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Abstract

was then determined.

Background: We have proved that hypercapnic acidosis (@ PaCO, of 80-100 mmHg) protects against ventilator-induced
lung injury in rats. However, there remains uncertainty regarding the appropriate target PaCO, or if greater CO, “doses”
(PaCO, > 100 mmHg) demonstrate this effect. We wished to determine whether severe acute hypercapnic acidosis can
reduce stretch-induced injury, as well as the role of nuclear factor-kB (NF-kB) in the effects of acute hypercapnic acidosis.

Methods: Fifty-four rats were ventilated for 4 hours with a pressure-controlled ventilation mode set at a peak inspiratory
pressure (PIP) of 30 cnH,O. A gas mixture of carbon dioxide with oxygen (FiCO, = 4-5%, FiCO, = 11-12% or FiCO, =
16-17%; FiO, = 0.7; balance N,) was immediately administered to maintain the target PaCO, in the NC (a PaCO, of
35-45 mmHg), MHA (a PaCO, of 80-100 mmHg) and SHA (a PaCO, of 130-150 mmHg) groups. Nine normal
or non-ventilated rats served as controls. The hemodynamics, gas exchange and inflammatory parameters were
measured. The role of NF-kB pathway in hypercapnic acidosis-mediated protection from high-pressure stretch injury

Results: In the NC group, high-pressure ventilation resulted in a decrease in PaO,/FiO, from 415.6 (37.1) mmHg to
179.1 (23.5) mmHg (p < 0.001), but improved by MHA (379.9 + 34.5 mmHg) and SHA (298.6 + 35.3 mmHg). The lung
injury score in the SHA group (7.8 + 1.6) was lower than the NC group (11.8 + 2.3, P < 0.05) but was higher than the
MHA group (44 + 1.3, P <005). Compared with the NC group, after 4 h of high pressure ventilation, the MHA and
SHA groups had decreases in MPO activity of 67% and 33%, respectively, and also declined the levels of TNF-a
(58% versus 72%) and MIP-2 (76% versus 60%) in the BALF. Additionally, both hypercapnic acidosis groups reduced
stretch—-induced NF-«B activation (p < 0.05) and significantly decreased lung ICAM-1 expression (p < 0.05).

Conclusions: Moderate hypercapnic acidosis (PaCO, maintained at 80-100 mmHg) has a greater protective effect on
high-pressure ventilation-induced inflammatory injury. The potential mechanisms may involve alterations in NF-kB activity.
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Background

Mechanical ventilation with high pressure or high volume
has been reported that can induce lung injury as the typical
of hyaline membrane formation, pulmonary edema, and
deterioration in oxygenation [1,2]. Dreyfuss et al. reported
that ventilation with 45 cm H,O peak inspiratory pressure
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(PIP) resulted in pathophysiological changes in the lungs,
such as the destruction of epithelial lining and basement
membrane [1]. Recent researches have focused on trying to
decrease mortality by reducing ventilator-induced lung
injury (VILI) [3,4]. These attempts impose restrictions on
the tidal volume (V) and inflation pressure and may lead
to hypercapnic acidosis (HA). Studies have also found that
hypercapnic acidosis can directly attenuate experimental
acute lung injuries induced by ischemia-reperfusion [5],
free radicals [6], endotoxin [7,8], systemic sepsis [9,10], and
VILI both ex vivo [11,12] and in vivo [12-14]. These studies
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indicated that hypercapnic acidosis may reduce lung injury,
with the mechanisms hypothesized to function through
anti-inflammatory and lung surfactant effects [15] as well
as a reduction in NO [16] and attenuation of the nuclear
factor kappa B (NF-«xB) pathway [12]. NF-«xB is a key
transcriptional factor that modulates the gene expres-
sion of various pro-inflammatory cytokines and adhe-
sion molecules [17-19]. More recent studies have
demonstrated that the effects of HA—both beneficial and
deleterious—may be mediated at least in part via the
inhibition of NF-kB activity [12,20].

In our previous study, the protective effects of hypercap-
nic acidosis associated with a particular level of PaCO,
have been demonstrated in moderate-range hypercapnic
acidosis (PaCO, maintained at 80-100 mmHg) [21].
Although the dose-response characteristics of hypercapnic
acidosis have previously been demonstrated in the setting
of ischemia-reperfusion injury [22], there remains uncer-
tainty regarding the appropriate target PaCO, in the setting
of VILI in vivo. Our previous results from an in vivo model
of cerebral ischemia showed that a PaCO, of 100 mmHg
may be the upper limit of the neuroprotective range of
hypercapnia [23]. This evidence indicates that higher
doses of PaCO, likely had adverse effects on neurologic
outcomes in a rat cerebral ischemia model. Whether this
phenomenon is similar to that in high-pressure ventilation-
induced lung injury is less clear.

