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Serum metabolomic and lipidomic profiling 
identifies diagnostic biomarkers for seropositive 
and seronegative rheumatoid arthritis patients
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Abstract 

Background:  Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic cri-
teria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic 
changes in RA patient serum.

Methods:  We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 
normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-
learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals.

Results:  Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis 
model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 
89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-
occurrence network using serum omics profiles was built and parsed into six modules, showing significant associa-
tion between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids 
metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidy-
lethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease 
activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity.

Conclusions:  A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based 
prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in 
stratifying RA cases based on disease activity.
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Introduction
Rheumatoid arthritis (RA) is a complex chronic autoim-
mune disease with variable presenting symptoms and 
serum autoantibody test results. Currently diagnosing 
RA is primarily based on clinical symptoms and the pres-
ence of various serum autoantibodies including rheuma-
toid factor (RF) and anti-citrullinated protein antibody 
(ACPA) [1–3]. Although most patients with confirmed 
RA have an abnormal test for RF and/ or ACPA, about 
15%–20% of cases do not have the elevated levels of RF 
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and ACPA [4]. Early recognition and assessment of the 
progression of RA are of paramount importance to avoid 
the irreversible damage. Therefore, developing reliable 
diagnostic biomarkers for evaluating seronegative RA is 
needed [1].

Chronic inflammatory state in RA causes metabolic 
changes that can serve as biomarkers for diagnosis, dis-
ease activity and treatment efficacy monitoring [5, 6]. The 
liquid chromatography–mass spectrometry (LC–MS)-
based metabolomic and lipidomic approach is a power-
ful tool to discover potential biomarkers and metabolic 
pathway remodeling occurred in chronic diseases includ-
ing RA [4, 7, 8]. However, small sample size and inad-
equate number of targets studied so far limit definitive 
conclusions drawing [4, 9–13]. The potential of using 
LC–MS-based metabolomic and lipidomic profiling 
for novel biomarker discovery to achieve more accurate 
diagnosis and disease activity monitoring remains largely 
unexplored.

In our study, we aimed to build a classification model 
that can be applied to both seropositive and seronegative 
patients by integrative LC–MS-based metabolomic and 
lipidomic profiling of serum samples from a large cohort 
of RA patients and normal control subjects.

Materials and methods
Clinical samples collection
Serum samples were collected from 225 RA patients and 
100 normal control subjects at the Affiliated Hospital 
of Nanjing University of Chinese Medicine. The clinical 
and demographic characteristics of the study were sum-
marized in Table 1. Disease activity for RA patients was 
assessed at the time of serum collection through quan-
tification of tender and swollen joints, erythrocyte sedi-
mentation rate (ESR), C-reactive protein (CRP) levels and 
the visual analog scale-grading of the patients. Cytokine 
concentrations were determined by immunoassay. Sub-
jects in any one or more of the following categories were 
excluded from our analysis: (1) the presence of type I or 
II diabetes; (2) active viral and/or bacterial infection; (3) 
the presence of osteoarthritis. The study was approved by 
the medical ethics committee of the Affiliated Hospital 
of Nanjing University of Chinese Medicine and followed 
the tenets of the Declaration of Helsinki (2018NL-106-
02). Written informed consents were obtained from all 
study subjects. Patients were clinically diagnosed with 
RA according to the American College of Rheumatol-
ogy and European League Against Rheumatism (EULAR) 
2010 criteria [9, 14]. Venous blood was collected in the 
morning before breakfast from all the participants, and 
then sera were separated and stored at − 80 °C until use.

