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The increasing availability of high-throughput biological data, especially multi-dimensional

genomic data across the same samples, has created an urgent need for modular and

integrative analysis tools that can reveal the relationships among different layers of

cellular activities. To this end, we present a MATLAB package, Matrix Integration Analysis

(MIA), implementing and extending four published methods, designed based on two

classical techniques, non-negative matrix factorization (NMF), and partial least squares

(PLS). This package can integrate diverse types of genomic data (e.g., copy number

variation, DNA methylation, gene expression, microRNA expression profiles, and/or gene

network data) to identify the underlying modular patterns by each method. Particularly,

we demonstrate the differences between these two classes of methods, which give users

some suggestions about how to select a suitable method in the MIA package. MIA is a

flexible tool which could handle a wide range of biological problems and data types.

Besides, we also provide an executable version for users without a MATLAB license.

Keywords: bioinformatics, multi-dimensional genomics, matrix integrative analysis, data integration, module

discovery, non-negative matrix factorization (NMF), partial least squares (PLS)

INTRODUCTION

Biological systems are very complex, consisting of diverse components interacting with each
other cooperatively. A key problem of biology is to investigate the relationships among different
layers of cellular activity and thereby gain deep understanding of the underlying regulatory
mechanisms. Meanwhile, the rapid development of high-throughput genomics technologies has
accelerated the generation of large-scale genomic data at multiple levels simultaneously on the
same samples. For example, The Cancer Genome Atlas (TCGA) project (The Cancer Genome Atlas
Research Network, 2008) provides copy number variation, DNAmethylation, microRNA and gene
expression profiles for the same set of tumor samples. Thus, it is an essential and valuable task
to develop tools that can explore combinatorial relationships among multiple layers of cellular
activities. To this end, we present a MATLAB package, Matrix Integration Analysis (MIA), which
implements four methods for modular and integrative analysis. The four methods are extensions of
two classical techniques—non-negative matrix factorization (NMF) and partial least squares (PLS).

In this paper, we firstly provide a brief review about these two classes of methods and their
applications in bioinformatics as well as four methods in the MIA package. We then focus on the
details about MIA including its implementation, input data structures, and outputs. We also give
a very detailed user manual about this package in our online guide file. Moreover, we summarize

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00194
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00194&domain=pdf&date_stamp=2018-05-29
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zsh@amss.ac.cn
https://doi.org/10.3389/fgene.2018.00194
https://www.frontiersin.org/articles/10.3389/fgene.2018.00194/full
http://loop.frontiersin.org/people/428219/overview
http://loop.frontiersin.org/people/61536/overview


Chen and Zhang Matrix Integrative Analysis

the characteristics of each method in the MIA package when
applying to real data matrices, which provides users some
practical suggestions about method selection. Particularly, in
order to demonstrate the differences between these two classes
of methods clearly, we compare NMF-based methods with PLS-
based methods by applying them to some sets of simulated data
matrices.

MATERIALS AND EQUIPMENT

Brief Review of NMF
The NMF technique, as an unsupervised and part-based learning
method, has been increasingly applied to diverse fields including
bioinformatics [e.g., high-dimensional genomic data analysis
(Brunet et al., 2004; Kim and Park, 2007; Devarajan, 2008; Zhang
et al., 2011, 2012; Li et al., 2012; Chen and Zhang, 2016)]. It
decomposes a non-negative matrix X of size m× n into two non-
negative matrices—a basis matrix W ∈ R

m×k and a coefficient
matrix H ∈ R

k×n, such that X ≈ WH, where k < min {m, n}

(Paatero and Tapper, 1994; Lee and Seung, 1999). That is, data
X is explained as a positive linear combination of basis vectors
(the columns of W). To find an appropriate decomposition for
matrix X, a number of cost functions are proposed (Paatero
and Tapper, 1994; Lee and Seung, 1999, 2000; Cichocki et al.,
2006, 2008; Dhillon and Sra, 2006; Fevotte et al., 2009). Two
types of cost functions are often used to measure the distance
between the original data matrix X and the reconstructed
matrix WH. One is based on the Euclidean distance, that is,
minW,H ||X−WH||2F (Paatero and Tapper, 1994; Lee and Seung,
2000); the other is based on Kullback-Leibler (KL) divergence,

that is, minW,H
∑

i,j

(

Xij log
Xij

(WH)ij
− Xij + (WH)ij

)

, where Xij

represents the element of matrix X (Lee and Seung, 1999, 2000).
Factored matrices W and H could be used to identify the
underlying substructures in data matrix X.

The simplicity and efficiency of NMF make it have wide
applications. For example, Brunet et al. (2004) and Moffitt et al.
(2015) applied NMF to gene expression data to discover cancer
subtypes. Compared to other traditional clustering methods,
such as hierarchical clustering and k-means, NMF is able to
capture local structures and provides a robust clustering of
samples. Besides, NMF is able to identify genomic modules
involved in similar biological functions using cancer genomic
data, such as gene modules (Kim and Tidor, 2003) and mutation
signature modules (Nik-Zainal et al., 2012; Alexandrov et al.,
2013a,b; Kasar et al., 2015), which help us understand the
underlying pathogenic mechanism of different types of cancers.

