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Combining single-cell
sequencing data to construct a
prognostic signature to predict
survival, immune
microenvironment, and
immunotherapy response in
gastric cancer patients

Bo Hu, Yan Meng, Chao Qu, Bing-Yan Wang
and Dian-Rong Xiu*

Department of General Surgery, Peking University Third Hospital, Beijing, China
Background and objective: Gastric cancer (GC) represents a major factor

inducing global cancer-associated deaths, but specific biomarkers and

therapeutic targets for GC are lacking at present. Therefore, the present

work focused on developing an immune-related genetic signature at the

single-cell level for categorizing GC cases and predicting patient prognostic

outcome, immune status as well as treatment response.

Methods: Single-cell RNA-sequencing (scRNA-seq) data were combined with

bulk RNA-seq data in GC patients for subsequent analyses. Differences in

overall survival (OS), genomic alterations, immune status, together with

estimated immunotherapeutic outcomes were measured between different

groups.

Results: Nine cell types were identified by analyzing scRNA-seq data from GC

patients, and marker genes of immune cells were also selected for subsequent

analysis. In addition, an immune-related signature was established to predict

OS while validating the prediction power for GC patients. Afterwards, a

nomogram with high accuracy was constructed for improving our

constructed signature’s clinical utility. The low-risk group was featured by

high tumor mutation burden (TMB), increased immune activation, and

microsatellite instability-high (MSI-H), which were related to the prolonged

OS and used in immunotherapy. By contrast, high-risk group was associated

with microsatellite stability (MSS), low TMB and immunosuppression, which

might be more suitable for targeted therapy. Meanwhile, the risk score

generated by our signature was markedly related to the cancer stem cell

(CSC) index. In addition, the immunotherapeutic response prediction accuracy

of our signature was validated in an external dataset IMvigor210 cohort.
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Conclusion: A signature was constructed according to scRNA-seq data

analysis. The signature-screened low- and high-risk patients had different

prognoses, immune statuses and enriched functions and pathways. Such

results shed more lights on immune status of GC, prognosis assessment, and

development of efficient immunotherapeutic treatments.
KEYWORDS

gastric cancer, single-cell sequencing, immune microenvironment, immuno
therapy, prognosis
Introduction

Gastric cancer (GC) is a major factor inducing cancer-

associated mortality globally, which causes over 700,000 death

cases annually (1). Currently, early-stage GC is mainly treated

with endoscopic resection (2), while surgery is mainly adopted

for resectable GC at the intermediate or late stage, including D2

lymphadenectomy. Patients with advanced cancer can gain

benefits from adjuvant or perioperative radiotherapy and

chemotherapy (3, 4). In most cases, however, GC is advanced

at the time of diagnosis, resulting in the dismal patient survival

although surgical and medical treatments have greatly improved.

For advanced GC, its median survival time remains as low as 12-

15 months (5), and novel therapies need to be introduced.

Nowadays, cancer immunotherapy is becoming the robust

and candidate clinical option to treat cancer, and major

achievements have been made in breast cancer (BC) (6),

prostate cancer (PC) (7) and melanoma (8). Immune

checkpoint inhibitors (ICIs), the novel treatment standards of

different cancers like GC, have demonstrated promising clinical

benefits in several populations (9–11). Nevertheless, the

response of immunotherapy in GC has been frustrating overall

to date, as current methods are often ineffective on stimulating

immunity and tumors continue to grow even though a

measurable immune response is measured (12). Despite the

histopathology or molecular subtype, GC is not the separate

cancerous epithelial cell block. In contrast, GC tumor has

complicated morphology, and tumor cells are surrounded via

the cel lular environment referred to as the tumor

microenvironment (TME), which contains multiple types of

cells like immune cells, endothelial cells, and fibroblasts.

Therefore, exploring GC immune landscape from different

aspects, investigating its immune characteristics, and

developing approaches for the accurate prediction of immune

status as well as immunotherapeutic response in GC are of

great importance.

The emergence of single-cell RNA-sequencing (scRNA-seq)

has offered a great chance to explore single-cell gene profiling

data (13). ScRNA-seq becomes the promising alternative to
02
investigate critical biological issues such as cellular

heterogeneity. In terms of cancer research, intra-tumor

heterogeneity is a critical challenge encountered by precision

cancer treatment. scRNA-seq evolution can offer statistical

significance for characterizing different cell subsets in cancers.

This work analyzed the tumor immune microenvironment

(TIME) of GC from the novel perspective, starting from the

single-cell level and combining bulk transcriptomic data.

Furthermore, an immune-related gene (IRG)-based riskscore

model was also constructed for evaluating different immune

statuses and therapeutic responses among high- and low-risk

cases. Our study can shed more lights on exploring the

mechanisms related to diverse immunotherapeutic responses

among GC cases and offer new insights into immunotherapeutic

strategies for GC.
Materials and methods

Data extraction and mRNA profile mining

Expression pattern of class 3 messenger RNA (mRNA) of GC

(fragments per kilobase million, FPKM), along with relevant

clinical information, was obtained in Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) and The Cancer

Genome Atlas (TCGA) (https://cancergenome.nih.gov)

databases. Besides, this work also acquired TCGA-stomach

adenocarcinoma (STAD), GSE84437, GSE62254 and GSE15459

datasets in later analyses, where the latter two were employed for

external validation. Immune subtypes were acquired based on

TCGA-derived pan-cancer information, which were later adopted

for examining relationship of model gene levels with tumor-

infiltrating immune cell (TIIC) levels within TME. For TCGA-

STAD dataset, FPKM values were transformed to transcripts per

kilobase (TPM), which were suggested to be the same as those

from microarray, according to previous description (14). After

background adjustment and quantitative normalization of all the

downloaded data, STAD was combined with GSE84437 (n=804

subjects), GSE62254 was combined with GSE15459 (n=500
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subjects), and “Combat” algorithm was utilized to reduce the

likelihood of batch effects from non-biological technical biases

between different datasets (15). The present work excluded

patients showing survival ≤30 days or those with no survival

data because they might have died from lethal complications (such

as bleeding, heart failure HF or intracranial infection) but not GC.

Clinical variables were age, sex, T stage, clinical stage, N stage,

survival status and overall survival (OS).