Sample preparation
The metabolites and lipids in serum were isolated and 
treated as previously reported [15] with slight modifica-
tions. Fifty microliters of thawed serum samples were 
precipitated by adding 200  μl of cold acetonitrile. After 
centrifugation at 14,000g for 10  min at 4  °C, the super-
natant was divided into four fractions: two for polar 
metabolites analysis by hydrophilic interaction liquid 
chromatography (HILIC)-LC–MS methods with posi-
tive ion mode electrospray ionization (ESI) and negative 
ion mode ESI, namely method 1 and method 2, respec-
tively; two for lipids analysis by reverse phases (RP)-LC–
MS methods with positive ion mode ESI and negative ion 
mode ESI, namely method 3 and method 4, respectively. 
After centrifugation, samples were dried and stored 
at − 80  °C until use. The quality control (QC) samples 
were prepared by mixing equal volumes of sera from RA 
patients and controls before sample preparation as they 
were aliquoted for analysis. These QC samples were uti-
lized to estimate a “mean” profile representing all ana-
lytes encountered during the LC–MS analysis [16].

Table 1  Clinical and demographic characteristics of the study 
participants

Statistical significance was determined using unpaired two-tailed Student’s t 
test

ESR, Erythrocyte sedimentation rate; CRP, C-Reactive protein; IgA, 
Immunoglobulin A; IgG, Immunoglobulin G; IgM, Immunoglobulin M; ACPA, 
anti-citrullinated protein antibody; ANA, anti-nuclear antibodies; ANA, 
anti-keratin antibodies; DAS28-CRP, Disease activity score 28-joint count C 
reactive protein; DAS28-ESR, Disease activity score 28-joint count erythrocyte 
sedimentation rate

Normal 
controls 
(n = 100)

RA (n = 225) p value

Female: Male 69:31 189:36

Age (years) 44.32 (21–66) 57.71 (27–87)  < 0.001

CRP (IU/mL) 2.6 (0.5–6.0) 19.3 (1.0–127.0) 0.003

ESR (mm/h) 9.7 (2.0–24.0) 43.8 (2.0–140.0) 0.002

IgA (IU/mL) 2.1 (0.9–3.9) 2.6 (0.2–6.4) 0.16

IgG (IU/mL) 12.8 (9.4–19.8) 14.2 (5.9–50.7) 0.39

IgM (IU/mL) 1.1 (0.4–3.2) 1.3 (0.3–4.4) 0.61

Disease duration (minimum–
maximum in months)

– 9.7 (0.4–40)

DAS28-CRP (minimum–maxi-
mum)

– 3.5 (1.0–7.1)

DAS28-ESR (minimum–maxi-
mum)

– 4.0 (1.2–7.8)

Rheumatoid factor positive – 57.8%

ACPA positive – 42.2%

ANA positive – 49.4%

AKA positive – 49.4%
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Metabolomic and lipidomic analysis
For the polar metabolite profiling, dried samples were 
reconstituted in 100 μl of 80% methanol and analyzed by 
using a Dionex U3000 LC system coupled online to a Q 
Exactive Orbitrap MS instrument (Thermo Fisher Scien-
tific, MA, USA) set at 35,000 resolution (at m/z 200). For 
the lipids profiling, dried samples were reconstituted in 
100  μl of acetonitrile for instrument analysis. (HILIC)-
LC–MS and (RP)-LC–MS were performed for metabo-
lomic and lipidomic profiling, respectively. The details 
of the analytical experiments were described in Supple-
mental Materials. Data pre-processing was carried out 
as previously reported [17]. The XCMS package [18] was 
used for the extraction of peak abundances of metabo-
lites and lipids. The background noises and contami-
nants in the peak tables were filtered by using CPVA with 
default parameters [19]. Quality assurance was achieved 
by the statTarget package [20] as follows. Briefly, peaks 
with more than 50% missing values were removed. The 
intensity of remaining peaks in samples was corrected 
according to the QC-RFSC algorithm. Principal compo-
nent analysis (PCA)-based data quality evaluation was 
provided in Additional file  1: Fig. S1. Polar metabolites 
identification was according to the MS/MS spectra, the 
retention time of commercially available standard com-
pounds, and the accurate mass of compounds from the 
Human Metabolome Database (www.​hmdb.​ca) and 
MassBank of North America (http://​mona.​fiehn​lab.​ucdav​
is.​edu). Lipids were identified based on MS/MS match 
by using the LipidSearch software v4.1 (Thermo Fisher 
Scientific, CA, USA). The parameters in LipidSearch 
were set as follows: precursor tolerance at 5 ppm, prod-
uct tolerance at 5 ppm, product ion threshold at 5%, and 
intensity threshold at 1.0%. Quantitation and Toprank fil-
ter were turned on. Main node filters were set to Main 
Isomer Peaks, and ID quality was graded from A-B. Path-
way analysis based on identified metabolites was carried 
out using Metaboanalyst 4.0 [21] according to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
database (www.​genome.​jp/​kegg/).