Several variants of NMF have been proposed by adding
distinct constraints. For example, Feng et al. (2002) imposed
sparseness constraints to matrix H and locality constraints
to matrix W on the basis of KL divergence-type objective

function, that is, minW,H
∑

i,j

(

Xij log
Xij

(WH)ij
− Xij + (WH)ij

)

+

α
∑

i,j

(

WTW
)

ij
− β

∑

i

(

HHT
)

ii
to learn spatially localized

parts-based representation of visual patterns. In order to achieve
feature selection, it is useful to explicitly control the sparse degree
of W and H by imposing sparsity constraints (e.g., L0-, L1-, or

L2-norm penalty) to W and H (Kim and Park, 2007; Peharz and
Pernkopf, 2012). These sparse NMF methods not only perform
the reconstruction of original data X, but also extract highly
localized patterns. Orthogonal constraints are also commonly
used in NMF (Ding et al., 2006; Wang et al., 2008; Strazar
et al., 2016), that is, WTW = I and (or) HTH = I. Orthogonal
NMF leads to rigorous clustering interpretation. Recently, Strazar
et al. (2016) applied an orthogonal joint NMF framework to
integrate multiple data for deciphering RNA binding patterns
and predictions.

Network-regularized NMF (Cai et al., 2008; Wang et al.,
2008; Zhang et al., 2011) incorporates prior knowledge such
as interaction networks between features in data X into NMF
framework such that linked features in the networks are
sufficiently close to each other in the new representation space.
For example, Zhang et al. (2011) utilized the same skill to
add graph constraints about gene-gene and gene-microRNA
interaction networks to NMF framework, and identified gene-
microRNA co-modules which function cooperatively in the
biological system.

Moreover, in order to simultaneously integrate more than one
type of genomic data across the same set of samples, Zhang
et al. (2012) proposed a joint NMF (jNMF) technique, which
simultaneously decomposes multiple genomic data matrices Xi

into a common basis matrix W and individual metagene matrix
Hi. Based on Hi, they identified a number of multi-dimensional
modules, each of which comprises a set of genes, microRNAs and
methylation markers. Ray and Bandyopadhyay (2016) proposed
a NMF based approach to integrate multiple biological networks,
including gene co-expression network, PPI network and GO
semantic similarity network, to predict the interactions between
HIV-1 and human proteins.

Besides two-factor NMF, three-factor NMF is also an
important class of matrix factorization techniques (Ding et al.,
2006; Wang et al., 2008; Pei et al., 2015; Zitnik and Zupan, 2015;
Zitnik et al., 2015), that is, X ≈ FSG. Such format provides a
framework to perform biclustering of the rows and columns of
matrix X by matrices F and G, respectively. Factored matrix
S not only provides an additional degree of freedom making
the approximation tightly, but also could indicate the relations
between identified clusters. Recently, Zitnik and Zupan (2015)
proposed a data fusion model by matrix factorization (DFMF),
which can integrate multiple relationships between multiple
object types as well as constraints for these object types. They
applied it to fuse 11 data matrices including gene expression
profiles, gene annotations with GO terms, and KEGG pathways
and so on, to predict gene functions.

For the convenience of users, NMF including its variants has
been implemented in several standard programming languages.
For example, Gaujoux and Seoighe (2010) provided an R package
implementing several NMF optimization algorithms and Qi et al.
(2009) developed a NMF analysis plug-in in BRB-ArrayTools
implemented in R for microarray gene expression analysis. There
also exist a number of MATLAB packages for NMF, such as
the package developed by Brunet et al. (2004) for metagenes
andmolecular pattern discovery; the NMF Toolbox developed by
Li and Ngom (2013), which contains a variety of techniques for
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biological data mining; bioNMF proposed by Pascual-Montano
et al. (2006), which is a standalone tool for classical NMF and
contains a user-friendly graphical interface to demonstrate data
analysis results.

For NMF, the number of latent factors k in the decomposition
is a key parameter which needs to be pre-determined. For the
application that using NMF to perform clustering, people often
determine k based on a consensus clustering matrix by means
of cophenetic correlation coefficient (Brunet et al., 2004; Zitnik
and Zupan, 2015) and the stability of clustering. In addition, the
distance between the original matrix X and the reconstructed
matrix WH can also be used as a measure to select k (Kim
and Tidor, 2003; Zitnik and Zupan, 2015; Zitnik et al., 2015).
Recently, Wu et al. (2016) selected k when the learned basis
matrix W achieves the lowest instability under different initial
starting points in NMF algorithm. Particularly, in biological
analysis, we could select k based on prior knowledge about the
input data matrix X or functional enrichment analysis.

Brief Review of PLS
PLS is a multivariate regression method used to find the relations
between an input matrix X ∈ R

m×n1 and a response matrix
Y ∈ R

m×n2 , both of which have the same rows (samples) (Wold
et al., 2001; Rosipal and Kramer, 2006; Lê Cao et al., 2008;
Chun and Keles, 2010; Li et al., 2012; Chen and Zhang, 2016).
Compared to the classical linear regression, it works well for
the data with small sample size and a large number of variables
(m < n1). PLS decomposes matrices X and Y both with zero-
mean variables into the form: X = TPT + E, Y = UQT + F,
where T, U are m× k matrices of k latent components
describing the original data matrices in a low-dimensional
space, and T, U can be constructed as a linear transformation
of X, Y, respectively (that is, T = XW;U = YC); P, Q represent
loading matrices to measure the relationships between the
original variables and latent ones; E, F are residual matrices. PLS
aims to maximize the covariance between X and Y by means
of latent components T and U. One common type objective

function of PLS is maxw,c [cov (t, u)]2 = [cov (Xw, Yc)]
2
,

subject to wTw = cTc = 1. Here, w and c are respectively
one column of weight matrices W and C; similarly, t
and u are respectively one column of latent component
matrices T and U. If the columns of X and Y are zero-
mean, cov(Xw, Yc) could be calculated by wTXTYc/m. Since