Furthermore, this work obtained the scRNA-seq count matrix

in GSE163558 dataset. This dataset covered 10 samples, with 4

distant metastasis (DM), 3 primary tumor, 2 lymph nodemetastasis

(LNM) and 1 corresponding para-carcinoma samples. Because our

research aimed to examine TIICs levels within tumor tissues, 3

primary GC tissues (GSM5004180, GSM5004181, GSM5004182)

were selected for analysis. A list of databases used with GEO

accession numbers were present in Supplementary Table S1.
Single-cell analysis

Quality control (QC) was completed by employing Seurat R

package (16) (V4.1.1). The percentage of mitochondrial genes was

computed by the “PercentageFeatureSet” function and the

relationship between sequencing depth and mitochondrial gene

sequences and/or total intracellular sequences was elucidated by

correlation analysis. Cells with RNA count <50 and those with

mitochondrial gene expression proportion >5% were eliminated

from this work. The Seurat “NormalizeData” function was

adopted for normalizing data, and the top 1500 genes with

highly variable characteristics were confirmed by variance

analysis. With false discovery rate (FDR) < 0.05, the dimensions

with significant separation were filtered by principal component

analysis (PCA) (17), and then the top 15 principal components

(PCs) were downscaled by the t-SNE algorithm to obtain the main

clusters (18). Specifically, PCs were determined by the “JackStraw”

procedure. Marker genes in each cluster were accessed with log2
[fold change (FC)] > 0.5 and FDR < 0.05, and the top 10%

of marker genes in the clusters were paved on the heat map. By

using “SingleR” package (19) (V1.10.0), cells in diverse

clusters were matched against the annotated reference dataset

“HumanPrimaryCellAtlasData”, which was downloaded via the

“celldex” package (V1.6.0). Each cluster was annotated based on

comparison analysis as well as those cellular markers identified.

For revealing cell cluster differentiation, the R package

“Monocle2” (20) (V2.24.1) was applied.
Functional enrichment and IRG-based
signature establishment for prognosis
prediction

For better investigating function of immune-related marker

genes, these genes were subject to Gene Ontology (GO)
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functional annotation as well as Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis with “clusterProfiler”

package (V4.4.4) of R. Afterwards, a prognostic immune

signature was built by univariate together with multiple

regression and 1000 times least absolute shrinkage and

selection operator (LASSO) for predicting OS of GC patients.

First, univariate regression was conducted on IRGs for

determining OS-associated genes. Second, overfitting was

prevented by LASSO analysis using “glmnet” R package

(V4.1.4), while genes that were closely related were removed,

after univariate analysis, significant genes were obtained.

Thereafter, the gene contributions to predicting prognosis

were assessed by multiple regression. It is worth mentioning

that Akaike information criterion (AIC) values were evaluated to

assist in the selection of the optimal model genes. All the GC

patients of TCGA-STAD and GSE84437 were randomized as

training or test group at the ratio of 1:1, then a prognostic

immune-related risk score was developed.

This work later categorized altogether 402 cases from

training set as high- (risk score>median) or low-risk (risk

score<median) group based on median risk score, followed by

Kaplan-Meier (KM) survival analysis. Similarly, test group,

entire cohort, together with the merged cohort of GSE62254

and GSE15459 were classified as high- or low-risk group for KM

analyses, thereafter, receiver operating characteristic (ROC)

curves were plotted by the “survival” (V3.4.0) as well as

“survminer” (V0.4.9) functions of R package.
Nomogram scoring system construction
and validation

Afterwards, this work applied clinical features together with

immune-related risk score for developing the prediction

nomograms based on results of independent prognostic

analyses on the entire cohort and the merged validation set

using the “rms” package. In the nomogram scoring system, a

score was assigned to each variable, and score of each variable

was added to calculate total score of an individual sample (21).

Calibration curves for nomograms were also utilized for

describing the relation between estimated 1-/3-/5-year survival

events and actual observation.
Assessment of immune status, cancer
stem cell index, tumor mutation burden,
and microsatellite instability between
low- and high-risk subgroups

For evaluating TIIC proportion within TME, this work

utilized CIBERSORT for measuring 22 TIIC proportions

within heterogeneous samples from both subgroups.

The associations of 22 TIIC proportions with 7 model genes
frontiersin.org
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and risk score were explored. Moreover, different TIIC

levels between both subgroups were also analyzed for

complementary purposes. In addition, different IRGs, genes

related to immunogenic cell death (ICD) and necroptosis were

analyzed between both subgroups from STAD-GSE84437 and

external validation cohort. Generally, The Cancer Immunome

Atlas (TCIA) online platform helps to comprehensively analyze

immune genome (16). Tumor immunogenicity was rated at the 0-

10 scale, and the score was referred to as immunophenoscore

(IPS). IPS was used for predicting ICI response. Meanwhile, the

online website (HTTP://tide.dfci.harvard.edu/) was adopted for

calculating tumor immune dysfunction and exclusion scores.

Afterwards, this work utilized the algorithm “Estimation of

Stromal and Immune cells in Malignant Tumors using

Expression data” (ESTIMATE) for assessing immune scores,

stromal scores, and estimate scores for each GC sample (22). In

addition, the relations of MSI and CSC index with risk score were

also analyzed. The CSC index was calculated in the range of 0-1,

with the score closer to 1 indicating the decreased cell

differentiation level and enhanced CSC features. TMB scores

were also calculated for GC patients from two groups in STAD-

GSE84437. This work also carried out gene set variance analysis

(GSVA) based on marker gene set by adopting Molecular

Signatures Database (MSigDB) (c2.cp.kegg.v7.2 and c5.go.v7.2).
Analysis of mutations and drug sensitivity

For exploring differences in therapeutic responses among

chemotherapeutics between 2 groups, values of semi-inhibitory

concentration (IC50) were determined for chemotherapeutics

frequently adopted for CRC treatment with “pRRophetic” software.
Validation in the external
immunotherapy cohort IMvigor210