Data analyses
The Mann–Whitney–Wilcoxon test or Welch’s t-test, was 
performed to measure the significance of each peak, with 
results adjusted for multiple testing using false discovery 
rates (FDR) correction. The cross-validated partial least 
squares discriminant analysis (PLS-DA) and variable 
importance in the projection (VIPplsda) were calculated 
using the statTarget package. Serum metabolites pass-
ing the threshold of VIPplsda > 1, fold change > 1.2 or < 0.8, 
and adjusted p-value < 0.05 were regarded as potential 
markers between the RA and NCs groups. The alluvial 
plots and forest plot were performed using the ggalluvial 

package and forestplot package, respectively. The co-
occurrence network was carried out and visualized in the 
igraph package (https://​igraph.​org). Spearman’s rank cor-
relation was used for a measure of correlation between 
two variables. The nodes represent clinical parameters or 
metabolites and lipids, and two nodes were connected if 
they were significantly correlated (adjusted p-value < 0.05 
and r-value > 0.2). The ordinal regression was performed 
by using the ordinalgmifs package for fitting an ordinal 
response model [22]. Coupling the receiver operating 
characteristic curve (ROC) with its area under the curve 
(AUC), a widely used method to estimate the diagnostic 
potential of a classifier in clinical applications, was per-
formed using the pROC package [23]. All packages were 
implemented using the freely available R language.

Results
Clinical data and patient characteristics
The demographic information of the study participants 
was summarized in Table  1. Among 225 RA patients, 
the positive rate of RF and ACPA was 57.8% and 42.2%, 
respectively. These samples were randomly divided into 
two independent cohorts. The discovery set consisted of 
172 RA patients and 71 normal controls (NCs), and the 
validation set consisted of 53 RA patients and 29 NCs 
(Fig. 1A). The alluvial plot shown in Fig. 1B displayed the 
number of individuals across the disease status, gender, 
disease activity score (DAS28-CRP and DAS28-ESR), as 
well as the status of autoantibodies such as rheumatoid 
factor (RF), ACPA, anti-nuclear antibodies (ANA), and 
anti-keratin antibodies (AKA). The positive rates of RF, 
ACPA, ANA, AKA in the RA patients were 57.8%, 42.2%, 
49.4% and 49.4% (Table 1 and Fig. 1B).

Metabolomic and lipidomic profile (MLP)
In four datasets generated from four different LC–MS 
runs, there were 1697 and 1960 high-confident peaks 
identified for polar metabolites with method 1 and 2, 
and 4771 and 3973 high-confident peaks identified for 
lipids with method 3 and 4. From this 12401 high-con-
fident peaks we identified 265 metabolites and lipids 
(Additional file  1: Table  S1), including 38 organic acids, 
10 amines, 37 amino acids, 5 nucleotides, 4 bile acids, 
26 acyl-carnitines (AcCa), 118 glycerophospholipids, 9 
sphingolipids and 2 glycerolipids. These metabolites rep-
resent enriched metabolic pathways involving carnitine 
synthesis, oxidation of branched-chain fatty acids, biotin 
metabolism, malate-aspartate shuttle, citric acid cycle, 
urea cycle, phenylalanine and tyrosine metabolism, phos-
pholipid biosynthesis and histidine metabolism (Addi-
tional file 1: Fig. S2).