[cov (Xw, Yc)]2 = var (Xw) [corr (Xw, Yc)]2 var(Yc), thus latent
variables t and u identified by PLS simultaneously take into
account the requirements of maximal correlation between X
and Y like Canonical Correlation Analysis (CCA), explaining as
much variance as possible in both X- and Y-space like Principal
Components Analysis (PCA). This model can be solved by the
non-linear iterative partial least squares (NIPALS) algorithm
(Wold, 1975; Wold et al., 2001; Rosipal and Kramer, 2006).
Note that it only extracts one latent component t and u in one
round of calculation. Loading vectors p and q are computed as
the regression coefficients of X on t and Y on u, respectively:
p = XTt/(tTt) and q = YTu/(uTu).

Before calculating the next pair of latent variables t and
u, matrices X and Y need to be deflated by subtracting their

rank-one approximations. Different models have used different
deflation forms (Rosipal and Kramer, 2006). If people want to
model the symmetric relation between the two blocks X and Y, X
and Y are deflated as X = X− tpT, Y = Y− uqT; If a regression
model is needed, the computed latent components (column
vectors in matrix T) are treated as good predictors of Y. Assume
that a linear relation between t and u exists, U = TD+H, where
D is a diagonal matrix and H is a residual matrix, thus X and Y
are updated as X = X− tpT, Y = Y− ttTY/(tTt).

PLS has been widely applied to various problems in
bioinformatics (Boulesteix and Strimmer, 2005; Singh et al.,
2016). For example, Boulesteix and Strimmer (2005) utilized
PLS regression method to predict transcription factor activities
by combining mRNA expression (Y) and DNA-protein binding
data (X). Besides, in order to perform feature selection for
high dimensional data, sparse PLS (SPLS) technique has been
developed (Lê Cao et al., 2008; Chun and Keles, 2010), which
imposes sparsity penalties to weight vectors w and c. For example,
Lê Cao et al. (2008) used Lasso penalty to select biologically
interpretable genes. Morine et al. (2011) used SPLS regression
to assess relationships between dietary components and gene
expression levels. Huang et al. (2004) also proposed a sparse PLS
named Penalized PLS (PPLS) method, in which they selected
key features by means of soft thresholding process to shrink the
coefficients of some features to zero. Their results indicate the
selected features by PPLS could provide more accurate prediction
than traditional PLS and a random forest method. Furthermore,
Liquet et al. (2016) proposed group PLS and sparse group
PLS models, which take into account the group effects due to
relationships among predictors (e.g., genes in the same pathway).
However, they only consider non-overlapping groups, whichmay
need to improve due to the popularity of overlapping groups in
practice.

In addition, PLS can be combined with classification
methods to solve classification tasks. For examples, Nguyen
and Rocke performed a two-group tumor classification
task on the microarray gene expressions by combining PLS
and discrimination analysis (Nguyen and Rocke, 2002b).
Furthermore, they extended this method to solve the multi-class
cancer classification problem (Nguyen and Rocke, 2002a).
Moreover, a number of methods combing SPLS with different
classification models such as linear discriminant analysis,
support vector machine and random forest are developed
(Gutkin et al., 2009; Chung and Keles, 2010; Lê Cao et al., 2011).
They could construct more accurate and efficient classifiers with
selected features.

PLS has been widely implemented. For example, the Statistics
and Machine Learning Toolbox module plsregress in MATLAB
carries out PLS regression. The pls package provided by
Mevik and Wehrens implements several PLS algorithms in R
(Mevik and Wehrens, 2007). The gpls package (Ding, 2016)
is able to accomplish classification using generalized partial
least squares for two-group and multi-group classification.
Particularly, plsgenomics developed by Boulesteix et al. is
a PLS-based genomic analysis R package (Boulesteix et al.,
2015), mainly implementing PLS methods for classification with
microarray data and prediction of transcription factor activities
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from combined ChIP-chip analysis. Lê Cao et al. developed
an R package, integrOmics, implementing SPLS, which could
simultaneously integrate two types of “omics” variables that are
measured on the same samples and realize variables selection
using lasso penalization (Lê Cao et al., 2009). Chung et al.
developed the spls package to perform sparse PLS regression and
classification in R (Chung et al., 2013).

PLS also needs to determine the number of latent components.
Cross-validation (CV) strategy is usually used to solve it (Wold
et al., 2001; Boulesteix and Strimmer, 2005). Besides, the
robustness of a PLS algorithm is also an important issue. It
is well-known that the two popular algorithms NIPALS and
SIMPLS for solving PLS are very sensitive to outliers in the
data (Cummins and Andrews, 1995; Gil and Romera, 1998;
Hubert and Vanden Branden, 2003; Serneels et al., 2005).
Several robust PLS algorithms have been proposed including
using iteratively reweighting technique, that is, assigning
outliers detected by some way with low weights (Cummins
and Andrews, 1995; Serneels et al., 2005); and estimating a
robust covariance matrix instead of the previous one used in
PLS (Gil and Romera, 1998; Hubert and Vanden Branden,
2003).

As for NMF and PLS, they are both powerful methods
to capture the inherent structures of data. The optimization
problems corresponding to them are not convex, thus it is
very hard to find a global optimal solution. Besides, the
number of latent components k needs to be pre-determined
for both NMF and PLS. However, there are several differences
between them. Firstly, NMF aims at exploring local patterns
in one data matrix X. The identified local patterns are
some features sharing high signals across a same subset of
samples. PLS emphasizes regression analysis exploring the
relationships between two types of features in matrices X
and Y. The highly correlated features in X and Y are
selected. Secondly, the constraints for them are distinct. NMF
requires input data are non-negative whereas PLS needs
centered data across samples as input just like simple linear
regression.

