20%, 30% and 40% scores of the inferred interaction matrices. In some
cases, ARACNE and MRNET returned less nonzero interactions than the number correspond-
ing to top x%, in which case those algorithms were ignored at such a top x%. Representative
performance is reported in Fig 1, and all the confusion matrices reporting true/false positives
(TPs/FPs) and true/false negatives (TNs/FNs) along with specificity, accuracy, precision, recall,
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and a P-value for the significance of the intersection with the reference network (hypergeomet-
ric test) are provided in S1 Table. Because all the inferred interactions were selected in identical
numbers for each algorithm, all the numbers in the confusion matrices as well as specificity,
precision, etc. are coupled. We thus only report TPs to represent the relative performances of
the algorithms in Fig 1B and 1C for the top 10% and 20% selection levels.

The three MI-based algorithms (CLR, MRNET, and ARACNE) as well as MRA performed
similarly. MRA+CLR consistently achieved superior performance.

Application to a medium-size data set

Gapp et al.[19] published a data set, where they studied the transcriptional impact of the full
knockouts (KOs) of 55 tyrosine kinases and 6 non-kinases. We call this data set K61. The sys-
tematic perturbations (KOs) of each gene as well as the unperturbed transcriptomes obviously
constitute a bona fide MRA data set. The transcriptomes were acquired under 11 conditions:
no stimulation (None), FGF1, ACTA, BMP2, IFNb, IFNg, WNT3A, ionomycin (IONM), res-
veratrol (RESV), rotenone (ROTN), and deferoxamine (DFOM) stimulation. Stimulations
were applied for 6 hours allowing the cells to adapt and reach a steady state or near steady
state. To facilitate the generation of full-KOs, human HAPI haploid cells [32] were utilized.
The published transcriptomes were not limited to the expression of the 61 perturbed genes,
but here, due to the specifics of MRA, we limited the data to those 61 genes. Replicates were
essentially averaged (see Materials and Methods), resulting in a 61x61 matrix for each of the
11 conditions

We applied MRA, MRA+CLR, CLR, MRNET, and ARACNE to each of the 11 conditions
in the K61 data set separately. To estimate performance, we compared our results with the
STRING database [4] due to its broad content. Indeed, working with transcriptomic data
implies that the inferred networks might overlap protein complexes as well as certain parts of
known pathways, but they might also unravel different types of relationships such as genetic
interactions, strong co-regulation, etc. Physical interactions only of well-described pathway
databases [1,3] might thus be too restrictive, hence the choice of STRING. As above, we took
the top 5%, 10%, 20%, 30% and 40% scores of the inferred interaction matrices by each algo-
rithm and determined the intersection with STRING. Since STRING interactions are provided
with a confidence score, we used STRING score > 0.5 interactions as a default. Intersections
based on STRING scores > 0 and > 0.8 are provided in S2 Table. Intersection with STRING
resulted in confusion matrices and derived indicators (P-value, sensitivity, etc.) similar to what
we obtained for the synthetic data. A representative example (None condition) is featured in
Fig 2A, while complete results are in S2 Table.