This work obtained IMvigor210 cohort at (http://research-

pub.gene.com/IMvigor210CoreBiologies), a website presenting

the cohort study on atezolizumab for locally advanced and

metastatic uroepithelial cancer patients (23). Moreover,

“arrayQualityMetrics” (V3.52.0) in R package was employed

for QC of relevant microarray data, thereafter, count data were

normalized by using trimmed mean of M-values. R package

“limma” (V3.52.2), “voom” function was adopted for logarithm

analysis (24, 25). Samples without clinical response in the

IMvigor210 cohort were eliminated.
Statistical analysis

Distributions of continuous and dichotomous variables were

compared by t-test/variance and chi-square test. Separately.
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Survival was analyzed by log-rank test and KM statistics. Perl

and R were adopted for statistical analysis, with P<0.05

indicating statistical significance.
Results

scRNA-seq data QC and normalization

The workflow of this manuscript was displayed in

Supplementary Figure S1. The present work acquired a total of

2,157 cells from 3 GSE163558-derived primary GC samples,

which passed QC (Supplementary Figure S2A). Sequencing

depth was lowly related to mitochondrial gene sequences

(R=0.01; Supplementary Figure S2B). Additionally, sequencing

depth was positively related to total intracellular sequences

(R=0.8). This work examined altogether 5,045 genes, including

1,500 and 3,545 with high and low intercellular variation,

separately (Supplementary Figure S2C). Moreover, this work

also employed principal component analysis (PCA) to reduce

dimensionality of the scRNA-seq data. As a result, GC cells were

not significantly segregated (Supplementary Figure S2D),

therefore, the top 15 most significantly different PCs were

chosen in later analyses (Figure 1A). Aggregation of cells in 13

clusters was detected by using t-distributed stochastic neighbor

embedding (t-SNE) algorithm, and differential analysis detected

altogether 2495 marker genes. Of them, the 10% of most

significant marker genes from diverse clusters are exhibited in

heatmap (Figures 1B, C). Thereafter, marker genes were utilized

to annotate nine clusters, among which, clusters 0, 1, 3 and 5

were all T cells, and clusters 2, 4, 6, 7, 8, 10, 11 and 12 were

correlated with natural killer (NK) cells, monocytes, B cells,

epithelial cells, smooth muscle cells, neutrophils, endothelial

cells, as well as dendritic cells (DCs), respectively (Figure 1D).

Pseudo-time and trajectory analysis indicated that clusters 0, 3,

6, 9, 11 were distributed in subset I; whereas clusters 1, 4, 7, 12

were in subset II; while clusters 2, 5, 8, 10 were distributed in

subset ; and the cell types were also shown (Figures 1E–H). The 6

classes of immune cells and their most prominent marker genes

are presented in Figure 1I. Afterwards, a total of 1424 marker

genes of 6 classes of immune cells were selected in later analyses

(Supplementary Table S2).
Gene enrichment analysis and immune-
related model construction

Enrichment analysis of marker genes for immune cells

obtained from the profiling of scRNA-seq data was conducted,

and our results demonstrated that these genes were enriched into

a variety of immune-related GO entries, such as “immune

response regulating signaling pathway”, “positive leukocyte

activation regulation” , “positive cytokine production
frontiersin.org
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regulation”, “T-cell activation regulation” and “cell activation

involved in immune response” (Figures 2A, B; Supplementary

Table S3). In terms of KEGG pathways, “T cell receptor

pathway”, “Toll-like receptor pathway”, “B cell receptor

pathway” and “TNF pathway” were featured based on our

findings. Moreover, several cancer-associated pathways,

including “MAPK pathway” and “transcriptional dysregulation

within cancer” were also shown (Figures 2C, D; Supplementary

Table S4).

Subsequently, the immune-related signature was built based

on the identified marker genes. Patients were split in to training

and testing sets through R language “caret package”. After

univariate regression analysis, 126 genes associated with OS

were screened, and finally 7 were identified as our model genes

by LASSO and multiple regression based on the minimum

partial likelihood deviance (Figures 2E, F). Thereafter, risk

score was evaluated as follows, [SLAMF7 level* (-0.2529)] +

[DUSP level* (0.2349)] + [APLP2 level* (0.2582)] + [FLOT1

level* (0.3437)] + [EEF2 level* (-0.2562)] + [TRIM25 level*

(-0.4191)] + [UGCG level* (0.2501)]. All cases were divided as

low- or high-risk group according to median risk score value.

Figure 2G compares differences in survival of both risk

subgroups from the training set (P<0.001) in STAD-

GSE84437. The results were subsequently confirmed with test
Frontiers in Immunology 05
set (P<0.05; Figure 2H) as well as the combined set (P<0.001;

Figure 2I). Besides, survival in the GSE62254 and GSE15459

external validation cohort was similar (P<0.001; Figure 2J).

Furthermore, this work determined the areas under the curves

(AUCs) for 1-year OS to be 0.820, 0.629, 0.709 and 0.696; 0.856,

0.725, 0.778 and 0.683 for 3-year OS; and 0.902, 0.714, 0.791 and

0.723 for 5-year OS for training, test, entire and external

validation sets, respectively. These results suggested that our

gene signature had moderate potential for monitoring survival

(Figures 2K–N). Distributions of survival status, risk scores, and

gene feature expression of training (Figure 3A), test (Figure 3B),

entire (Figure 3C) and external validation sets (Figure 3D) were

obtained. Apparently, similar distributions were observed, which

supported that our constructed risk score model was of great

prediction power.

To explore whether the constructed IRG model was

significant for the independent prognosis prediction, this work

carried out univariate as well as multiple analysis. As a result,

risk score possibly independently predicted patient prognosis in

STAD-GSE84437 dataset (hazard ratio HR:1.318, 95%

confidence intervals CIs: 1.188−1.463, P<0.001) and external

validation set (HR: 2.272, 95% CIs: 1.596−3.235, P<0.001)