We hypothesized that greater CO, “doses” (PaCO, >
100 mmHg) in rats receiving high-pressure ventilation
(HPV) were associated with decreased protective effects
of HA in reducing pulmonary inflammatory injury. We
sought: (1) to compare the effects of moderate hypercapnic
acidosis (PaCO, of 80-100 mmHg) and severe hypercapnic
acidosis (PaCO, of 130-150 mmHg) on HPV-induced
inflammatory injury and (2) to elucidate the role of the
NEF-kB pathway in this process.

Methods

Experimental protocol

The experimental protocols were approved by the
Institutional Animal Care and Use Committee of
Harbin Medical University, and conducted in compliance
with the animal-use guidelines (SYXK (Hei) 2006-033).
Seventy-two adult Wistar rats (weight 250-300 g) were
anesthetized with an intraperitoneal injection of 30 mg/kg
of pentobarbital sodium. The internal carotid artery was
cannulated with a 20-gauge catheter to aspirate blood for
blood gas analysis and arterial pressure monitoring. The
rectal temperature was maintained at 37.0-38.5°C.
Mechanical ventilation delivered via tracheostomy was
initiated in the pressure-controlled mode (Kent Scientific
Ventilator-Dual Mode, USA) with 15 ¢cmH,O PIP, a
positive end-expiratory pressure (PEEP) of 2 ¢cmH,0, a
frequency of 30 breaths/min to maintain the PaCO, at
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35-45 mmHg, an inspiration-to-expiration (L:E) ratio of 1:2,
and an inhaled oxygen fraction (FiO,) of 0.7 for 15 min,
after which baseline data were collected.

Prior to randomization, the following values needed to
be stable: PaO,/FiO, > 300 mmHg, PaCO, 30-45 mmHg,
and HCO3>20 mmol-L™. If any parameter was not
fulfilled, the animals were excluded from the protocol
and further data analysis.

Experimental groups

Seventy two rats were randomly assigned to 8 blocks of
9 animals each, with random numbers generated by
SPSS (version 13.01S; Beijing Stats Data Mining Co. Ltd,
Beijing, China). Among them, two blocks were randomly
assigned to the sham group (anaesthetized and non-
ventilated rats) and NV group (ventilated with PIP =15
c¢cmH50 and inhaled FiO, of 0.7 for 4 h) served as con-
trols for assessing the expression of NF-kB p65 protein
and the inflammatory mediators in the lung. The left 6
blocks were assigned to three groups through merging
two blocks of rats randomly, and including the Normo-
capnia (NC) group (PaCO,=35-45 mmHg, n=18),
PaCO, was maintained in the normal range through
inhaling the gas mixture (FiO, 0.7, FiCO, 4-5%, balance
N,); the Moderate Hypercapnic Acidosis (MHA) group
(PaCO, = 80-100 mmHg, n = 18), PaCO, was maintained
through inhaling the gas mixture (FiO, 0.7, FiCO, 11-
12%, balance N,); and the Severe Hypercapnic Acidosis
(SHA) group (PaCO,=130-150 mmHg, n=18), PaCO,
was maintained through inhaling the gas mixture (FiO,
0.7, FiCOy 16-17%, balance N,). The rats in the three
groups were ventilated for 4 h in the supine position with
a PIP of 30 cmH,O via the pressure-controlled mode
(inspiratory time = 0.7 s; PEEP = 2 cmH,0O and respiratory
rate = 30 breaths/min). For all rats, anesthesia was
maintained with sodium pentobarbital (2-4 mg-kg™ - hr™)
and pancuronium bromide (0.03-0.07 mg-kg'-hr™).
Throughout the experiment, frequent checks were made
to ensure that the animals were adequately anesthetized.
This was performed by applying a painful stimulus to a
paw and observing blood pressure responses. Lactated
Ringer’s solution was infused iv. at 10 ml-kg"-hr" to
compensate for blood sampling.