http://www.hmdb.ca
http://mona.fiehnlab.ucdavis.edu
http://mona.fiehnlab.ucdavis.edu
http://www.genome.jp/kegg/
https://igraph.org
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Clustering of test samples using MLP and pathway 
enrichment analysis
To analyze whether any of the identified metabolites or 
lipids are associated with RA, we carried out the univari-
ate and multivariate analysis of the identified metabolites 
and lipids. The well-established partial least squares-
discriminant analysis (PLS-DA) demonstrated excellent 
separation of NCs from seropositive RA and seronega-
tive RA based on MLP (Fig. 2A). The permutation tests 
(n = 1000) were performed to validate the PLS-DA model 
we used (Additional file 1: Fig. S3). This separation clearly 
demonstrated the difference in serum metabolite and 
lipid levels that existed between RA patients and normal 
control subjects. Statistical analysis identified 68 signifi-
cantly upregulated and 38 downregulated serum metab-
olites and lipids that were correlated with RA (Fig.  2B). 
Pathway enrichment analysis (Fig.  2C) highlighted the 
top enriched metabolic pathways in RA. Specifically, 
metabolic products associated with Warburg effect, pen-
tose phosphate metabolism, glycolysis, and lipid metab-
olism products involving phospholipid, sphingolipid, 
oxidation of branched chain fatty acids and carnitine 

synthesis were upregulated in the RA group, while histi-
dine metabolism was downregulated.

Constructing a multivariate classification model for RA
We constructed a multivariate classification model 
including 26 metabolites and lipids that could separate 
seropositive and seronegative RA cases from normal con-
trols (Fig.  2D, E). We evaluated three machine learning 
algorithms such as binary logistic regression, random 
forest and support vector machine on the above-men-
tioned metabolites and lipids for the classification of 
RA cases using the discovery set (n = 243). The binary 
logistic regression algorithm based model trained with 
leave-one-out cross-validation had an accuracy of 100% 
(Fig.  2E, AUC = 1.00). This model was tested using the 
independent validation set (n = 82, Additional file  1: 
Table S2), and showed AUC = 0.91 with test sensitivity of 
89.7% and specificity of 90.6% (Fig. 2E). We did an analy-
sis of the 5 misclassified RA cases, and it is noteworthy 
that all of the 5 cases had borderline to positive RF anti-
body levels (Additional file 1: Table S3).

Fig. 1  A Study design and clinical outcomes. A Schematic overview of the study cohort and the methods description. B Alluvial plot showing the 
number of individuals crossing over the disease groups, gender, DAS28-CRP, DAS28-ESR, RA-related autoantibodies such as rheumatoid factor (RF), 
anti-citrullinated protein antibody (ACPA), anti-nuclear antibodies (ANA), and anti-keratin antibodies (AKA)
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Association of MLP and clinical parameters
To understand the association of MLP with clinical 
parameters of RA, we used a correlation-based network 
approach to explore the co-occurrence patterns between 
28 clinical variables and serum concentrations of 265 
identified metabolites and lipids in the RA patients, 
which could help to explore the correlation of metabolic 
products and clinical confounders. In the co-occurrence 
network (Fig.  3), nodes represent clinical parameters or 
metabolites and lipids, and two nodes are connected if 
they are significantly correlated (adjusted p-value < 0.05 
and r-value > 0.2). The resulting network consisted of 117 
nodes and 274 edges. The modularity index was 0.467, 
which is above 0.4 suggested for a modularly struc-
tured network [24]. Overall, the entire network could be 
parsed into six modules. As shown in Fig.  3, module 1 
contained CRP, leukocyte, neutrophil and ACPA related 
to inflammatory activity and 17 metabolites and lipids. 
Modules 2 and 3 contained RF, IgG, IgM, IgA, globulin, 
ESR, ANA and AKA related to the immune response and 
22 metabolites and lipids. The general clinical variables 
such as age, gender and BMI were clustered in modules 
4–5 and were far away from modules 1–3. Therefore, the 
co-occurrence network analysis revealed that there was 

a clear association between the serum inflammation/
immune markers and concentrations of metabolites and 
lipids in the RA patients.