MIA: A Matlab Package for Matrix
Integrative Analysis
The wide applications of NMF and PLS methods prove that
NMF and PLS are two types of powerful tools for analyzing
genomic data. Recently, we have developed four promising
methods, by extending classical NMF and PLS, for detecting
multi-dimensional modules (md-modules) in diverse genomic
data (as well as prior network data) (Table 1): jNMF (jointNMF)
(Zhang et al., 2012), SNMNMF (Sparse Network-regularized
MultipleNMF) (Zhang et al., 2011), sMBPLS (sparseMulti-Block
PLS) (Li et al., 2012), and SNPLS (Sparse Network-regularized
PLS) (Chen and Zhang, 2016). Currently, practical tools to
integrate multi-dimensional genomic data are still lacking. To
this end, we develop a unifiedMatrix IntegrationAnalysis (MIA)
package, implementing these four methods as a set of MATLAB
functions, to facilitate their adoption, promotion and evaluation
(Figure 1).

Brief Review of the Four Methods in MIA
The four methods are developed for integrative and modular
analysis for multiple genomic data as well as prior network data.
We briefly review these methods and clarify some differences
among them in terms of input data types, data formats, and
module characteristics.

jNMF
jNMF enables users to simultaneously factor two- or multi-
dimensional genomic data of the same set of samples. It
discovers local patterns across the same subset of samples
in multiple data matrices simultaneously. Note that matrices
with negative elements must be transformed into non-
negative matrices before analysis to satisfy the non-negative
constraint. In this package, such matrices are transformed by
X∗ = [max (X, 0) , max (−X, 0)], where each row represents one
sample (users may adopt other ways to transform a matrix).
More importantly, we extend the implementations in Zhang et al.
(2012) to be suitable for any number of matrices, that is,

min
W,Hi

∑n

i = 1
||Xi − WHi||

2
F , s.t. W ≥ 0, Hi ≥ 0, i = 1, . . . , n.

SNMNMF
SNMNMF integrates prior networks relating to input variables
into jNMF for pairwise case. For example, a gene-gene
interaction network and a microRNA-gene interaction network
have been adopted into this framework for discovering
microRNA-gene co-modules (Zhang et al., 2011). By expressing
networks as network-regularized penalties, SNMNMF makes the
variables linked in these networks more likely to be placed
into the same module, which will be biologically interpretable.
Compared with the model in Zhang et al. (2011), SNMNMF
implemented in this package can incorporate the links within
one type of variables (A11 ∈ R

n1×n1 , A22 ∈ R
n2×n2 ) and between

the two types of variables (A12 ∈ R
n1×n2 ) in a more flexible

manner, where A11, A22, A12 are adjacency matrices for the three
networks, that is,

min
W,Hi

∑2

i = 1
||Xi −WHi||

2
F −

∑

1≤i≤j≤2
λijTr

(

HiAijH
T
j

)

+γ1 ||W||2F + γ2(
∑

i

∣

∣

∣

∣

∣

∣
h

(1)
i

∣

∣

∣

∣

∣

∣

2

1
+

∑

j

∣

∣

∣

∣

∣

∣
h

(2)
j

∣

∣

∣

∣

∣

∣

2

1
),

s.t. W ≥ 0, Hi ≥ 0, i = 1, 2.

where h
(1)
i and h

(2)
j denote the i-th and j-th columns of H1

and H2 respectively; λij, γ1, and γ2 are parameters respectively
controlling the degree of network constraints, the growth of
W and the sparsity of Hi, which all need to be pre-defined by
users according to their input data. The term in this objective

function, Tr
(

HiAijH
T
j

)

=
∑

p,q apqh
(i)T
p h

(j)
q , enforces “must-

link” constraint such that features with known interactions in Aij

have similar coefficient profiles in matrix Hi and Hj. We note
that users can choose the networks they prefer to use in this
framework by setting the corresponding parameters non-zero.
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TABLE 1 | Brief summary of the four methods in MIA.

Method Description Non-negative

constraint

Network penalty No. of matrices References

jNMF Factorize multi-dimensional genomic data

simultaneously to reveal multi-dimensional modules in an

unsupervised manner.

Yes No Multiple Zhang et al., 2012

SNMNMF Incorporate prior networks into jNMF for two types of

data to enhance co-module discovery.

Yes Yes Pairwise Zhang et al., 2011

sMBPLS Extend sparse PLS regression model for simultaneously

analyzing multi-dimensional genomic data to reveal

multi-dimensional regulatory modules.

No No Multiple Li et al., 2012

SNPLS Incorporate prior networks into sMBPLS for pairwise

data matrices to reveal co-module patterns.