Measurement of physiologic indices

In all experimental series, the systemic mean blood pres-
sure (MAP) and heart rate (HR) were recorded at baseline,
initiation of test conditions, and at 1-hour intervals there-
after. These were measured using an MP150 Workstation
and analyzed using the AcqKnowledge software (BIOPAC
Systems, Inc, Santa Barbara, CA) according to the
manufacturer’s specifications. Tidal volumes (V1) were
determined every 60 min with a VT Plus HF Gas Flow
Analyzer (Fluke Corporation, USA). Inhaled and exhaled
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CO, and O, were tested using a gas monitor (DATEX
Instrumentarium, Helsinki, Finland). Arterial blood
samples were taken at baseline and every 60 min after
randomization in each series, and blood gas analysis
was performed (Rapidlab 248, Bayer Company, USA).

Assay of inflammatory mediators in BALF and
myeloperoxidase activity in lungs

At the end of the experiment, animals were exsanguinated,
and the heart and lungs were dissected from the thorax.
The right lobe bronchus was lavaged using sterile saline
with 5 ml of saline (0.9%, 4°C) by three separate washes,
and 4 ml of bronchoalveolar lavage fluid (BALF) was
collected. A 1.0 ml aliquot was used for cell counts. The
remaining fluid was centrifuged (300xg at 4°C for
10 min), and the cell-free supernatant was divided into two
1-ml aliquots. One aliquot was snap-frozen in liquid
nitrogen and stored at -80°C for subsequent analysis
of tumor necrosis factor (TNF-a), interleukin (IL)-1f,
and macrophage inflammatory protein-2 (MIP-2) using a
commercial enzyme-linked immunosorbent assay Kkits
(R&D Systems, Minneapolis, MN, USA). The remaining
aliquot was frozen at -20°C for a measurement of the total
protein concentration (BCA; Pierce, Rockford, IL). The
right lobe of the lung was stored at -80°C and was later
ground into homogenate to measure myeloperoxidase
(MPO) activity using a kit (Jiancheng Bio-Technology,
Nanjing, China) and a spectrophotometer. One unit of
MPO was defined as the quantity that degraded 1.0 mmol
of peroxide per minute at 37°C. The results were expressed
as units per gram of wet lung tissue (U/g).

Histology and immunohistochemistry
A 1 cm® core sample was extracted from the visually
estimated center of the left upper lobe of the lung,
fixed in 4% buffered formalin and embedded in paraffin.
The samples were then sectioned, stained with hematoxylin
and eosin, and examined by a pathologist who was blinded
to the protocol. The evaluation was based on the following
criteria as described previously [24]: (1) neutrophil
infiltration; (2) interstitial edema; (3) alveolar edema;
(4) hyaline membrane formation. Each criterion was scored
on a semiquantitative scale of 0-4, where 0 =normal,
1=minimal change, 2=mild change, 3 =moderate
change and 4 =severe change. An overall histological
score was calculated by totaling the scores for criteria
1 through 4. The left lower lobe of the lung was used to
determine the wet: dry weight ratio (WW: DW) of the lung.
The expression of intercellular adhesion molecule-1
(ICAM-1) and NF-kB in lung sections was measured by
immunohistochemical staining with an ICAM-1 detec-
tion kit (Zhongshan Golden Bridge Biotechnology,
Beijing, China) and an NF-«xB p65 antibody (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA). Specific labeling
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was detected with an Elite ABC peroxidase kit and
diaminobenzidine (DAB) (Zhongshan Golden Bridge
Biotechnology). Briefly, slides were systematically scanned
at a lower magnification to define the lung injury by
evaluating H&E-stained slides along with consecutive
immunohistochemistry-stained slides. Eight to ten
representative digital images were acquired from each slide
using a 40x objective. Brown granules were quantified as
positively stained cells or nuclei in each high-powered field
(400 x magnification). The results were expressed as the
percentage of positively stained cells or ratio of nuclei to
total cells from 8-10 digital images per animal and four
animals per group.

Determination of NF-kB and IkB-a concentration

Tissues were homogenized in RIPA buffer and lysed for
30 min on ice. Samples were then sonicated, vortexed
and centrifuged at 12,000 x g for 20 min at 4°C. Nuclear
and cytoplasmic fractionation was performed using an EZ
nuclei isolation kit (Applygen Technologies Inc.; China).
Nuclear P65 concentrations and cytoplasmic IkB-a con-
centrations were determined using western blot analysis.
Briefly, the supernatants were collected and separated
using SDS-polyacrylamide gels, blotted onto mem-
branes and incubated with the primary rabbit polyclonal
anti-NF-kB p65 antibody, rabbit polyclonal anti-I-kappaB
Kinase (IkB)-a antibody or ICAM-1 (M-19) antibody
(Santa Cruz Biotechnology Inc., USA). Signals on the
membranes were detected with an Odyssey Infrared
Imaging System (LI-COR Bioscience, USA). The level of
measured materials was normalized to the level of B-actin.
Total lung NF-«kB activity was determined using an
activated NF-«kB ELISA assay kit (TransAM NF-«B; Active
Motif, Carlsbad, CA). In this kit, an oligonucleotide con-
taining an NF-«kB consensus site (5'-GGGACTTTCC-3")
was absorbed onto polystyrene microwells.