(Tables 1, 2, respectively). Afterwards, nomograms were

constructed for achieving more accurate personalized
A B D

E F G

I

H

C

FIGURE 1

(A) Fifteen PCs with significant differences were identified at P<0.5. (B, C) All cells were clustered into thirteen clusters, and the top 10% of
marker genes in each cluster are displayed on the heat map. (D) Nine clusters were annotated based on marker genes. (E–H) Pseudo-time and
trajectory analysis. (I) The six classes of immune cells and their most prominent marker genes were shown. PCA, principal component analysis;
PC, principal component; GC, gastric cancer.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1018413
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2022.1018413
prediction for GC patients in the entire set (Figure 3E) and the

external validation set (Figure 3G). The former consisted of age,

risk score, T stage, and N stage, while the latter included age, risk

score and clinical stage. As revealed by calibration curves, the

model-predicted values were consistent with real observed OS,

which indicated the excellent statistical power of the predicted

survival for both sets (Figures 3F, H). The dotted line indicates

the perfect nomogram, whereas the solid one represents the

current nomogram.
Evaluation of the TIME between low-
and high-risk subgroups

This work employed CIBERSORT algorithm for estimating

correlation of immune-related risk score with TIIC levels. As
Frontiers in Immunology 06
demonstrated in Figure 4A, the risk score showed positive

relation to M2 macrophages, resting memory CD4+ T cells,

mast cells, and naive B cells, whereas negative relation to

activated memory CD4+ T cells, follicular helper T cells, CD8+

T cell, M1 macrophages, plasma cells and memory B cells within

STAD-GSE84437 dataset. For low- and high-risk subgroups of

external validation set, the similar pattern of immune infiltration

was observed. M2 macrophages, monocytes, mast cells, resting

memory CD4+ T cells and neutrophils were positively related to

the risk score, while activated memory CD4+ T cells, resting NK

cells, CD8+ T cells, naive B cells, M1 macrophages, and plasma

cells showed negative relation to risk score (Figure 4B). Besides,

relations between 7 model genes and different TIIC abundances

were displayed together. Figures 4C, D presents TIIC

abundances within samples of two combined datasets.

Relationships between risk score and immune cell types in
A B D E

F

G IH J

K L M N

C

FIGURE 2

Development of the immune-related signature in the training set. (A) GO functional enrichment analysis of immune-related genes. (B)
Concentric circle diagram of the GO analysis. (C) KEGG pathway analysis of immune-related genes. (D) Concentric circle diagram of the KEGG
analysis. (E) LASSO coefficient curves are shown. (F) Selection of tuning parameters (lambda) in the LASSO model by tenfold cross-validation
according to the minimum criterion of OS is displayed; the lower x-axis indicates the log (lambda) and the upper x-axis the average number of
OS-gene. The y-axis represents the partial likelihood bias error. The red dots denote the average partial likelihood deviation for each model
given the lambda, and the vertical bars indicate the upper and lower values of the partial likelihood deviation error. Kaplan-Meier survival curves
of patients in low-risk group and high-risk group of the training set (G), the testing set (H), the entire set (I), and the external validation cohort
(J) are presented. (K–N) indicate survival-dependent ROC curves validation at 1-year, 3-year and 5-year of prognostic value of the signature in
the four sets (the training set, the testing set, the entire set, and the external validation cohort, respectively). GO, Gene Ontology; KEGG, Kyoto
encyclopedia of genes and genomes; LASSO, least absolute shrinkage and selection operator; OS, overall survival; ROC, receiver operating
characteristic curves.
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STAD-GSE84437 and the external validation cohort were also

shown (Figures 4E, F). Previous studies have demonstrated that

ICD modulator genes and necroptosis−related genes have

critical effects on the anticancer immune responses in the host.

Afterwards, differential analysis on ICD-related and necroptosis

−related genes was conducted on low- and high-risk subgroups

of two combined datasets. This work obtained the above genes

from previously published documents (26, 27) (Supplementary

Tables S5, S6). It was found that in the either set, most of the

ICD-related genes, including HMGB1, CXCL10, AIM2 and
Frontiers in Immunology 07
HSPA4 showed up-regulation among low-risk patients,

whereas PANX1, IL33, ROCK1 and ANXA1 showed over-

expression among high-risk patients (Figures 4G, H).

Similarly, most of the necroptosis−related genes, including

EZH2, ZBP1, PGAM5 and ALDH2, were found to be highly

expressed among low-risk patients relative to high-risk

counterparts from two merged datasets (Figures 4I, J).

Furthermore, common immune gene levels in low- and

high-risk groups were also analyzed. Several genes intimately

involved in immunosuppression, such as TGFBR1, TGFB1 and
TABLE 1 Univariate and Multivariate Cox regression analyses of clinicopathologic characteristics associated with overall survival in the TCGA-
GSE84437 cohort.

Variable Univariate analysis Multivariate analysis

HR (95% CI) P - value HR (95% CI) P - value

Age (>60/≤60) 1.025 (1.016-1.036) <0.001a 1.029 (1.019-1.040) <0.001a

Gender (male/female) 1.244 (0.986-1.569) 0.065 – –

T stage (T1/T2/T3/T4) 1.256 (1.093-1.442) <0.001a 1.190 (1.025-1.381) <0.001a

N stage (N0/N1/N2/N3) 1.549 (1.383-1.735) <0.001a 1.443 (1.282-1.623) <0.001a

Risk score 1.415 (1.279-1.566) <0.001a 1.319 (1.188-1.463) <0.001a
fron
aStatistically significant. TCGA, The Cancer Genome Atlas; HR, Hazard ratio; CI, confidence interval.
A B D

E

F

G

H

C

FIGURE 3

Distribution of risk score, overall survival, gene expression in the training set (A), the testing set (B), the entire set (C) and the external validation
cohort (D). Distribution of risk score, overall survival, and heatmap of the expression of eight signature genes in low-risk and high-risk groups is
presented in the figure from top to bottom. (E) Nomogram for predicting the 1-year, 3-year and 5-year OS of GC patients in the entire set. (F)
Calibration curves of the nomogram for predicting of 1-year, 3-year and 5-year OS in the entire set. (G) Nomogram for predicting the 1-year, 3-
year and 5-year OS of GC patients in the external validation cohort. (H) Calibration curves of the nomogram for predicting of 1-year, 3-year and
5-year OS in the external validation cohort. OS, overall survival; GC, gastric cancer. *P<0.05; ***P<0.001.
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VTCN1, showed high expression levels among high-risk patients

of STAD-GSE84437 (Figure 5A). By contrast, several

immunostimulators (CD27, CD48, TNFRSF13B, TNFRSF14

and TNFRSF25) were closely associated with the low-risk

patients. Nonetheless, PD-1, CTLA-4, and PD-L1, the three
Frontiers in Immunology 08
vital immune checkpoint-associated genes, showed significant

over-expression among low-risk patients. As for external

validation cohort, TNFRSF25, ICOS, CD27, CD28, CD48

and TNFRSF9, which have been demonstrated with

immunostimulatory effects, showed high expression levels
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FIGURE 4