Considering that the STRING database is both noisy and incomplete, and it only reflects a
universal interactome, confusion matrices derived from STRING (or any such database) are
rough approximations. Nonetheless, the use of a constant reference and identical selection cri-
teria for all the algorithms make the observed relative performances a reliable indicator of
actual differences. Due to our top x% selection mechanism and the use of a constant reference,
all the numbers in confusion matrices as well as P-values, recall, etc. are coupled. Accordingly,
we only report TPs for the 11 conditions of the data set at the top 10% and the top 20% selec-
tion levels in Fig 2B to 2E. Similar to the synthetic data sets, CLR, MRNET and ARACNE
delivered comparable performance that was inferior to MRA+CLR. The advantage of MRA
+CLR over MRA alone was not significant on K61 data. Results referring to more stringent
(STRING score > 0.8) or less stringent (STRING score > 0) use of STRING interactions were
very qualitatively close (S2 Table). We conclude that on these data as well, the MRA+CLR algo-
rithm provides a competitive approach compared to MI-based solutions.
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A MRA MRA+CLR
TP FP FN TN Spe Acc Pre TP FP FN TN  Spe Acc Pre
Top 5% 27133 72817 478641 1420409 095 072 0.27 33069 66881 472705 1426345 0.96 0.73 0.33
Top 10% 53767 146133 452007 1347093 0.90 0.70 0.27 66847 133053 438927 1360173 091 0.71 0.33
Top 20% 105927 293873 399847 1199353 0.80 0.65 0.26 131693 268107 374081 1225119 0.82 0.68 0.33
Top 30% 157150 442550 348624 1050676 0.70 0.60 0.26 189551 410149 316223 1083077 0.73 0.64 0.32
Top 40% 207861 591739 297913 901487 0.60 055 0.26 245044 554556 260730 938670 0.63 0.59 0.31
CLR MRNET
TP FP FN TN Spe Acc Pre TP FP FN TN  Spe Acc Pre
Top 5% 24969 74981 480805 1418245 0.95 072 0.25 19060 80890 486714 1412336 0.95 0.72 0.19
Top 10% 50683 149217 455091 1344009 0.0 0.70 0.25 41859 158041 463915 1335185 0.89 0.69 0.21
Top 20% 101461 298339 404313 1194887 0.80 0.65 0.25 96574 303226 409200 1190000 0.80 0.64 0.24
Top 30% 152037 447663 353737 1045563 0.70 0.60 0.25 149601 450099 356173 1043127 0.70 0.60 0.25
Top 40% 202221 597379 303553 895847 0.60 0.55 0.25 201054 598546 304720 894680 0.60 0.55 0.25
ARACNE
TP FP FN TN Spe Acc Pre ® MRA
Top 5% 24205 75745 481569 1417481 095 072 0.4 : gi'?"cm
0,
Top 10% 40948 158952 464826 1334274 0.89 0.69 0.20 VRNET
ARACNE
B TPs, selection at the top 10%
1000TFx1000TA 500TFx500TA 75TFx1000TA 100TFx100TA 50TFx50TA
60000 2007
_ _ 600 -
15000 2000
50000 500 | 150 -
40000 - 10000 1500 ~ 400 4
30000 1000 4 300 - 100 -
20000 200
5000 500 50
10000 - 100 -
0 0 0 0 0
c TPs, selection at the top 20%
1000TFx1000TA 500TFx500TA 75TFx1000TA 100TFx100TA 50TFx50TA
120000 - 30000 - 4000 7 1200 - 350
100000 - 25000 3000 - 1000 4 300
80000 1 20000 - 800 - 250 1
200
60000 15000 - 2000 - 600 - oo ]
40000 - 4 400
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Fig 1. Performance on synthetic data. (A) Representative confusion matrices on the 1000TFx1000T A network. Spe = specificity, Acc = accuracy, and
Pre = precision. Underlined values represent maxima. (B) TP numbers at the top 10% selection level in each network model. (C) TP numbers at the top
20% selection level. Note that in some cases, MRNET and ARACNE did not returned enough interactions to perform a number of selections equal to the

top 20% of all possible interactions. We ignored those cases, hence the missing bars and numbers.

https://doi.org/10.1371/journal.pcbi.1009312.9001

In their article, K61 authors discussed interesting differences in JAK1 versus JAK2 and