Statistical analysis

All data are presented as mean (SD). Statistical analyses
were performed using SPSS (version 13.01S; Beijing Stats
Data Mining Co. Ltd, Beijing, China). Power calculations
were performed prior to the commencement of the
study. A sample size of 8 in each block will be sufficient
to detect a difference of 0.1 U/g in MPO between the
treatment and the control groups assuming a standard
deviation of 0.1 U/g as reported in this population, at
80% power and 5% level of significance. This number
has been increased to 9 per block (total of 72) to allow
for a predicted drop-out from treatment of around
10%. Group comparisons were evaluated with a one-way
ANOVA followed by the Student—Newman—Keuls (SNK)
test for multiple comparisons. MAP, HR, V1, pH, PaCO,
and PaO,/FiO, levels were evaluated by repeated measures
ANOVA with time (five levels: baseline, at 1 hour, 2 hours,
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3 hours and 4 hours after ventilation) as a within-subject
factor and group (three levels: NC, MHA and SHA) as a
between-subject factor. Overall significant differences in
time, group and interaction between time and group were
determined by a two-tailed p < 0.05.

Results

Seven rats (two from each HPV group and one from NV
group) that died before the 3 h mark were excluded from
the study because of progressive hypotension. Forty-eight
rats in HPV groups and eight rats in NV group survived
the 4 h ventilation protocol and were included in the sub-
sequent data analysis. The physiological characteristics of
the NC, MHA and SHA groups were similar at baseline.

Hemodynamic variables and arterial blood gas analysis
The hemodynamics induced by the VILI process and
management are shown in Table 1. The V1 decreased
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gradually during the last 2 h period compared with the
first 2 h period in the NC and SHA groups, but this
effect was not observed in the MHA group (Table 1).

The results of the blood gas analysis are shown in
Table 1, including the PaO,/FiO,, PaCO, and pH values.
In the NC group, high-pressure ventilation resulted in a
decrease in PaO,/FiO, from 415.6 (37.1) mmHg to 179.1
(23.5) mmHg (p <0.001). This gradually increased and
was significantly improved in both hypercapnic acidosis
groups (p<0.05), but the values of PaO,/FiO, in the
MHA group were significantly higher than those in the
SHA group at the end of the protocol (p < 0.05).

Pulmonary permeability changes and neutrophil counts

As shown in Figure 1, BALF protein concentrations
and the WW: DW in both hypercapnic acidosis
groups were significantly reduced compared with the
NC group (p<0.05). Inhalation of CO, during VILI

Table 1 Hemodynamic parameters and gas exchange at different timepoints for each group

Baseline 1h 2h 3h 4 h
MAP(mmHg)
NC 126+8 124+10 119+ 12 113+ 12% 90 + 24*
MHA 122413 130+ 12 134+ 9*" 135+ 12+ 127+12"
SHA 127415 137+ 7% 134+ 7" 123+ 12 113+ 17*M
HR(1/min)
NC 347426 324+ 31 295 + 38* 283+ 39* 258+ 28*
MHA 362+ 15 323+17 294 + 23* 283+ 20* 270+ 19*
SHA 347424 284+ 29*1* 258 +40%* 243 +38* 224 + 35*#
Ve(ml)
NC 24+03 95409 92+07 84+10 59+13*
MHA 24+02 10.1+£09 99+ 1.1 94+09 88+13"
SHA 24+02 99+07 9.7+09 92+09 7.8+ 13%
Pa0,/FiO,(mmHg)
NC 3614+333 4156+ 37.1 4269+327 270.1 +488* 179.1 + 235
MHA 3553+395 4286+36.1* 4484 + 359* 4322 +442¢ 3799 +345"
SHA 350.1 +34.8 4568 +40.6*" 4396+ 25.2* 388.8+498"" 2986+ 35.3*1*
pH
NC 7.42+0.10 7.39+003 7.37+004 7.32+003* 7.29+0.08*
MHA 7.39+008 7.10+0.02*" 7.07 +0.04*" 7.07 +0.04*" 7.06 +0.04*"
SHA 7.37+£006 6. 94 +0.04*™" 6. 94 +0.03*"" 6. 93 +0.04*"" 6.93+003*"
PaCO, (mmHg)
NC 41.3+10.1 36.5+40 40.6+48 430+52 478+96*
MHA 38.7+93 88.7+88* 95. 1499 97.0+9.5*" 936+ 12.1%
SHA 41.7+73 1401 + 126%™ 1416+ 11.1%1 1442 + 14.7*M 1428 + 16.7*™