Evaluation of the different immune status between the low- and high-risk groups in both cohorts. Correlations between the seven model genes
as well as the risk score and the abundance of immune cells in STAD-GSE84437 (A) and the external validation cohort (B). The proportions of
various immune cells in samples of STAD-GSE84437 (C) and the external validation cohort (D) were presented. (E, F) Relationships between risk
score and immune cell types in STAD-GSE84437 and the external validation cohort, respectively. (G, H) Differential expression of ICD-related
genes between high- and low-risk groups in STAD-GSE84437 and the external validation cohort, respectively. (I, J) Differential expression of
necroptosis−related genes between high- and low-risk groups in STAD-GSE84437 and the external validation cohort, respectively. STAD,
stomach adenocarcinoma; ICD, immunogenic cell death. *P<0.05; **P<0.01; ***P<0.001.
TABLE 2 Univariate and multivariate Cox regression analyses of clinicopathologic characteristics associated with overall survival in the
GSE63354-GSE85459 cohort.

Variable Univariate analysis Multivariate analysis

HR (95% CI) P - value HR (95% CI) P - value

Age (>60/≤60) 1.007 (0.996-1.018) 0.013a 1.013 (1.003-1.025) 0.013a

Gender (male/female) 1.066 (0.818-1.390) 0.637 – –

Clinical stage (I/II/III/IV) 2.458 (2.101-2.876) <0.001a 2.431 (2.076-2.846) <0.001a

Risk score 2.766 (1.947-3.929) <0.001a 2.272 (1.596-3.235) <0.001a
fron
aStatistically significant. HR, Hazard ratio; CI, confidence interval.
tiersin.org

https://doi.org/10.3389/fimmu.2022.1018413
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2022.1018413
among low-risk patients relative to high-risk cases (Figure 5B).

Meanwhile, PD-L1, CTLA4 and PD-L2 also demonstrated a

stronger association with low-risk patients. Various immune

functions between low- and high-risk cases from both cohorts

were compared, which indicated that most IRG functions, like

“check point”, “chemokine receptors (CCR)”, “inflammation-

promoting”, and “human leukocyte antigen (HLA)”, showed

higher enrichment levels among low-risk cases, which further

reflected the greater number and complexity of immune

components among low-risk patients (Figures 5C–F).

Afterwards, high-risk patients had remarkably increased

stromal scores compared with low-risk patients from the
Frontiers in Immunology 09
STAD-GSE84437 dataset (Figure 5G). Additionally, low-risk

patients had markedly increased immune scores relative to

high-risk patients from both cohorts (Figures 5G, H). The

ESTIMATE score was not significantly different between low-

and high-risk patients in STAD-GSE94437 (Figure 5G), but low-

risk patients had increased scores compared with high-risk

patients from the external validation dataset (Figure 5H).

Moreover, high-risk patients were associated with the

increased T-cell exclusion scores as well as T cell disfunction

scores in comparison with low-risk patients (Figures 5I, J).

Additionally, TCIA was employed to anticipate the sensitivity

of patients in TCGA-STAD to immunotherapy. It was found
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FIGURE 5

Assessment of distinct immune landscapes between high-and low-risk groups in both cohorts. (A, B) Differential expression of immune−related
genes between high- and low-risk groups in STAD-GSE84437 and the external validation cohort, respectively. (C, D) Immune-related functions
differ between high- and low-risk groups for STAD-GSE84437. (E, F) Immune-related functions differ between high- and low-risk groups for the
external validation cohort. (G, H) Differences in immune score, stromal score, and ESTIMATE score between low- and high-risk groups in STAD-
GSE84437 and the external validation cohort, respectively. (I) Different T cell dysfunction scores between high- and low-risk groups in STAD-
GSE84437. (J) Different T cell exclusion scores between high- and low-risk groups in STAD-GSE84437. (K–N) Analysis of potential differential
responses to immune checkpoint inhibitors therapy in low- and high-risk groups of patients in TCGA-STAD using TCIA data. (O) Association of
the expression of model genes with immune infiltrate subtypes across all the cancer types in TCGA. STAD, stomach adenocarcinoma;
ESTIMATE, estimation of Stromal and Immune cells in Malignant Tumors using Expression data; TCIA, The Cancer Immunome Atlas. *P<0.05;
**P<0.01; ***P<0.001.
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that low-risk patients had markedly elevated expression of ips-

ctla4-pos-pd1-pos (Figure 5K), ips-ctla4-pos-pd1-neg

(Figure 5L) and ips-ctla4-neg-pd1-pos (Figure 5M) compared

with high-risk patients. Nevertheless, ips-ctla4-neg-pd1-neg

expression was not significantly different between two

subgroups (Figure 5N). Low-risk patients had increased IPS

compared with high-risk patients, suggesting the higher ICI

sensitivity of low-risk patients.

To obtain an understanding of how eachmodel genewas related

to the immune component, associations of model genes with TIICs

levels within human cancers were analyzed. To be specific, 6 TIICs

levelswere analyzedwithin human tumors, corresponding to a range

from tumor progression promotion to inhibition (28). The immune

infiltration was classified as 6 subtypes, including C1 (wound

healing), C2 (INF-r dominance), C3 (inflammation), C4

(lymphocyte depletion), C5 (immune quiet) as well as C6 (TGFb
dominance) (Supplementary Table S7). Immune infiltration levels

were examined based on pan-caner data from TCGA, which were

later associated with our model gene levels. As revealed in previous

research (28), patients classified as C3 and C5 subtypes were

associated with remarkably superior OS to those of the remaining

subtypes (P<0.0001), typically, C4 and C6 subtypes indicated the

poorest prognosis. SLAMF7,TRIM25 andUGCGup-regulationwas

related toC2 andC6 subtypes, indicating the tumor promoting effect

of the above genes, because cases of the above subtypes showed poor

survival with TGFb enrichment and enhanced proliferation. FLOT1

had higher expression in C4 subtype, and it predicted the dismal

survival, which suggested the tumor promoting effect. On the

contrary, DUSP1, APLP2 and EEF2 up-regulation was related to

C3 subtype rather than additional subtypes,which suggested that up-

regulated gene levels were related to favorable immune components,

indicating the tumor suppressor effects of the above genes

(Figure 5O). Moreover, Supplementary Figure S3 presents the

association of model genes in STAD-GSE84437 and the external

validation set.
Comprehensive analysis on MSI, TMB,
enrichment functions and drug sensitivity