TYK?2 signaling, three members of the JAK family. In particular, they found that JAK1 KO
cells were insensitive to IFNb and IFNg stimulation, while JAK2 and TYR2 KO cells responded
normally although, in general, all these proteins are known to contribute to transcriptional
response upon type I and II interferon stimuli [33]. To illustrate how network inference might
provide some clue on such differences, we report in Fig 3A the MRA+CLR-inferred transcrip-
tional interaction strengths between those three genes and their targets under the unstimulated
(None), IFNb, and IFNg conditions. In the absence of stimulation, we clearly notice opposed
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A MRA MRA+CLR
TP FP FN TN Spe Acc Pre TP FP FN TN Spe Acc Pre
Top 5% 12 80 207 1592 0.95 0.85 0.13 18 74 201 1598 096 0.85 0.20
Top 10% 32 151 187 1521 091 0.82 0.17 29 154 190 1518 091 082 0.16
Top 20% 52 314 167 1358 0.81 075 0.14 54 312 165 1360 0.81 075 0.15
Top 30% 76 473 143 1199 072 067 0.14 77 472 142 1200 072 068 0.14
Top 40% 98 634 121 1038 062 060 0.13 108 624 111 1048 063 061 0.15
CLR MRNET
TP FP FN TN  Spe Acc Pre TP FP FN TN Spe Acc Pre
Top 5% 11 81 208 1591 0.95 0.85 0.12 10 82 209 1590 0.95 0.85 0.11
Top 10% 22 161 197 1511 090 0.81 0.12 24 159 195 1513 090 0.81 0.13
Top 20% 42 324 177 1348 081 0.74 0.11 43 323 176 1349 0.81 074 0.12
Top 30% 63 486 156 1186 0.71 0.66 0.11 65 484 154 1188 071 0.66 0.12
Top 40% 79 653 140 1019 061 058 0.11 85 647 134 1025 061 059 0.12
ARACNE
TP FP FN TN  Spe Acc Pre
Top 5% 11 81 208 1591 0.95 0.85 0.12
Top 10% 19 164 200 1508 090 0.81 010 @ MRA
Top 20% 36 330 183 1342 080 073 010 @ MRA+CLR
® CLR
B TPs, selection at the top 10% MRNET 40- —
ARACNE
35- *
2 o |
20 = 25- * $ ﬁ
10 20-
0 © < ~ a o > > < 15 L 1 1 1 1 1
c = o g L z z % n = ) \[\Q} (,\?~ (,\«Q~ Qé c§<<’
] Q > g O [T w o) v} o E x & o
2 < @ g & °S r¥ g zZ & N
s W
E
b TPs, selection at the top 20%
60 60 -
50 "
40 a
30 = 50
20
10 40-
0
o) < o~ s — o o s > = < 1 1 1 1 1
c = o L zZ 4 %) = %} > X<\ é \Z
o O = Q [0} i i Z L = RN O R\ Do
z 2 z ¥ & = = o g g Z ‘:\@" NS

Fig 2. Performance on K61 data against STRING interactions (STRING score > 0.5). (A) Representative confusion matrices for the None
condition. Spe = specificity, Acc = accuracy, and Pre = precision. Underlined values represent maxima. Note that in some cases, ARACNE did
not return enough interactions to perform a number of selections equal to the top 30% or 40% of all possible interactions. We ignored those
cases, hence the missing numbers. (B) TP numbers at the top 10% selection level. (C) Comparison between the algorithm TP numbers
(Wilcoxon test, 2-sided, *P < 0.05). (D) TP numbers at the top 20% selection level. (E) Comparison between the algorithm TP numbers
(Wilcoxon test, 2-sided, *P < 0.05, **P<0.005, ***P<0.001).

https://doi.org/10.1371/journal.pcbi.1009312.g002

influences of JAK1 on its targets compared to JAK2 and TYR?2 (first three columns), which
already indicate different signal transduction capabilities. Upon IFNDb stimulation, the interac-
tions are closer with opposed action on ROR1 and PDFGRA. JAK2 and TYR2 remained highly
similar in this condition. IFNg stimulation induced three different patterns with ROR1 tran-
scriptional inhibition remaining a specific mark of JAK1. Gapp et al. also found differences in
FGF receptors. FGF-induced response was attenuated in FGFR1 and FGFR3 KO cells, but pre-
served in FGFR2 and FGFR4 KO cells. In Fig 3B, we notice an almost perfect inversion of the
activation/inhibition pattern between FGFR1 versus FGFR2 and FGFR3. FGFR4 adopted a
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Fig 3. MRA+CLR-inferred interactions (top 20% selected). (A) Interaction strengths (in log, with sign preserved) between JAK1, JAK2,
and TYR2 and their targets. Stimulatory conditions are in brackets (None, IFNb, IFNg). (B) Interaction strengths between FGFRI,
FGFR2, FGFR3, and FGFR4 and their targets.