Values are means + SD; n = 16.

NC = high-pressure ventilation with a peak inspiratory pressure (PIP) of 30 cmH,0 with normocapnia (inhaled 4-5% CO, to maintain Paco, = 35-45 mmHg); MHA = NC
plus moderate hypercapnic acidosis (inhaled 11-12% CO, to maintain Paco, = 80-100 mmHg); SHA = NC plus severe hypercapnic acidosis (inhaled 16-17% CO, to
maintain Paco, = 130-150 mmHg); MAP = systemic mean blood pressures; HR = heart rates; PaO,/FiO, = ratio of arterial oxygen tension to fraction of the inspired

oxygen; PaCO, = arterial carbon dioxide partial pressure; Vr = tidal volume.

*p < 0.05 versus baseline except Vy (versus 1 h); Tp < 0.05 versus NC group; *p < 0.05 versus MHA group.
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Figure 1 Effect of hypercapnic acidosis on major markers in BALF in rats’ lungs induced by high-pressure ventilation (HPV) for 4 h.
(A) Bronchoalveolar lavage fluid (BALF) total protein levels (microgram/ml) were augmented by high-pressure ventilation but diminished by both
hypercapnic groups. (B, C) The total and neutrophil cell count in the lavage group increased following HPV but were attenuated in the hypercapnic
groups. (D) Pulmonary edema formation was quantified by measuring the wet and desiccated dry weights of the lung tissue. n =8 for each group.
2p < 0.05 versus the NV group; °p < 0.05 versus the NC group; p < 0.05 in the SHA group versus the MHA group.

significantly decreased the total cell counts and neutrophil
counts at the end of the experiment, and moderate
hypercapnic acidosis had a greater effect than severe
hypercapnic acidosis.

Cytokines in BALF and myeloperoxidase activity in lung
tissues

The levels of TNF-a and MIP-2 in the BALF were much
lower in the NV group, but both significantly increased
in the NC group (Table 2, p < 0.05). Hypercapnic acidosis
attenuated TNF-a and MIP-2 levels in both HA groups
(p<0.05). After 4 h of high pressure ventilation, the
MHA and SHA groups had decreases in MPO activity
of 67% and 33%, respectively, compared with the NC
group (Table 2).

Histology

Compared with the NV group (Figure 2A), microscopic
findings in the lungs from NC rats (Figure 2B) showed
moderate to severe edema in the alveolar septum and
spaces, hyaline membrane formation. Much less severe
changes were present in lungs from both hypercapnic
acidosis groups (Figure 2C and D). The lung injury score
in the NC group (11.8 £ 2.3) was higher than that in the
NV group (2.9+0.9, P<0.001). SHA group (7.8 +1.6)

was lower than the NC group (P < 0.05) but was higher
than the MHA group (4.4 + 1.3, P < 0.05) (Figure 2E).

Lung ICAM-1 expression

The presence of ICAM-1 as assessed by immunostaining
significantly increased in the NC group compared with the
normal ventilation group (Figure 3A and B). Hypercapnic
acidosis apparently inhibited ICAM-1 expression (Figure 3A
and B), but significant differences were not observed
between the MHA and SHA groups (Figure 3A and B).

Table 2 Comparison of the level of TNF-a, IL-1B, and MIP-
2 in BALF; MPO activity in lungs among groups

NV group NC group MHA group SHA group
TNF-a (pg/ml) 6418 3354+ 107% 141+ 49+ 93 +33*
IL1B (pg/ml)  223%76  1571+421%  709+205*" 973 +224*"
MIP-2 (pg/ml)  74+19 479+ 114%  113x317 190 + 511
MPO (U/g) 03401 12+04% 04+01" 08+0.2%M

Values are means + SD; n=8.