No Yes Pairwise Chen and Zhang, 2016

FIGURE 1 | Illustration of MIA. MIA implements four methods with multiple matrices representing different biological features on the same samples (and prior network

knowledge) as input, and discovers different types of multi-dimensional modules (md-modules) as output. MIA also provides several basic statistics about the

md-modules, such as their sizes, member lists, size distributions (A), and heatmaps (B). The reported md-modules can be easily adapted for further biological

analysis such as survival analysis (C), various enrichment analysis (D), and network analysis (E).
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sMBPLS
sMBPLS extends standard PLS to discover associations between
multiple input matrices and a response matrix in a sparse manner
(Li et al., 2012). This method in the MIA package is implemented
to explore the regression relationships between any number of
input matrices and one response matrix, that is,

max
Wi ,qbi

cov (t, u) −
∑n

i = 1
λi ||wi||1 − µ

∣

∣

∣

∣q
∣

∣

∣

∣

1

with ti = Xiwi, u = Yq, and t =
∑n

i = 1
biti

s.t. ||wi||2 = 1,
∣

∣

∣

∣q
∣

∣

∣

∣

2
= 1,

∣

∣

∣

∣b
∣

∣

∣

∣

2
= 1, i = 1, . . . , n.

where λi, µ control the degrees of sparsity of weight vectors
wi, q. In MIA, users need to provide several candidate values
for each parameter and the program is able to select a group of
proper parameters for input data by means of a cross-validation
procedure.

SNPLS
SNPLS is designed for one input matrix (X ∈ R

m×n1 ) and one
response matrix (Y ∈ R

m×n2 ). It adopts network-regularized
constraints via the adjacency matrices A11 ∈ R

n1×n1 of a given
networkG1 for X and/or A22 ∈ R

n2×n2 of another networkG2 for
Y. This method in MIA enables users to make use of the network
structures about input data X and response data Y if available
flexibly, that is,

max
W,q

cov (t, u)−γ1w
TL1w − γ2q

TL2q− λ ||w||1 − µ
∣

∣

∣

∣q
∣

∣

∣

∣

1

with t = Xw, u = Yq.

s.t. ||w||2 = 1,
∣

∣

∣

∣q
∣

∣

∣

∣

2
= 1.

where Li = D
− 1

2
i (Di − Aii)D

− 1
2

i , i = 1, 2. Di is the degreematrix
of graph Gi, that is, the elements of Di: dkk =

∑

j ajk and djk = 0,
for j 6= k. Similar with sMBPLS, the candidates of parameters
γ1, γ2, λ, µ also need to be given, and the program will choose a
proper group automatically.

STEPWISE PROCEDURES

Implementation
To runMIA, all the input genomic data need to be combined into
a single data matrix in which the rows correspond to samples and
the columns correspond to genomic features. Different types of
genomic data correspond to different sets of columns in the input
matrix. Prior biological networks can also be given as inputs
of SNMNMF and SNPLS. They are represented as network-
regularized constraints for enhancing module discovery. One can
run the main function of MIA with a pre-selected method to
automatically perform computations on the input data matrix.
The outputs include a set of text files and figures to describe the
discovered md-modules (Supplementary Materials and Guide).
The installation of the MIA package is as follows:

1) Download the MIA package in the website: http://page.amss.
ac.cn/shihua.zhang/software.html.

2) Unzip the package into a specific directory (e.g., ‘D:/’), and set
the work path of MATLAB (e.g., ‘D:/MIA/’).

3) Load the data. In the MIA package, there is a folder
named ‘InputData’ storing the demo input data for the
four methods. For example, we load the data named
‘InputDataForSNMNMF.mat’ as input of SNMNMF.
>> load(‘InputData/InputDataForSNMNMF.mat,”Input’);

4) Run the main function MIA.m with a desired method. For
example, we select SNMNMF for analyzing the loaded data.
>> MIA(Input, ‘SNMNMF’);

Then, MIA automatically performs all computations
and saves all the results into the directory
‘MIA/SNMNMF/SNMNMF_Results/.’

Besides, we also provide an executable version of MIA that
does not require a MATLAB license. Next, we will describe
how to define its input data and what outputs include.
Its detailed implementation can be found in Supplementary
Materials.

Input Data
MIA implements all four methods using the same structure
variable to describe input data. This variable, named Input,
includes the following components (Supplementary Materials):

Input.data: A matrix storing all the multi-dimensional
data sequentially (e.g., Input.data = [X1, ..., XN]). Each row
corresponds to a specific sample and each column to a feature.
The set of column indexes for each type of genomic data are
recorded in Input.XBlockInd.

Input.XBlockInd: A matrix of size N× 2. The two elements in
the i-th row give the start and end column indexes in Input.data
for the i-th matrix – Xi (i = 1, ..., N).

Input.YBlockInd: Its format is similar to Input.XblockInd,
storing the column indexes of response matrix Y in Input.data
for sMBPLS and SNPLS methods.

Input.netAdj: A symmetric adjacency matrix of a given
network used for SNMNMF and SNPLS, where the features
have the same order as in Input.data. This network combines
the interactions between and within the variables in multiple
types of data matrices. For example, for SNMNMF, Input.netAdj
= [A11, A12; AT

12, A22], where A11, A22 are respectively
adjacency matrices for the interaction networks about features in
data matrices X1, X2; A12 is for the interaction network between
the two types of features. The element of this matrix equals to 1
for linked features in the network, and 0 otherwise.

Input.SampleLabel: A vector recording sample labels.
Input.FeatureLabel: A vector recording feature names in

Input.data. The i-th label corresponds to the i-th feature in
Input.data.

Input.FeatureType: A vector recording the feature types in
Input.data. For example, Input.FeatureType={‘Gene expression,’
‘microRNA expression,’ ‘DNA methylation’}.

Input.params: A structure variable, storing all the parameters
used in a specific method (e.g., the pre-defined number of
md-modules, the parameters in its objective function).

For these four methods, there are three common parameters,
including
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- Input.params.NCluster: The pre-defined number of
md-modules. For example, we may set Input.params.
NCluster = 50.