In addition, the possible association of risk score with CSC index

was evaluated. As revealed in Figure, risk score showed negative

relation to CSC index (R=-0.45, P<0.001; Figure 6A), demonstrating

thatGCcellswithhigher risk scorehadpronouncedstemcell features

whereas decreased cell differentiation. Subsequently, the relationship

between MSI and risk score was investigated. According to

correlation analysis, low risk score showed significant relation with

high-frequencyMSI (MSI-H) status, whereas high risk score showed

relation with microsatellite stability (MSS) status (Figures 6B, C).

Cumulative evidence suggested that patients with high TMB could

possibly gain benefits from immunotherapy because of the high

neoantigen number.Mutation data obtained fromTCGA-STAD set

were also analyzed, which demonstrated that low-risk patients had
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increased TMB compared with high-risk patients (P<0.001;

Figure 6D). This work further investigated the relationship

between TMB and the prognosis of both risk subgroups in STAD,

as a result, cases with low-risk and highTMB showed the longestOS,

followed by patients with low-risk and low TMB, whereas patients

with high-risk and high/low TMB displayed the poorest

prognosis (Figure 6E).

Afterwards, GSVA was performed to investigate the different

GO, KEGG and Hallmark gene functions between two risk

subgroups from STAD-GSE84437. Our results showed that both

risk subgroups showed differential enrichment into multiple KEGG

pathways, including “Mismatch repair”, “Apoptosis” and

“homologous recombination” (Figure 6F and Supplementary Table

S8). Meanwhile, some immune-related pathways, including “B cell

receptor pathway”, “T cell receptor pathway”, “Natural killer cell

mediate cytotoxicity” and “Toll like receptor pathway” were also

featured in our enrichment list, which showed higher enrichment

levels among low-riskpatients.GOannotationhighlighted thehigher

enrichment levels of several items such as “Regulation of activin

receptor pathway”, “Growth plate cartilage development” and

“Molecular function inhibitor activity” among high-risk patients

(Figure 6G and Supplementary Table S9). In addition, GO analysis

also suggested that “NKT cell activation regulation”,

“Immunoglobulin production”, “T-cell homeostasis” and

“Activation of innate immune response” were functions more

significantly associated with low-risk patients in comparison with

high-risk patients. Differences in GO and KEGG analyses between

both risk subgroups from the external validation set are presented in

the Supplementary Figures S4, S5 and Supplementary Tables S10,

S11, respectively. Afterwards, the different Hallmark gene functions

were compared between two risk subgroups. Pathways associated

with tumorigenesis, like “Hypoxia”, “Angiogenesis”, and “Epithelial-

mesenchymal transition (EMT)” were more closely related to high-

risk cases, while “G2M checkpoint”, “DNA repair”, “MYC target V1

and V2”, “Interferon a and g response” were significantly enriched
among low-risk cases (Figure 6H). Considering that DNA damage-

related pathways were associated with TMB, the differential

enrichment of DNA damage-related pathways between two risk

subgroups was compared. As a result, “Mismatch repair”, “Base

excision repair”, “Non homologous end joining”, “Nucleotide

excision repair” and “Homologous recombination” were highly

enriched into low-risk subgroup (Figure 6I), conforming to our

previous TMB analysis. Additionally, four representative pathways,

namely DNA repair (R=-0.2; P<0.001), G2M checkpoint (R=-0.32;

P<0.001), Notch signaling pathway (R=0.19; P<0.001) and EMT

(R=0.4; P<0.001) were selected, and the Spearman correlation

coefficients with risk score were shown (Figures 6J–M).

Furthermore, the expression of 7 model genes in the primary GC

tissues from the scRNA-seq dataset GSE163558 is displayed in

Figures 6N, O. Meanwhile, the risk scores of different cells in

primary GC tissues of GSE163558 were calculated by calculating

risk scores, as presented in Figure 6P,with darker colors representing

the higher risk.
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Subsequently, patient sensitivity to commonly adopted

chemotherapeutics and targeted drugs among low-and high-risk

patients was analyzed. Intriguingly, high-risk patients were

associated with decreased IC50 of docetaxel as well as a number

of targeted drugs, such as lapatinib, pazopanib, AZD.0530,

Bryostin.1, CHIR.99021, PF.562271, while low-risk cases had

remarkably decreased IC50 of gemcitabine, cisplatin, cyclosporine,

ABT.888 and PD.0325901. Collectively, these results indicated that

the risk model developed by our study was related to drug

sensitivity (Figures 7A–L; Supplementary Figure S6).
Frontiers in Immunology 11
Immune-related signature validation for
predicting immunotherapeutic response
in the IMvigor210 database

For exploring the role of our constructed immune signature in

predicting immunotherapy benefits, this work explored the

independent data from the publicly available IMvigor210 study.