NV = normal-pressure ventilation with a peak inspiratory pressure (PIP) of 15
¢mH,0; NC = high-pressure ventilation with a peak inspiratory pressure (PIP) of 30
¢mH,0; MHA = NC plus moderate hypercapnic acidosis (inhaled 11-12% CO, to
maintain Paco, =80-100 mmHg); SHA = NC plus severe hypercapnic acidosis
(inhaled 16-17% CO, to maintain Paco, = 130-150 mmHg); BALF, bronchoalveolar
lavage fluid; *p < 0.05 versus NV group; "p < 0.05 versus NC group; *p < 0.05
versus MHA group.



Yang et al. BMC Anesthesiology (2015) 15:67

Page 6 of 11

:
o
p

e
p L

w'r 4 ~§~ ?-

versus the MHA group.

C ‘1? A
‘?;_:r,‘tgﬂ &r‘!‘ "J;.*\,' 'IJ} i

Figure 2 Histologic ana\ysis of \ungs. (A and a) NV group; (B and b) NC group; (C and c¢) MHA group; (D and d) SHA group and (E) lung injury
scores in the four groups. NV = normal-pressure ventilation with normocapnia; NC = high-pressure ventilation with normocapnia; MHA = moderate
hypercapnic acidosis; SHA = severe hypercapnic acidosis. The A, B, C and D panels represent 100x magnification, and the a, b, c and d panels represent
400x magnification. Severe edema in the alveolar septum and spaces with hyaline membrane formation (red arrow) were seen in the NC group, and
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Western blot analysis of ICAM-1 levels also revealed an
increase in expression in the NC group compared to sham
animals, and a reduction in ICAM-1 was observed in both
HA groups (Figure 4A and C).

Lung NF-kB expression and IkB-a degradation

Most NF-kB signals were located in the alveoli and small
airway epithelial cells and were mainly expressed in the
nucleus (Figure 5A and B). The expression of NF-kB in
lung tissues was significantly decreased in the HA groups
compared with the normal ventilation group (Figure 5C,
P <0.05). Furthermore, HA significantly reduced total
lung tissue NF-kB activity compared with the normal-
ventilated group as evidenced by the ELISA assay
(Figure 5D, P < 0.05). Western blot analysis for nuclear p65
also revealed an increase in expression in the NC group
and a reduction in both HA groups (Figure 4A and B,
P <0.05). With 4 h of normocapnic HPV, IkB-a protein

expression significantly decreased, but levels were relatively
higher in both the moderate and severe hypercapnic
groups (Figure 4A and D, P < 0.05).

Discussion

Our study demonstrates that compared with high PaCO,
(130-150 mmHg) ventilation, rats receiving ventilation with
a PaCO, of 80-100 mmHg achieved better oxygenation
with fewer histopathologic changes and less inflammatory
injury. Furthermore, the hypercapnic acidosis induced by
inhalational application of CO, led to downregulation
of NF-«B activity accompanied by a reduction in lung
ICAM-1 expression.

This study was performed using a normal rat lung
model, which does not reflect the same pathophysiology
observed in humans or in acute respiratory distress
syndrome (ARDS) [25]. As we know that the study
by Sinclair [13] demonstrated that high tidal volume



Yang et al. BMC Anesthesiology (2015) 15:67

B 100-
e a
w 2
o T 804
c o o ab ab
e = o
gs
-4 0
2 °Q Do
52 o
S 20 °
o
)
c L Ll L] L
NV NC MHA SHA

Figure 3 Lung immunohistochemistry for ICAM-1 protein expression
in lung tissues. NV = normal-pressure ventilation with normocapnia;
NC = high-pressure ventilation with normocapnia; MHA = moderate
hypercapnic acidosis; SHA = severe hypercapnic acidosis (A)
Immunohistochemical staining of ICAM-1 in the lung. Sections

were stained with a brown DAB color-developing agent and
counterstained with hematoxylin. The presence of brown granules
in the nucleus was defined as a positive cell. All panels represent a
400x magnification. (B) Scatter plot of ICAM-1-positive (+) cells (%)
in lung tissue. Semi-quantitative analysis of ICAM-1 indicated that
hypercapnic acidosis decreased the expression of ICAM-1. Horizontal
bars represent the median. n =4 for each group. °p <0.05 versus the
NV group; bp < 0.05 versus the NC group.

