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Many factors play a role in determining which genes are active or inactive in cells at various

stages of the cell cycle. The spatial organization of the genome is one such factor, encompass-

ing things such as topologically associated domains (TADs), looping of enhancers toward or

away from targets, and the interaction of loci with the nuclear envelope or nucleolus [1]. Iden-

tifying and understanding the multiplicity of interactions along and between the chromosomes

will allow us to answer many challenging questions in biology, such as how structural variation

in the genome affects transcription. In this issue of PLOS Genetics, Joyce and colleagues use

Oligopaint to mark and examine the topology of Drosophila chromosomes and uncover an

interesting role for condensin II in organizing the genome [2].

Our prior understanding of inter- and intrachromosomal interactions was uncovered using

several different technologies. One such technology is chromosome conformation capture

(3C), which links nearby genomic regions that are then identified using genome sequencing.

This method is ideal for identifying short-range looping, chromosome territories, and TADs

[3]. However, with a few single-cell exceptions [4], most 3C data include a variety of different

cell types at potentially various stages of the cell cycle and thus fail to reveal cell-to-cell hetero-

geneity. A complementary technique for examining genome organization is DNA fluorescence

in situ hybridization (FISH). DNA FISH of 3 to 5 loci can provide information about the distri-

bution and distance between selected loci within the nucleus with exquisite detail; however, it

does not provide enough information to uncover genome-wide organization. Although these

2 techniques provide related information, one must use caution when directly comparing

them [5,6]. The missing link between these 2 methods involves imaging all chromosomes at

single-cell resolution to gain information about overall organization, including which chromo-

somes are adjacent to or secluded from one another. This technique has been accomplished

using DNA-painting probes, such as SKY paint [7,8].

In search of more freedom in probe design, including more control over probe coverage

level and probe length, biologists have designed methods to use high-number custom oligo

sequences (with unique barcodes on groups of oligos) followed by amplification methods to

generate flexible DNA FISH probe libraries [9]. These libraries can be customized to paint

whole chromosomes or to mark specific chromosomal identities, such as transcriptionally

active, inactive, or Polycomb-repressed regions, and can be imaged with super-resolution

microscopy to find the precise location of these areas within the nucleus [10,11]. Protocols and

tools are available for large-scale probe design and use [12,13,14], putting the power of this

technique into the hands of a much larger number of biological researchers.

By using these custom oligo probe groups in combination with automated computational

methods, one can search both for features of large-scale chromosome organization and for
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unique features of single cells that may be correlated back to gene expression or aberrant cellu-

lar function. The paper by Joyce and colleagues makes 3 key contributions to our understand-

ing of genome organization in Drosophila. First, they designed and validated an Oligopaint

library that marks the entire nonrepetitive portion of the Drosophila genome, with the X, 2nd,

and 3rd chromosomes marked with unique colors (Fig 1). Second, they used this Oligopaint

Fig 1. Oligopainting of the Drosophila genome and the effect of condensin II depletion. (A) Custom Oligopaint

probe libraries were designed to mark the nonrepetitive regions of the Drosophila genome. The extent of chromosome

intermixing was calculated and found to increase upon condensin II knockdown. (B) The Oligopaint library was

modified to mark 3 regions of 1 arm of chromosome 2. Condensin II knockdown led to an increase in an “open”

configuration of the arm.

https://doi.org/10.1371/journal.pgen.1007445.g001
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library to provide exquisite detail on how chromosome territories are conserved in different

Drosophila cell types.

Third, the authors focused on the role of condensin and cohesin in the formation of chro-

mosome territories. The structural maintenance of chromosome (SMC) complexes are known

to play a role in the spatial organization of the genome and correspondingly affect gene expres-

sion [15,16,17,18,19,20]. Interestingly, while they found little change in large-scale genome

organization or chromosome intermixing upon cohesin or condensin I depletion, the authors

found that condensin II (Cap-H2) depletion leads to increased intermixing of chromosomes,

effectively “mixing” the territories (Fig 1A). Overexpression of condensin II decreased this

overlap between chromosomes. Taking advantage of the flexibility in labeling specific oligo

probe groups, the authors also used a 3-color approach across a single chromosome, 2L, to spe-

cifically look at intrachromosomal packing and territory arrangement. In their analysis, they

found that condensin II depletion led to a more open configuration, in effect reducing interac-

tions between different domains of the same chromosome (Fig 1B). Conversely, condensin II

overexpression increased the frequency of closed configurations. The observations presented

by Joyce and colleagues allow a much deeper understanding of the role that condensin II plays

in both interchromosomal and intrachromosomal organization and in mediating the spatial

overlap of chromosome domains.

There are several additional observations made by Joyce and colleagues that will undoubt-

edly guide future research. While conserved features of genome organization and chromosome

territories were observed, a small percentage of cells displayed pairwise overlap far from the

mean, with large disrupted territories or a lack of discrete territories. This subgroup of cells

wasn’t the focus of this study, but these outliers could lead to a new understanding of the

importance of territories or the factors that control them. Do these cells also display their own

conserved features of genome organization? Do they display aberrant gene expression?

Finally, the authors demonstrate that the general layout of chromosome territories appears

to be conserved in different Drosophila cell types. Perhaps there are general principles that

have not previously been appreciated, and thus as Oligopainting becomes a more generally

used technique, the field may build up “consensus” territories between cells from different

organisms. If vast differences are observed between organisms, why? And are these potential

differences related to differences in gene expression, leading to differences in cell structure,

function, or fate?

It will be crucial for future studies to combine methods of verification of chromosome terri-

tories, chromosome looping, etc., with the expression of given genes. Indeed, work has already

begun with the use of Oligopaint libraries designed to mark regions that are transcriptionally

active, inactive, and Polycomb repressed [11]. Such libraries could be combined with Oligo-

paint probes to certain areas of the genome. Complementary methods also include the combi-

nation of live-cell dCas9 to target genomic loci, followed by cell fixation and RNA FISH to

allow for direct visual interrogation of the relationship of changes in small-range interactions

between chromosomes and gene bursting [21].

Multiple lines of evidence point toward complex and multiplexed mechanisms of control of

short-range and long-range interactions of chromosome territories, in addition to mecha-

nisms that control localization within the nucleus. While short-term interactions are being

diagnosed with 3C methods, organizational principles that either span larger distances or are

characterized by exclusion (rather than inclusion) of a pair of areas may only be diagnosed

with methods such as Oligopainting. Merging all of this data toward an integrative model

that explains differences in different systems will not be easy and will require a great amount

of data. Continued collaboration among genomicists, geneticists, computer scientists, and

biophysicists will be essential [1]. Consider also the ongoing search for rare long-range
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interactions in those cells that do not fit the average, and it is easy to see how Oligopaint

approaches will be a necessary part of our biological toolkit.
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