- Input.params.maxiter: The maximal number of iterations
in the algorithm. For example, we may set Input.params.
maxiter = 100.

- Input.params.tol: The precision for convergence of the
algorithm. For example, we may set Input.params.tol = 10−6.

Besides, each method has its own specific parameters. Here,
we take SNMNMF as an example. Others can be found in
Supplementary Materials.
For SNMNMF, its specific parameters contain:

- Input.params.nloop: The number of repeating times to run
this algorithm. To obtain a robust and good solution, this
algorithm is run for multiple times repeatedly, and the
solution with the minimal value of objective function is
accepted. For example, we may set Input.params.nloop= 10.

- Input.params.thrd_module: A non-negative vector
of size 1× 3 to select features in md-modules.
Input.params.thrd_module(i+1) is the threshold for selecting
the i-th type of features in Input.data (i= 1,2). The first one is
for selecting samples. The larger they are, the smaller number
of features are selected. Users can set it based on the proper
size of md-modules they think. For example, we may set
Input.params.thrd_module= [1,1,1].

- Input.params.thrNet11, Input.params.thrNet12, Input.params.
thrNet22: Three non-negative parameters are respectively set
for the network constraints about network A11, A12, A22 in
the objective function. User can choose networks they prefer to
use in the framework by setting the corresponding parameters
non-zero. For example, if Input.params.thrNet11= 0, network
A11 will not be used.

- Input.params.thrXr, Input.params.thrXc: Two non-negative
numbers are set for W-related and Hi-related constraints
respectively in the objective function. They control the degree
of sparsity of matrices W and Hi. For example, we may set
Input.params.thrXr = 10, Input.params.thrXc= 10.

In addition, for the components that are not used in certain
methods (e.g., Input.YBlockInd in jNMF and SNMNMF and
Input.netAdj in jNMF and sMBPLS), users can set them null or
just ignore them.

We note that MIA is able to partition Input.data into
corresponding data matrices as input for each method
automatically. We also provide a set of demo data in the
folder named InputData. Here, we provide an example for
constructing the input data used in SNMNMF. Suppose
that one wants to identify 50 microRNA-gene co-modules
by integrating gene expression profiles (X1 ∈ R

385×12456)
and microRNA expression profiles (X2 ∈ R

385×559) across
the same set of tumor samples, as well as gene interaction
network G1 and gene-microRNA interaction network
G2. Network G1 can be expressed by adjacency matrix
A11 = (aij)12456×12456

, where aij = 1 if gene i and gene j are
linked in network G1. Similarly, G2 is expressed by adjacency
matrix A12 ∈ R

12456×559. If microRNA interaction network is

not available, the corresponding adjacency matrix A22 is defined
as A22 = 0 ∈ R

559×559.
For example, we could define input data Input as below and

then save it as ‘InputDataForSNMNMF.mat’ (Figure S1):

Input.data= [X1, X2];
Input.XBlockInd = [1,12456;12457,13015];
Input.YBlockInd= [];

Input.netAdj= [A11, A12;A
T
12, A22];

Input.SampleLabel =
{

‘TCGA-24-1105-01A′; ...;

‘TCGA-13-0793-01A’
}

;

Input.FeatureLabel =
{

‘SFRS8′; ...; ‘SCN3A’; ‘hsa-mir-488′;
...; ‘hsa-mir-874’

}

;
Input.FeatureType= {‘Gene’,‘miRNA’};
Input.params.NCluster = 50;
Input.params.maxiter = 100;
Input.params.tol = 10−6;
Input.params.nloop= 10;
Input.params.thrd_module= [1,1,1];
Input.params.thrNet11= 10−4; Input.params.thrNet12= 0.01;
Input.params.thrNet22= 0;
Input.params.thrXr = 10; Input.params.thrXc= 10;

Output Results
Given input data and desired method, MIA automatically
performs all computations and saves all the results in a specific
folder named ∗∗∗_Results, where ∗∗∗ represents the pre-selected
method name. Here, we continue taking SNMNMF for example
(for other methods, please refer to Supplementary Materials). We
load the data constructed above and type these commands in the
command window of MATLAB:

>> load(‘InputDataForSNMNMF.mat’,‘Input’)
>> MIA(Input, ‘SNMNMF’);

All the results are saved in the directory
‘MIA/SNMNMF/SNMNMF_Results/’. Referring to the results,
there are four parts (Figures S2–S4):

1) The first part is a MATLAB data file, named
‘SNMNMF_Results.mat’, saving key variables calculated
by this pre-selected method.

2) The second part contains some figures, including heatmaps
of input data (Figure 2A) and identified md-modules
(Figure 2B), sample-wise correlations between input data
and reconstructed data (Figure 2C) and size distributions for
multi-type module members (Figure 2D).

3) The third part includes two text files, recording module
members and objective function values during iterations.

4) The last part includes some folders, named as ‘∗∗∗Lists’,
where ∗∗∗ represents the feature type defined by input
variable ‘Input.FeatureType’ (e.g., “Gene,” “microRNA”). In
each folder, there are a number of text files, each of which is a
list of one type of components in one identified md-module.

Users can further analyze the biological significance of identified
md-modules. For example, using the signals calculated by MIA,
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FIGURE 2 | An example for output figures of SNMNMF. (A) Heatmaps of input data. (B) An example for heatmaps of identified md-modules (circled in red lines) and

randomly selected features for comparison. (C) Sample-wise correlations between original data and corresponding reconstructed data by factorized matrices.