ventilation (25 cc/kg) for 4 hours produced a peak
airway pressure about 33 cmH,O in eucapnic group,
so we chose the high-pressure models used by others to
induce VILI [24], which also caused impaired oxygenation
and induced an acute lung inflammatory response.
Moreover, we only observed the varying levels of
PaCO, and their impact on the development of lung
injury induced by high-pressure ventilation, without
clouding the results with other potential variables
such as FiO, and PEEP. In the current study, we chose a
pressure control mode with 30 cmH,O PIP ventilation
throughout the protocol, V1 decreased along with the
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development of lung injury and impaired oxygenation
while PaCO, increased correspondingly. Thus, this could
reflect the same pathophysiology observed in the others
research regarding VILL. Moreover, our study showed that
acute hypercapnic acidosis was well-tolerated as long as
perfusion and arterial oxygenation were maintained in the
hypercapnic acidosis groups. This result likely occurred
because inhaled CO, improves gas exchange and
ventilation-perfusion ratio matching [26] by reducing the
heterogeneity of the pulmonary blood flow distribution
and accordingly generates a higher PaO, [27,28].

NE-kB is a key transcription factor in modulating
various inflammatory genes including TNF-a, IL-1$ and
adhesion molecules. NF-kB activation also activates
neutrophils accumulating in the lung tissue of ALI
models [29-31]. However, even low-tidal volume ventila-
tion activates inflammation (30). A study that looks at
NE-«kB translocation after VILI, and its down-regulation
by NF-«B, it needs to demonstrate that this is a high
stretch phenomenon, and does not occur with low
stretch mechanical ventilation in the model also. Thus,
we have a control group of animals who are either
subject to normal pressure ventilation for four hours, or
sham anaesthetized and non-ventilated animals. After
4 h of HPV, we found that NF-kB was mostly expressed
in alveoli and small airway epithelial cells receiving only
HPV. This observation was verified with an ELISA and
western blot, both of which demonstrated that the
NF-xB pathway in the lung tissue was markedly
inhibited by hypercapnic acidosis. In the cytoplasm,
the I-xB degradation prompts NF-kB to transfer into
the nucleus, where it acts as a transcription factor
regulating the expression of inflammatory mediators
(TNF-a and IL-1f, etc.). These factors can be partially
reversed by hypercapnic acidosis, which reveals that
NF-kB should be an important factor in the process.
Previous reports showed that hypercapnic acidosis reduced
the severity of both mild and severe VILI by reducing
NF-«xB activation via a decrease in the breakdown of
cytosolic I-kB inhibitory proteins; in vitro studies pro-
vided further support for this mechanism of action of
hypercapnic acidosis [12]. However, our in vivo study
found that HA abolished the decrease in densitometric
lung tissue cytoplasmic IkBa concentrations induced
by HPV. HA also inhibited HPV-induced up-regulation of
the expression of ICAM-1 and MPO activity. Furthermore,
Cummins also demonstrated reversible IKK-a nuclear
localization in a CO,-dependent manner over a range of
physiologic CO, concentrations that was associated
with an attenuation of LPS-induced NF-kB signaling
and target-gene expression. This finding is consistent with
CO, affecting IKK-a and contributing to the attenuation
of inflammation [32]. However, it is unclear whether
CO,- or pH-mediated anti-inflammatory mechanisms
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Figure 4 Western blot analysis of the nuclear p65, cytoplasmic IkB-a and ICAM-1 protein in lung tissues. sham = anaesthetized and non-ventilated rats;
NC = high-pressure ventilation with normocapnia; MHA = moderate hypercapnic acidosis; SHA = severe hypercapnic acidosis. (A) A representative
western blot of lung tissue nuclear p65, cytoplasmic IkBa and ICAM-1 from a sham (unventilated) animal, and animals exposed to HPV under
HCA and normocapnic conditions. Both moderate and severe hypercapnic acidosis reduced nuclear p65 expression after 4 h of HPV (p < 0.05).
IkB-a fractions were only reduced by HPV and were protected by the use of hypercapnic acidosis (p < 0.05). ICAM-1 showed positive expression,
but this was highest in animals treated with only HPV. Densitometric readings of the western blot expressed as NF-kB and IkB-a and ICAM-1/loading
control B-actin (panels B, C and D). Horizontal bars represent the median. n = 4 for each group. *p < 0.05 versus the sham group; °p < 0.05 versus the NC