https://doi.org/10.1371/journal.pchi.1009312.g003

very different configuration with limited interactions. This observation already indicates a dis-
tinct role for FGFR1. Upon FGF stimulation, the interactions are patchier, but certain opposi-
tions can be found such as a strong inhibitory action of FGFR1 and FGFR3 on RYK

transcription.

Application to a large-size data set

CMap next generation platform L1000[20] has recently released (December 2020) a new batch
of data. These data are in majority comprised of transcriptomes obtained in reference cancer
cell lines under a large number of perturbations with chemical agents, but most importantly
shRNA-induced knockdowns and CRISPR/Cas9 KOs. L1000 cost effective design entailed the
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identification of roughly 1,000 hallmark genes from which a large proportion of the whole
transcriptome can be inferred. The L1000 platform only measures the expression of the hall-
mark genes experimentally. Two subsets of these data interest us. A first data set is composed
of the almost systematic sShRNA perturbation of all the hallmark genes, thus providing an
expression matrix close to 1,000x1,000 in size for 9 human cell lines: A375 (metastatic mela-
noma), A549 (lung adenocarcinoma), HCC515 (non-small cell lung cancer, adenocarcinoma),
HT?29 (colorectal adenocarcinoma), HEPG2 (hepatocellular carcinoma), MCF7 (breast adeno-
carcinoma), PC3 (metastatic prostate adenocarcinoma), VCAP (metastatic prostate cancer),
and HAIE (normal kidney cells). To alleviate sShRNA off-target effects, L1000 employed multi-
ple hairpins, which were integrated into a consensus gene signature (CSG) that the authors
showed to be essentially devoid of off-target consequences [20]. Cells were harvested 96 hours
after shRNA perturbation leaving time to reach a steady state that is compatible to shRNA
common use. Due to variation in data production, the actual matrix sizes ranged from
815x815 (MCEF7) to 938x938 (A375).

We followed the same performance evaluation procedure as above for K61. A representa-
tive (A375 cells) confusion matrix is reported in Fig 4A, followed by TP numbers at the top
10% and top 20% selection levels in Fig 4B to 4E. All the confusion matrices as well as results
for different STRING score thresholds are in S3 Table. With L1000 shRNA larger matrices, but
also knockdown perturbations instead of KOs, MRA and MRA+CLR advantage was much
augmented over CLR and MRNET. The MRA+CLR algorithm outperformed MRA. ARACNE
which performed moderately on K61 and synthetic data, achieved median performance almost
identical to MRA+CLR with less variability. In every case, despite rather consistent differences
between TPs predicted by the various algorithms, the large number of genes involved and
potentially inaccuracies in the reference network STRING tend to make those differences
small. This is reflected in the accuracy, precision, and specificity values that display essentially
no variation.

To illustrate the interest of network inference at this scale, we intersected MRA+CLR infer-
ences in normal kidney HA1E and melanoma A375 cells with a Gene Ontology term, i.e.,
GO:0006974 cellular response to DNA damage stimulus. In Fig 5, we can notice the difference
in connectivity between normal cells and cells where this process is obviously exacerbated, in
particular the regulation of ATMIN a key molecule in DNA repair. This result is in agreement
with the known rewiring of genetic networks in response to DNA damage [34].