The formula of our model allowed to classify cases in IMvigor210

database as two low- or high-risk subgroup. Notably, low-risk cases

showed remarkably prolonged OS compared to high-risk cases
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FIGURE 6

Comprehensive comparison of the differences between high- and low-risk groups screened by our immune-related model. (A) Relationships
between risk score and CSC index. (B, C) Relationships between risk score and MSI. (D) TMB in low- and high-risk groups in STAD-GSE84437.
(E) Relationships between TMB and prognosis of GC patients in STAD-GSE84437. (F) Differential enrichment of KEGG pathways between low-
and high-risk groups in STAD-GSE84437. (G) Differential enrichment of GO annotations between low- and high-risk groups in STAD-GSE84437.
(H) Differential enrichment of Hallmark pathways between low- and high-risk groups in STAD-GSE84437. (I) Differential enrichment of DNA
repair-related pathways between low- and high-risk groups in STAD-GSE84437. (J–M) Spearman correlation analysis between risk scores and
DNA repair, G2M checkpoint, EMT and Notch signaling, respectively. (N, O) The expression of seven model genes in the primary GC tissues in
scRNA-seq dataset GSE163558. (P) The distribution of risk scores of different cells in primary GC tissues in GSE163558. CSC, cancer stem cell;
TMB, tumor mutation burden; MSI, microsatellite instability; GO, Gene Ontology; KEGG, Kyoto encyclopedia of genes and genomes; GC, gastric
cancer; STAD, stomach adenocarcinoma; EMT, epithelial-mesenchymal transition; scRNA-seq, single-cell RNA sequencing. *P<0.05; **P<0.01;
***P<0.001.
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(Figure 7M). Furthermore, AUCwas 0.717 for 1-year OS, indicating

that the gene signature was potent in monitoring survival

(Figure 7N). In addition, patients with partial response (PR) and

complete response (CR) in IMvigor210databasewereassociatedwith

remarkably increased risk scores relative to those with progressive

disease (PD) and stable disease (SD), which implied that

immunotherapy was more beneficial for low-risk patients,

conforming to our prior analysis (Figure 7O). Furthermore,

relationships between 7 key immune checkpoints levels (PD-1,

PD-L1, PD-L2, CTLA4, TIGIT, LAG3 and HAVCR2) and the

prognosis of patients from both risk subgroups are presented in

Figures 7P–V. As a result, up-regulation of the above 7 genes

combined with low risk scores predicted the remarkably

prolonged OS.
Discussion

GC was identified as the second most common cause of cancer

deaths worldwide (29). The main treatment modalities available to
Frontiers in Immunology 12
patients include surgical resection, perioperative chemotherapy or

chemoradiotherapy, adjuvant chemotherapy or chemoradiotherapy,

but the benefits from these are limited due to the heterogeneous

natureof thedisease. In the lastdecade, immunecheckpointblockade

has emerged as an attractive therapeutic strategy in a variety of

malignancies, including GC (30). The tumor immune

microenvironment shows genetic and transcriptional diversity and

plays important roles in tumor progression, metastasis, and

treatment resistance (31). Therefore, exploring the immune

microenvironment of GC from various perspectives and mining

novel immune-relatedgeneticmodels could contribute toour further

insight into the immune landscape of GC and predict the

immunotherapeutic response of patients. In addition, single-cell

sequencing technologies are rapidly evolving and have the ability to

finely characterize the vast heterogeneity within tumors (32).

Combining single cell sequencing data with transcriptomic data to

analyze the immune microenvironment status of GC represents a

novel and reliable approach.

To begin with, we analyzed scRNA-seq data of GC to obtain

the immune cell types infiltrated by tumor tissue and obtained
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FIGURE 7

(A–L) Corrections between risk score and chemotherapeutic sensitivity. (M) Kaplan-Meier survival curves of patients in low-risk group and high-
risk group of the IMvigor210 cohort. (N) Relationships between risk scores and response to immunotherapy in the IMvigor210 cohort (O)
Differences in risk scores between patients with SD/PD and CR/PR in IMvigor210 cohort.. (P–V) Effect of expression of 5 key immune
checkpoints (PD-1, PD-L1, PD-L2, CTLA4, TIGIT, LAG3 and HAVCR2, respectively on OS of patients in low- and high-risk groups in IMvigor210
cohort. OS, overall survival; PR, partial response; CR, complete response; PD, progressive disease; SD, stable disease.
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their marker genes. Subsequently, we performed functional

enrichment analysis of the marker genes and demonstrated

their enrichment in multiple immune-related pathways.

Afterwards, a 7-immune gene-based risk scoring model was

constructed and demonstrated. Remarkably, it can distinguish

between high- and low-risk individuals, and the prognosis was

estimated with high accuracy. GC patients in the low-risk group

were proven to experience longer OS than those in the high-risk

group in the training set, the testing set, the entire set and the

external validation cohort. The nomograms were developed to

provide a more comprehensive view of the predictive capability

of our signature by incorporating clinical characteristics.

Subsequently, we concentrated on uncovering the different

immune infiltration profiles of high- and low-risk patients

screened by our constructed immune-related signature. The

results indicated that a high proportion of M2 macrophages,

mast cells, resting memory CD4+ T cells and naive B cells were

observed in high-risk patients compared to low-risk patients in

STAD-GSE84437, while activated memory CD4+ T cells, CD8+

T cell, M1 macrophages, memory B cells and plasma cells

exhibited the opposite trend. Tumor-associated macrophages

(TAMs) of the M2 phenotype are known to promote tumor

proliferation and to be associated with a poor prognosis in

numerous cancers (33). Pervious research (34) has demonstrated

that M2 macrophages promoted the migration and invasion of

GC cells via EMT. The researchers also illustrated that GC-

derived mesenchymal stromal cells could contribute to M2

macrophage polarization through considerable secretion of IL-

6 and IL-8. In our study, high M2 macrophage infiltration and

high EMT status were observed simultaneously in the high-risk

group, which is in agreement with previous findings. Besides, M1

macrophages have been shown to be related to better survival in

GC patients (35). Sammarco et al. (36) have demonstrated that

mast cell density is increased in GC and there is a correlation

with angiogenesis, the number of metastatic lymph nodes and

the survival of these patients. Intriguingly, patients in the high-

risk group in our research not only had a higher level of mast cell

infiltration, but also had a greater angiogenic state than patients

in the low-risk group, which is again consistent with the

published literature. In terms of T cells, Ning et al. (37) have

indicated that high resting memory CD4+ T cells was

significantly associated with poorer OS in GC while high

abundance of activated memory CD4+ T cells was associated

with better survival, which corroborates our analysis. It has been

well documented that CD8+ T cells exert superior antitumor

effects with strong retention and cytotoxicity (38, 39). Higher

CD8+ T cells infiltration in patients in the low-risk group might

be a critical factor in their better prognosis as compared to the

high-risk patients. Another immune cell that was highly

expressed in the high-risk group, naive B cells, has been

described to have a higher degree of infiltration in tertiary

lymphoid structures (TLSs)-poor GC tissues than in TLSs-rich

ones (40). TLSs, which consist of B cells, T cells, follicular
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dendritic cells and high endothelial venules, have recently been

found to be associated with effective antitumor immune

responses in patients with cancer. We therefore hypothesize

that there may be a link between infiltration of highly naive B

cells and lower immunotherapy response in GC patients.