contribute to lung protection in therapeutic hypercapnia.
One study demonstrates that hypercapnia inhibits the
release of interleukin-8 from stimulated leukocytes; such
inhibition appears to be based on increased intracellular
H" and dependent on intracellular carbonic anhydrase
[33]. These results suggest that the effects of hypercapnic
acidosis on the NF-kB pathway may be complex and
dependent on the milieu of unstable intermediates created
by the interactions between hydrogen ions and CO,.
Although moderate hypercapnic acidosis is commonly
observed when using protective ventilator strategies in
experimental animal settings, our report is the first
study on the effect of greater CO, “doses” on VILI to
our knowledge. Previous studies have shown that
prophylactic maintenance of inhaled CO, (12-25%) to
maintain PaCO, at a level of 80-100 mmHg reduced
ischemia—reperfusion injury [5,22] and VILI [11,13].
However, whether a PaCO, of 100 mmHg is the upper limit

of the protective range of hypercapnia in VILI remains un-
known. In the current study, although severe hypercapnic
acidosis (PaCO, at 130-150 mmHg) attenuated the severity
of VILI, with prolonged ventilation until the end of the
protocol, the oxygenation and histopathologic changes were
progressively worse compared with moderate hypercapnic
acidosis (PaCO, at 80-100 mmHg). The protective effects
of hypercapnia may be offset by a potential for adverse ef-
fects at higher levels. This possibility is supported by previ-
ous animal studies suggesting that protection from the
adverse effects of brain ischemia was superior when the in-
haled CO, was kept at 6% rather than at 9% [34]. Of
importance, severe hypercapnia induced by inhaling 15%
CO, has been proven to aggravate neurologic injury [35].
Furthermore, acute elevations in PaCO, may induce intra-
cellular acidosis and result in cardiovascular compromise,
muscle weakness, increased intracranial pressure and
central nervous system dysfunction [36]. It is obvious that
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Figure 5 Lung Immunohistochemistry for NF-kB p65 protein expression in lung tissues. NV = normal-pressure ventilation with normocapnia;

NC = high-pressure ventilation with normocapnia; MHA = moderate hypercapnic acidosis; SHA = severe hypercapnic acidosis. (A and B) arrows
indicate the position of NF-kB p65 expression, which was only observed in the nuclei of airway epithelial cells and alveoli of HPV-treated animals.
(C) Scatter plot of NF-kB p65 -positive (+) cells (%) in lung tissue. NF-kB expression also increased after 4 h of HPV compared to the normal
ventilation group (p < 0.05), but this was attenuated by both moderate and severe hypercapnia. (D) ELISA analysis of total lung tissue NF-kB
indicated that the NF-kB activity also increased after 4 h of HPV compared to the normal ventilation group but was attenuated by both moderate
and severe hypercapnia. All panels represent a 400x magnification. Horizontal bars represent the median. n =4 for each group. °p < 0.05 versus the
NV group; bp <0.001 versus the NC group.

acidosis is a double-edged sword that may be difficult to  carbon dioxide to the inspired gas may necessitate attention
apply in critically ill patients. Nevertheless, the results of  to the potential for adverse effects at higher levels of PaCO,
our study show that induction of HA by the addition of in patients with ARDS during mechanical ventilation. On
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the other hand, our studies must be viewed as hypothesis-
generating and should be tested by intensive studies
in preclinical models.

Despite its interesting results, this exploratory study
was limited in several ways. First, the animals were
anesthetized with an intraperitoneal injection of
pentobarbital sodium alone, which may not have
reached the depth of anesthesia corresponding to
clinical practice. Further studies should avoid this
inappropriate anesthesia. Second, the pulmonary vasocon-
striction and lung mechanics (i.e., plateau pressures,
compliance, etc.) were not measured, which limited the
interpretation of the specific effects of hypercapnic acid-
osis on pulmonary and systemic hemodynamic parame-
ters. Third, the duration of the ALI models was limited to
4 h of mechanical ventilation and was too short to
extrapolate to clinical practice. The results indicate that it
is reasonable to believe that the acidosis generated by
acute hypercapnia may be an important factor in acute
models of VILL Further study should be performed to
evaluate the effects of hypercapnia in ALI models of
considerably longer duration.

Conclusion

This study demonstrates that an increased level of
carbon dioxide has a protective effect against VILI in rats.
Animals exposed to moderate hypercapnia (a PaCO, of
80-100 mmHg) remained in a more favorable condition
and had less histopathologic changes and inflammatory
injury than animals with severe hypercapnia (a PaCO,
of 130-150 mmHg). The protective mechanism is likely
associated with the inhibition of NF-kB expression during
high pressure stretch.
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