The second L1000 data set of interest is the CRISPR/Cas9 collection of KOs. These data
were only available for five cell lines: A375, A549, HT29, MCF7, and PC3. The matrix sixes
ranged from 343x343 (MCF7) to 359x359 (A375). Performance results are featured in Fig 6
and S4 Table. Although MRA and MRA+CLR again dominated the other algorithms, their
advantage was less pronounced on these large, full KO data. ARACNE median performance
was inferior to MRA+CLR with similar or higher variability. The observation we made above
regarding the size of the biological system squeezing differences in performance remains valid
here, although the problem is slightly attenuated with the smaller CRISPR/Cas9 data sets com-
pared to their shRNA equivalent.

Execution times

We compared execution times of each algorithm on a server equipped with Intel Xeon E7-
4870 processors running at 2.4 Ghz, Fig 7A. MI-based algorithms were extremely fast while
MRA-based algorithms required much more compute time. The parallelized implementation
of MRA algebra that we propose here (see Materials and Methods) allowed us to substantially
reduce MRA+CLR compute times, Fig 7.
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A MRA MRA+CLR
TP FP FN TN Spe Acc Pre TP FP FN TN  Spe Acc Pre
Top 5% 432 21541 7950 409530 0.95 0.93 0.02 482 21491 7900 409580 0.95 0.93 0.02
Top 10% 911 43035 7471 388036 0.90 0.89 0.02 972 42974 7410 388097 0.90 0.89 0.02
Top 20% 1842 86049 6540 345022 0.80 0.79 0.02 1891 86000 6491 345071 0.80 0.79 0.02
Top 30% 2680 129156 5702 301915 0.70 0.69 0.02 2744 129092 5638 301979 0.70 0.69 0.02
Top 40% 3496 172285 4886 258786 0.60 0.60 0.02 3537 172244 4845 258827 0.60 0.60 0.02
CLR MRNET
TP FP FN TN Spe Acc Pre TP FP FN TN  Spe Acc Pre
Top 5% 393 21580 7989 409491 095 0.93 0.02 374 21599 8008 409472 0.95 0.93 0.02
Top 10% 633 43313 7749 387758 0.90 0.88 0.01 629 43317 7753 387754 090 0.88 0.01
Top 20% 1080 86811 7302 344260 0.80 0.79 0.01 1133 86758 7249 344313 0.80 0.79 0.01
Top 30% 1546 130290 6836 300781 0.70 0.69 0.01 1628 130208 6754 300863 0.70 0.69 0.01
Top 40% 1977 173804 6405 257267 0.60 0.59 0.01 2018 173763 6364 257308 0.60 0.59 0.01
ARACNE
TP FP FN TN Spe Acc Pre
Top 5% 551 21422 7831 409649 095 0.93 0.03
Top 10% 964 42982 7418 388089 0.90 0.89 0.02
Top 20% 1755 86136 6627 344935 0.80 0.79 0.02 ® MRA
Top 30% 2521 129315 5861 301756 0.70 0.69 0.02 ® MRA+CLR
Top 40% 3236 172545 5146 258526 0.60 0.60 0.02 ® CLR
MRNET —t
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Fig 4. Performance on L1000 shRNA data against STRING interactions (STRING score > 0.5). (A) Representative confusion matrices for A375
cells. Spe = specificity, Acc = accuracy, and Pre = precision. Underlined values represent maxima. (B) TP numbers at the top 10% selection level. (C)
Comparison between the algorithm TP numbers (Wilcoxon test, 2-sided, #P < 0.001). (D) TP numbers at the top 20% selection level. (E) Comparison

between the algorithm TP numbers (Wilcoxon test, 2-sided, #P < 0.001, ##P < 0.00005).

https://doi.org/10.1371/journal.pchi.1009312.g004

Discussion

We presented a particular application of MRA to large biological systems and showed its com-

petitive performance compared to first-in-class MI-based inference methods. Obviously, MI-
based methods have a much broader spectrum of application, as they do not need specific and
systematic perturbations on the components of the biological system whose regulatory net-
work is to be inferred. Nevertheless, when perturbation data are available, our results suggest
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Fig 5. Networks inferred with MRA+CLR (top 10% selection). Genes involved in cellular response to DNA damage
stimulus (GO:0006974) in (A) normal kidney cells, and (B) melanoma cells (B).