(D) Size distributions for three types of components in md-modules.

they can stratify patients into groups and then conduct Kaplan-
Meier survival analysis to judge whether this module is related to
clinical characteristics. They can also perform various functional
enrichment analysis on the set of md-modules to gain insights
into their functions. They may also conduct network analysis
using tools like IPA, and/or construct a multi-level network for
each md-module to explore the underlying relationships among
features further.

RESULTS

Biological Applications
A number of biological analysis tools have been designed for
one or two types of genomic data (Shen et al., 2009; Xu
et al., 2015; Kowalski et al., 2016; Qin et al., 2016). Systematic
analysis of multiple types of data for discovering biological
relevant combinatorial patterns are currently limited. Here, the
MIA package enables users to study the complex relationships
and/or modular characteristics among multiple types of variables
by integrating diverse types of large-scale omics data. For
example, Zhang et al. applied jNMF to DNAmethylation profiles,
microRNA expression, and gene expression data from TCGA
ovarian cancer dataset (Zhang et al., 2012). They identified

a number of md-modules consisting of mRNA, microRNA,
and methylation markers. These md-modules reveal multi-level
vertical associations and cooperative functional effects. Besides,
these md-modules can stratify patients into groups with distinct
clinical characteristics.

Zhang et al. used SNMNMF to identify microRNA-gene
regulatory co-modules by integrating gene and microRNA
expression profiles as well as gene-gene and microRNA-gene
target interaction networks (Zhang et al., 2011). The identified
co-modules are enriched in known crucial functional sets, such as
nuclear division, immune system process, and so on. Meanwhile,
the co-modules are enriched with cancer-regulated genes and
microRNA, suggesting the co-modules have strong implication
in cancer. Furthermore, from the perspective of network analysis,
these co-modules shed light on regulatory circuits.

Li et al. utilized sMBPLS to integrate four types of
genomic data and identifiedmulti-layer gene regulatorymodules,
including copy number variations, DNA methylation markers,
microRNAs and genes, each of which constructs a local “gene
expression factory” (Li et al., 2012). These modules reveal
synergistic functions across multiple dimensions and facilitate
regulatory analysis via using the modules to build multi-layer
molecular interaction network.
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Chen and Zhang applied SNPLS to gene expressions, drug
response and gene network data to study (anti-)correlated gene-
drug associations (Chen and Zhang, 2016). They identified a
number of gene-drug co-modules, which show distinct biological
relevance and significant drug-gene connections. These gene-
drug co-modules reveal multiple-to-multiple relationships
between drugs and their targets, and provide us insights into
potential drug targets and drug combinations for cancer therapy.

In addition, MIA can have more applications. For example,
it can discover relationships between species by integrating their
gene expression profiles across multiple conditions. MIA can also
predict transcription factor activities from combined analysis of
microarray and ChIP-seq data. In summary, MIA is a flexible tool
which can be applied to many problems involving diverse type of
features of the same sets of samples.

These four methods of MIA can discover joint modular
patterns when applied to distinct types of genomic data. They can
be alternatively used in many situations. However, they also have
different characteristics. Firstly, depending on whether users have
network knowledge, users can select the methods with network
constraints (SNMNMF and SNPLS) or without (jNMF and
sMBPLS). Secondly, PLS-based methods emphasize regression
analysis while NMF-based ones emphasize the identification of
local patterns among data. Just like applications of jNMF (Zhang
et al., 2012) and SNMNMF (Zhang et al., 2011), the integrative
genomic data blocks are regarded equally. We can infer the
identified genomic markers function cooperatively in biological
system, but could not conclude that the dysregulation of some
features leads to activity change of the others. Contrasting to
NMF-based methods, PLS-based methods aim to describe the
relationships between predictors in X and response variables
in Y via regression analysis, expecting to predict how response
variables change when predictors change, where X and Y are
not treated symmetrically. For example, in Li et al. (2012),
the identified modules by sMBPLS actually indicate the gene
components are regulated by other components—copy number
variations, DNA methylation markers and microRNAs, whose
changes probably contribute to the changes of gene expression.
Thus, before choosing method, we should have an assessment
for relationships between data blocks. Thirdly, the constraints for
these two classes of methods are distinct. NMF-based methods
require non-negativity for input data matrices. For normalized
genomic data, in some cases, they contain negative elements,
and need to pre-process to satisfy the non-negativity constraint,
which is unavoidable to change original data structure more
or less, and leads to some effects on results. As for PLS-based
methods, all the data blocks need to be centered across samples,
which is a common way of normalization for genomic data.

We are eager to show the differences of NMF- and PLS-
based methods in detail by applying them to real genomic data.
However, it is hard to evaluate their performances, since the
golden standards for real data are lacking. Thus, we employ an
alternative way to show their difference based on simulated data.

Simulation Study
Here, we apply jNMF and sMBPLS to a set of simulated data
matrices X and Y to demonstrate key differences between NMF-
and PLS-based methods (Supplementary Materials). We believe

that NMF-based methods tend to identify substructures with
high absolute signals, whereas PLS-based ones prefer to discover
patterns with strong correlations. Thus, we construct simulated
data sets embedding two types of co-module structures—one
type is module members with high absolute values across
the same subset of samples; the other type is members with
strong correlations. According to our assumption that these
two types of methods have different preferences when detecting
co-modules, two different types of golden standards for co-
module members (G(1) and G(2)) that jNMF and sMBPLS should
identify respectively are created. We name G(1) as NMF-based
standard and G(2) as PLS-based standard. If the co-modules
identified by jNMF more approximate to G(1) than those by
sMBPLS and the co-modules by sMBPLS are more close to
G(2) than jNMF, it will verify the differences between these
two types of methods as what we think. In the simulated data
matrices X and Y, we embed five co-modules (Supplementary

Materials), thus G(i) =
{

G
(i)
1 , G

(i)
2 , . . . , G

(i)
5

}

, i = 1, 2, where G
(i)
k

is the member set for the k-th co-module in the NMF- or PLS-
based standard. We use relevance score to measure the degree
of similarity between the real co-modules G(i) and the identified
ones M = {M1,M2, . . . , M5} by jNMF or sMBPLS:
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∣
is the number of features in their union.