Stratification of disease activity using MLP
To analyze the utility of using MLP for stratification 
of RA cases based on disease activity, twenty metabo-
lites and lipids strongly correlated to the inflammatory/
immune activity were selected from modules 1 and 2 
in the co-occurrence network (Fig.  3). Sixteen metab-
olites and lipids had significantly increased odd ratios 
for RA status, while 4 metabolites and lipids had sig-
nificantly decreased odd ratios (Fig. 4). Disease activity 
score DAS28-CRP is often utilized to evaluate the dis-
ease activity of RA patients [25, 26]. Using DAS28-CRP 
to stratify RA patients, we further identify 7 metabo-
lites and lipids that were strongly associated with dis-
ease activity categories by using the ordinal regression 
method (Fig.  5). Among these, AcCa (20:3), aspartyl-
phenylalanine (asp-phe), pipecolic acid, lysophosphati-
dylethanolamine (LPE 18:1) and LPE (20:3) appeared to 
be positively correlated with higher RA disease activ-
ity, while histidine and PA (28:0) were negatively cor-
related with RA disease activity (Fig. 5A). AcCa (20:3), 

Fig. 2  Metabolomic and lipidomic profiles and multivariate diagnostic model. A A PLS-DA model constructed from metabolomic and lipidomic 
profiling separated seropositive RA and seronegative RA patients from controls (NCs). B Volcano plot of metabolomic and lipidomic levels of RA 
versus NCs (x axis, fold change of RA to NCs; y axis, adjusted p value). Metabolites or lipids with VIPplsda > 1, fold change > 1.2, adjusted p-value < 0.05 
are colored in red and those with VIPplsda > 1, fold change < 0.8, adjusted p-value < 0.05 in blue. C Metabolic pathway enrichment analysis of RA. 
D Metabolites and lipids with VIPplsda > 2 selected for building a multivariate classification model. E ROC analysis of the multivariate classification 
model
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LPE (18:1) and LPE (20:3) were significantly increased 
in the remission-low risk (R-L) group compared to the 
NCs group (p < 0.05, AUC > 0.7). A small peptide asp-
phe and lipid LPE (18:1) were significantly increased 
in the DAS28-CRP high disease activity (HIGH) group 
compared with the R-L group (p < 0.05, AUC > 0.7), 
indicating their potential role as biomarkers in RA dis-
ease activity stratification (Fig. 5B).

Discussion
RA is a highly heterogeneous disease with variable pre-
senting symptoms, severity and response to treatment. 
Autoimmune damage may happen years before symp-
toms occur and clinical diagnosis is made. It is important 
for early and accurate diagnosis of RA and prompt ini-
tiation of effective treatment to prevent joint damage and 
functional loss [27]. Current diagnostic criteria are based 
on comprehensive evaluation of symptoms, serology 
status and acute phase reactant levels. Because a signifi-
cant percentage of RA patients are negative for serologic 
markers, additional diagnostic methods are actively being 

developed to help increase diagnostic accuracy, particu-
larly for seronegative RA patients. The chronic inflam-
mation and joint destruction in RA patients may cause 
metabolic perturbations in the peripheral blood, pro-
viding opportunities to discover potential biomarkers to 
improve the clinical diagnosis of RA [4, 28].