https://doi.org/10.1371/journal.pcbi.1009312.g005
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A MRA MRA+CLR
TP FP FN TN Spe Acc Pre TP FP FN TN Spe Acc Pre
Top 5% 76 3138 2463 58584 0.95 0.91 0.02 114 3100 2425 58622 0.95 0.91 0.04
Top 10% 171 6256 2368 55466 0.90 0.87 0.03 246 6181 2293 55541 0.90 0.87 0.04
Top 20% 394 12459 2145 49263 0.80 0.77 0.03 482 12371 2057 49351 0.80 0.78 0.04
Top 30% 632 18647 1907 43075 0.70 0.68 0.03 705 18574 1834 43148 0.70 0.68 0.04
Top 40% 868 24837 1671 36885 0.60 0.59 0.03 943 24762 1596 36960 0.60 0.59 0.04
CLR MRNET
TP FP FN TN Spe Acc Pre TP FP FN TN Spe Acc Pre
Top 5% 131 3083 2408 58639 0.95 0.91 0.04 151 3063 2388 58659 0.95 0.92 0.05
Top 10% 234 6193 2305 55529 0.90 0.87 0.04 255 6172 2284 55550 0.90 0.87 0.04
Top 20% 404 12449 2135 49273 0.80 0.77 0.03 431 12422 2108 49300 0.80 0.77 0.03
Top 30% 574 18705 1965 43017 0.70 0.68 0.03 581 18698 1958 43024 0.70 0.68 0.03
Top 40% 727 24978 1812 36744 0.60 0.58 0.03 723 24982 1816 36740 0.60 0.58 0.03
ARACNE
TP FP FN TN Spe Acc Pre
Top 5% 123 3091 2416 58631 0.95 0.91 0.04
Top 10% 186 6241 2353 55481 0.90 0.87 0.03 C
Top 20% 309 12544 2230 49178 0.80 0.77 0.02
Top 30% 435 18844 2104 42878 0.69 0.67 0.02 300 -
Top 40% 542 25163 1997 36559 0.59 0.58 0.02
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Fig 6. Performance on L1000 CRISPR/Cas9 data against STRING interactions (STRING score > 0.5). (A) Representative confusion matrices for
A375 cells. (B) TP numbers at the top 10% selection level. (C) Comparison between the algorithm TP numbers. (D) TP numbers at the top 20%
selection level. (E) Comparison between the algorithm TP numbers (Wilcoxon test, 2-sided, *P < 0.05).

https://doi.org/10.1371/journal.pcbi.1009312.9g006

that a dedicated method, relying on a modeling approach might deliver good performance in a

robust fashion. The simple heuristic we proposed to prune MRA inferences, which was
adapted from the CLR algorithm, provided improved performance. CLR and MRNET were

systematically over performed, while ARACNE delivered variable performance. Overall, it was
either clearly inferior or similar to MRA+CLR, depending on the data set. On the L1000
shRNA data, its good and less variable performance made it the algorithm of choice. ARACNE
variable performance across data sets might suggest strong dependence on data characteristics

such as the noise level or the dynamic range.
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Data set CLR MRNET ARACNE MRA+CLR  MRA+CLR (5 cores) MRA+CLR (15 cores)
K61, condition None 0.04 [s] 0.02 [s] 0.04 [s] 0.38 [h] 0.09 [h] 0.03 [h]
L1000, A375 cell line 2.31s] 8.74 [s) 1.37 [s] 5.82 [h] 3.03 [h] 0.91 [h]
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Fig 7. Execution times. (A) Execution times on two representative experimental networks. Note that MRA+CLR times are in
hours instead of seconds. MRA times are identical to MRA+CLR times. (B) K61 data (None condition, 61x61 matrix) speedup
curve. Amdahl’s Law is a commonly used model for the best achievable speedup. (C) L1000 shRNA data (A375 cells, 938x938

matrix).

https://doi.org/10.1371/journal.pcbi.1009312.g007

Execution times required by model-based algorithms such as MRA+CLR are obviously
much larger than threshold- and rule-based inferences (from minutes to hours depending on
the number of processors and the data set size versus seconds), but it remains essentially negli-
gible compared to the time and money invested in generating experimental perturbation data.