We can clearly see that the relevance scores of jNMF are
higher than sMBPLS under NMF-based standard (Figure 3A,
Figures S7A–S11A), which shows the co-modules identified by
jNMF are more similar to G(1) than sMBPLS. Thus, jNMF
is indeed able to discover some patterns that sMBPLS could
not find well. For example, for the first embedded module in
simulated data Y (i.e., features from the first to 100th column
and from the 201st to 230th column), the first 100 components
are highly positive or negative correlated with each other, but
among them, the last 50 ones have rather low signals. The other
30 components (from the 201st to 230th column) have high
signal with similar magnitude to the first 50 components, but
they have weak correlations with the first 100 components. It
shows jNMF identifies features from the first to 50th column
and from the 201st to 230th column, whereas sMBPLS discovers
those from the first to 100th column. On the other hand,
sMBPLS performs better than jNMF under PLS-based standard
(Figure 3B, Figures S7B–S11B). sMBPLS could identify highly
correlated components, not only for samples but also for features
in X and Y, although they may have slightly low signals, which
jNMF often disregards. For example, the second co-module (i.e.,
samples from the 111st to 200th row and features from the 201st
to 400th column of matrix X and those from the 101st to 200th
column of matrix Y) has very low signal values across the first
40 samples in matrices X and Y, but these samples are closely
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FIGURE 3 | Comparison of jNMF and sMBPLS in terms of relevance scores under two types of golden standards, derived by the characteristics of NMF method (A)

and PLS method (B). Here, we apply jNMF and sMBPLS to 50 sets of simulated data matrices for each level of data noise, respectively.

negatively correlated with the other 50 samples. As a result,
sMBPLS discovers all these 90 samples as components of the
second co-module, while jNMF just identifies the last 50 samples.

Although the accuracy of identified co-modules by jNMF
and sMBPLS both decreases with the data noises increasing, the
relevance scores for sMBPLS decreases faster than jNMF, which
may suggest that sMBPLS is more sensitive to data noise than
jNMF. In particular, for the last co-module, the golden standards
for both methods are the same, but jNMF performs better than
sMBPLS under different levels of data noises (Figure S11). We
guess that high correlation pattern is much easier to be affected
compared to high signal one with the increase of data noise.

Besides, the scores for sMBPLS gradually approach to jNMF
with data noise increasing (Figure 3B). Correlations between
features of relatively high signals are more difficult to be
weakened by the same level of data noise than those of low
signals. Thus, with data noise increasing, jNMF and sMBPLS
tend to find similar co-modules with large signals and high
correlations.

CONCLUSION AND DISCUSSION

The advance of biological techniques makes multi-dimensional
large-scale omics data available, which provides us opportunities
to study the complex biological system from the perspective of
multi-layer regulatory programs. Therefore, it is necessary
to develop a tool to simultaneously integrate multi-
dimensional biomedical data. Here, we present a MATLAB
package, MIA, to conduct integrative and modular analysis
for multi-dimensional genomic data across the same
sets of samples as well as prior network knowledge to
decode the relationships among different levels of cellular
activities.

Although these four methods in the MIA package are all
used to identify modular patterns in data matrices, users could
select an appropriate one based on their own purpose and data
characteristics. We have demonstrated the specificity of these
two types of methods using simulation test, which also provides
clues about the method applicability. For example, NMF-based
methods tend to identify local patterns with high absolute signals,
whereas PLS-based methods are essentially regression methods,
thus they are likely to extract the components with strong
correlations between predictors and response variables.

Since these problems are not convex, it is very hard to
find a global optimal solution. For NMF-based methods, users
could run the algorithm for several times repeatedly by setting
the input parameter Input.params.nloop in MIA, and then the
solution with the minimal value of objective function is used for
further analysis. Thus, users could obtain a consistent solution
by this strategy. When solving the optimization problems for
PLS-based methods, the initial iteration point of algorithm have
much effects on the solution. A good starting point helps the
algorithm converge rapidly. In MIA, instead of generating a
random starting point, we choose the solution of the original PLS
problem without any constraints as an initial point to speed up
the algorithm and meanwhile make its solution more stable.

MIA may run slowly when applying to multiple large-scale
data sets. Thus, it is better to filter some features by data
pre-processing to reduce the dimensions of input data. In the
future, we will further optimize the programs in MIA to make
it more efficient for large-scale data integrative analysis. In
MIA, we respectively choose the most common used algorithms
to solve them. We use multiplicative update rules for NMF-
based methods, and non-linear iterative partial least squares
(NIPLS) algorithm for PLS-based methods. We will provide
users several other efficient optimization algorithms for choice.
Besides, R language is widely used among researchers, thus we
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will prepare the version implemented in R code soon to facilitate
its adoption.

In summary, MIA is very easy to use and does not require
high-level programming skills.We expect it will become a routine
exploratory tool for diverse biological problems.
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