Moreover, high infiltration of memory B cell and plasma cell

have been described to indicate longer OS in GC (41), which that

emphasizes their role as protective factors. In validation of the

external merged cohort, two additional immune cells,

monocytes and neutrophils, were revealed to be associated

with higher risk scores. Wang et al. (42) have illustrated that

tumor-activated neutrophils in GC foster immune suppression

and disease progression through GM-CSF-PD-L1 pathway,

which contributed to our understanding of the potential

association of immunosuppressive status with higher

neutrophil infiltration in the high-risk group of patients in the

external validation cohort.

To further investigate the distinct immune profiles between

high- and low risk-groups, we compared the expression of

various immune-related genes, immune scores as well as

immune-related functions. The results indicated that genes

with immunostimulatory effects were more significantly

expressed in the low-risk group than in the high-risk group,

while most immune-related functions, such as cytolytic activity

and HLA-related functions, were likewise more pronounced in

the low-risk group, thus revealing a more active immune status

in the low-risk group. Meanwhile, the higher T cell exclusion

scores and T cell disfunction scores appearing in the high-risk

group in STAD-GSE84437 implied aberrant T cell function and

a state of immunosuppression in the high-risk group compared

to the low-risk group. The expression of several immune

checkpoint genes, such as CTLA4 and PD-L1, were

significantly elevated in the low-risk group, revealing that the

low-risk group may be more likely to benefit from

immunotherapy. The next TCIA and TMB analysis also

confirms the above deduction. To further investigate the

potential reasons for the higher response to immunotherapy in

the low-risk group, we examined the differential status of ICD

and necroptosis between the two groups and demonstrated that

the majority of these two-cell death-related genes were more

highly expressed in the low-risk group. ICD has been defined by

the emission of a range of immunostimulatory damage-

associated molecular patterns (DAMPs) and then stimulate an

immune response against dead-cell antigens, in particular when

they derive from cancer cells (43). Necroptosis has also been

illustrated to accelerate cancer cell death or enhance the

sensitivity of tumor cells to anti-cancer treatment (44).

Increased cell death of these two types in the low-risk group

may account for their greater susceptibility to benefit from

immunotherapy. Due to the lack of publicly available

immunotherapy cohorts related to GC, we performed

external immunotherapy response validation by selecting

IMvigor 210 dataset. The results also confirmed the ability of
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our constructed signature to accurately predict the response of

patients receiving immunotherapy.

In the ensuing comprehensive comparison, we found that the

risk score was lower in the MSI-H group compared to the MSI-L

and MSS groups in STAD-GSE84437. MSI-H GC has a better

prognosis compared with the MSS counterpart, which is

accompanied by a decreased risk of lymph node metastasis,

tumor invasion as well as mortality (45). Moreover, TMB-

related pathways including mismatch repair, base excision repair

and DNA repair that have been identified in the previous research

(46) were strongly enriched in the low-risk group, which partly

explains the higher TMB in the low-risk group. Cho et al. (47)

have pointed out that GC with high TMB was most highly

concentrated in MSI-H groups, which is certainly in line with

the results of our analysis. Moreover, angiogenesis (48), Notch

pathway (49), hypoxia (50) and EMT (51) that featured in high-

risk group could provide insight into the potential causes of their

worse prognosis. The scRNA-seq data were further utilized to

validate the expression levels of signature genes at the cellular level

and to demonstrate a high and low distribution of risk scores.

However, the detailed associations still require further exploration.

After sensitivity analysis of multiple drugs, we hypothesized that

the low-risk group would be better suited to receive

immunotherapy and chemotherapy, while the high-risk group

appears to benefit from treatment with various targeted agents.

However, this study has several limitations. First, all analyses

were based exclusively on data from public databases, and all

samples utilized in our study were retrospective. Therefore,

inherent case-selection bias may have impacted the results.

Large prospective studies and additional in vivo and in vitro

experimental studies are needed to confirm our findings.

Furthermore, data on a few important clinical characters, such

as surgery and chemoradiotherapy, were not available for

analysis in most data sets, and we had to remove missing

clinical data from some datasets due to the merging of

datasets, which may have influenced the result of our research.
Conclusion

The present study identifies marker genes for immune

cells associated with GC based on scRNA-seq and

constructs a signature that can accurately predict OS, tumor

microenvironment score, immune infiltration status, and

response to immunotherapy in GC patients from independent

databases. A nomogram based on a combination of model

features and clinicopathological variables provided an intuitive

and accurate method for predicting OS of patients. In summary,

this study constructs a signature to predict clinical outcomes and

potential drug treatment including immunotherapy response in

patients starting from the single cell level, thus offering novel
Frontiers in Immunology 14
ideas to guide personalized immunotherapeutic strategies for

GC patients.
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SUPPLEMENTARY FIGURE 1

Workflow chart of the present study

SUPPLEMENTARY FIGURE 2

Quality control and normalization of scRNA-seq data, dimensionality

reduction and cell trajectory analysis. (A) After quality control and
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normalization, a total of 2057 cells were screened for further analysis. (B)
Correlation analysis between sequencing depth and mitochondrial gene

sequences as well as total intracellular sequences. (C) A total of 5,045
genes were analyzed, of which 3,545 genes had small intercellular

variation and 1,500 genes had large variation. (D) PCA based on scRNA-
seq data.

SUPPLEMENTARY FIGURE 3

(A) Spearman correlation analysis of model genes in STAD-GSE84437. (B)
Spearman correlation analysis of model genes in the external
validation cohort.
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SUPPLEMENTARY FIGURE 4

Differential enrichment of GO annotations between low- and high-risk
groups in the external validation cohort.

SUPPLEMENTARY FIGURE 5

Differential enrichment of KEGG pathways between low- and high-risk

groups in the external validation cohort.

SUPPLEMENTARY FIGURE 6

Differences in drug sensitivity between low- and high-risk groups in
STAD-GSE84437.
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