Although the number of data sets was limited, we could notice a stronger improvement of
MRA+CLR over MI-based methods with L1000 shRNA knockdown perturbation data com-
pared to the two full KO data sets (K61 and L1000 CRISPR/Cas9). This might relate to the line-
arization at the heart of MRA modeling, where the error depends on the magnitude of
perturbations (see our derivation of MRA through Taylor series expansion [17]). Strong per-
turbations such as full KOs might bring the data away from MRA area of safe application.

Materials and methods

Modular response analysis

We briefly recall the main MRA equations to facilitate the reading of this text, and to explain
the particular way we implemented the linear algebra. We assume that the biological system is
comprised of n modules whose activity levels are denoted by x€R"”. We further admit the exis-
tence of » intrinsic parameters, p€R", one per module, and each of them can be perturbed by
an elementary perturbation. One can imagine x reporting mRNA abundances and perturba-
tions induced by shRNAs for instance. Lastly, we assume that there exist SCR"xR", an open
subset, and £:.S—R" of class C', i.e., continuously differentiable, such that

:f(x;P)~ (1)

We do not need to know f(x, p) = (f,(x,p), - - -, f,(x, p))" explicitly, but we need the exis-
tence of a time T>0 such that all the solutions, for any p and initial conditions of x, have
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reached a steady state, i.e.,

x=0,Vt>T.

The unperturbed, basal state of the modules is denoted x(p°)€R" and it has corresponding
parameters p’€R". By the application of the implicit function theorem and Taylor expansion
at the first order [10,17], MRA relates the experimental observations of the global effect of per-

9%%
0x; x;

turbations to local interaction strengths, i.e., the matrix r = (ri J) = ( ) that we mentioned

in Results. Such local interactions are obviously signed and non-symmetric. To compute r, we
need to compute the relative global change induced by each elementary perturbation in each
module. These values are compiled in a nxn matrix denoted R = (R;;) with

- (2)
ik — \ . )
Xi /4

the relative difference in activity of module i upon Ap; change induced by an elementary per-
turbation gy that touches module k only. The relationship between observational data in R and
the local interactions we want to estimate in r are provided by the following equations

Ax; ij .
(7) :Zf#’fﬁf(?) k7 @
b7 4k 1/ a4

A'xi _ ij 8xi 0 Api
( X, >qi =2l <x]> . o, P (x> ' ®)

By setting r;; = —1, Eqs (2) and (3) can be put together in matrix form and we obtain

rR = —P, (4)

where P is a diagonal nxn matrix with

P,,Tig—;(p“)<%>,ie{l,m,n}. (5)

Eq (3) can be solved in two steps: 7 = —PR " and r;; = —1 imply P; (R™"),; = 1, thus

P — 1
e (Ril)i‘i
Therefore,
r = —[diag(R™)] 'R". (6)

In practice, relative differences in R are often estimated with the more stable formula

)

1’k x(p" + Apy) +x,(p"))

where we denote x(p°+Ap) the steady-state corresponding to the changed parameters p’+Ap, i.
e., the solution of x(p° + Ap) = f(x(p" + Ap),p" + Ap).

(7)
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Parallelized and stable linear algebra

Eq (6) requires the computation of the inverse of the matrix R, which is less efficient and less
stable than LU decomposition with pivot search [35]. These technical issues are usually irrele-
vant with small systems, but in applications of MRA to larger biological systems they should be
addressed.

As several authors noticed, including in MRA original publication [10], the homogeneous
Eq (2) is sufficient to compute . Moreover, letting i take the values 1,- - -,n, we remark that Eq
(2) defines n systems of linear equations of dimension n—1, which can be solved indepen-
dently. In particular, those systems can be solved on independent processors by performing
the LU decomposition with pivot search. Illustrative speedup curves are featured in Fig 7.
Depending on the size of 1, each such subsystem could itself benefit from a parallel solver if
enough processors were available.

When Eq (2) is solved for each value of i, it is straightforward to solve Eq (3) to find P;; val-
ues in case those are required:

Axi ij ij Axl,
(3) -%.n <7> FRASR=D 0 (7 (3.
t qi J 4 j) q ¢ q,

i i
i

where Eq (4) was used for the definition of P; .

CLR, MRNET, and ARACNE computations

We used the implementation of CLR and MRNET provided by the BioConductor R package
minet [28]. ARACNE was provided by the package parmigene [31]. The performance reported
here reflects the performance of these specific implementations with default parameters.

CLR heuristic adapted to MRA

We adapted the CLR normalization scheme by means of z-score computation to MRA r matrix
content. From r = (r; ) we thus derive a Z = (z;) defined as follow:

, with g, the standard deviation of rs i—th row,

irow

1 n
7 o ri.j - Zk:lri.k
o,

1

1 n
Tij " Zkzlrk.j
-
o,

ol = , with g, the standard deviation of rs j—th column,

J

— 2 2
Wi = £/ Zow T Zcoy and

ij i,row

Z = (sign(r;;)w,).

Data sets preparation

Synthetic data were generated using the model FRANK [21] through its web server (see
FRANK publication). We generated 5 networks of increasing sizes: 50TFx50TA,
100TFx100TA, 75TFx1000TA, 500TFx500TA, and 1000TFx1000TA. To obtain perturbation
matrices is a built-in functionality of the online tool. The connection matrix defining the net-
work topology is also returned by this tool.

TK61 data were obtained on multiple 96-well plates. Accordingly, we tried to stick to this
format preparing data for MRA computations. We computed an R matrix for each plate and
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then simply averaged the relevant R’s for each experimental condition to obtain the averaged R
used in MRA. For MI-based inferences, we averaged all the relevant values.

L1000 shRNA data were extracted at level 5 (L1000 terminology) where CGSs (integration
of multiple shRNA hairpins to alleviate off-target effects) were transformed into z-scores for
normalization purposes by the authors of the data. Consequently, values representing the
abundance of a gene were no longer positive numbers but just real numbers. Eq (7) above was
adapted to compute the relative changes in MRA R matrices according to

& —of CGS.0" +Ap,) — CGS,(p)
o TNICGS (P + Apy)[ +|CGS, (p")]

avoiding potential divisions by 0 in case of small values with opposed signs.
L1000 CRISPR/Cas9 data were averaged over replicates (also level 5).

Performance evaluation

In the case of synthetic networks, direct access to the underlying network topology as returned
by the network generator FRANK provided the reference. In the case of experimental data, we
used STRING.

STRING as well as MI-based inference are devoid of direction of interaction and a sign.
Therefore, the intersection of inferences with reference networks only used the upper triangu-
lar part of matrices representing the inferences (such matrices are symmetric anyway). To pro-
vide a fair comparison with MRA and MRA+CLR, we filled the upper triangular part of r
according to r,; = max{|r, |;|r;,|}, i < j. Moreover, as indicated in Results, STRING interac-
tions are associated with a confidence score. Our default choice (main figures) was to only use
STRING interactions with a score > 0.5. Supplementary tables report performance obtained
using all the STRING interactions (score > 0), and only STRING scores > 0.8.

Supporting information

S1 Table. Confusion matrices on the synthetic data set.
(XLSX)

S2 Table. Confusion matrices on the K61 data set.
(XLSX)

S$3 Table. Confusion matrices on the L1000 shRNA data set.
(XLSX)

S4 Table. Confusion matrices on the L1000 CRISPR/Cas9 data set.
(XLSX)

S1 Text. R code used to process the K61 data set.
(Z1P)
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