Previous studies have reported metabolic changes 
in RA by using nuclear magnetic resonance (NMR) or 
RPLC-MS [4, 10, 11]. We developed a multi-platform 
strategy including two reverse phase and two HILIC 
chromatography hyphenated to high-resolution mass 
spectrometry (HRMS) in positive and negative ioniza-
tion modes for the simultaneous quantitative analysis 
of metabolites and lipids. By means of the integrative 
metabolomic and lipidomic analysis, we were able to 
identify 26 serum metabolites and lipids that correctly 
classified RA patients from normal control subjects. A 
multivariate classification model was derived from the 
discovery set and was subsequently validated using an 
independent validation set. It is noteworthy that our 
model combined with RF test reached 100% validation 

Fig. 3  A co-occurrence network showing correlation between clinical parameters and specific serum metabolites and lipids. Nodes represent 
clinical parameters or metabolites and lipids, and two nodes are connected if they are significantly correlated (adjusted p-value < 0.05, r-value > 0.2). 
The solid line signifies a positive correlation, and the dotted line signifies a negative correlation. The size of each node is proportional to the number 
of connections (that is, degree). Nodes colored by modules
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Fig. 4  Association between the inflammation-immune activity and aberrant metabolism. A Serum metabolites and lipids levels were associated 
with the risk for RA according to relative peak intensity from untargeted mass spectrometry analyses of subjects (N = 325). B RA-associated 
metabolite and lipids in cellular metabolic pathways. Upregulated metabolites or lipids were colored in red and downregulated metabolites or 
lipids were colored in green
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accuracy, and all patients with seronegative RA were 
identified by using our model, thus showing the potential 
for providing a diagnostic tool in both seropositive and 
seronegative RA.

Similar findings pertaining to the differences in the 
levels of lysine, phenylalanine, proline, ornithine and 
salicylic acid between the RA patients and normal con-
trol subjects were observed previously [11, 29]. These 
metabolites have been associated with immune sys-
tem activation [4, 30, 31]. On the other hand, we found 
serum level of histidine, which has anti‐inflammatory 
effects and antioxidative stress effect via inhibiting 
peroxisome proliferator-activated receptor γ (PPARγ) 
-involved pathways [32], was significantly decreased in 
RA patients. The role of histidine in RA needs further 
studies since histidine supplementation did not show 
an advantage in a double-blind trial [33]. In our study 
histidine level was inversely correlated with the RA 
disease activity defined by DAS28-CRP. Histidine level 
was significantly decreased in patients with moderate 
and high disease activity, while no significant changes 
were seen in RA patients with remission and low dis-
ease activity (Fig. 5A).

Lipids are implicated in diverse biological functions, 
including being the major component of cell membranes 
and the regulation of cell migration and inflammation [7, 
34]. Our study found that increased levels of lipid media-
tors such as sphingosine 1-phosphate (S1P) and 12-HETE 
and lysophospholipids such as LPE (18:1), LPE (18:2), 
lysophosphatidylcholine (LPC 18:1), LPC (18:4) and 
lysophosphatidylserine (LPS 18:0) in RA patients were 
positively correlated with CRP levels (Fig. 3), supporting 
their roles in inflammation. Other groups have reported 

that LPC was shown to induce cyclooxygenase-2 expres-
sion in the vascular endothelial cells, playing a possible 
pro-inflammatory role [35]. S1P is generated from sphin-
gosine by activation of sphingosine kinase and has been 
implicated as a potential therapeutic target in RA [36]. 
Moreira et  al. reported that 12-HETE, an arachidonic 
acid-derived metabolite, may play an important role in 
the chronic inflammatory process associated with RA by 
mediating proinflammatory actions [37].

Ongoing inflammation and immune activation are 
characterized by rising energy demand that is required 
for immune cell growth, proliferation and the produc-
tion of proinflammatory molecules [38]. In our study, the 
increased levels of metabolites (e.g., alpha-ketoglutaric 
acid, AcCa (3:0), fructose-6-phosphate and glucose-
6-phosphate) seen in the serum of RA patients indicate 
enhanced energy metabolism involving glycolysis, citric 
acid cycle and fatty acid oxidation (Fig. 4). Methotrexate 
(MTX), a first line treatment for RA, is an antimetabolite 
drug that targets folic acid metabolism. Many ongoing 
clinical trials are investigating potential drugs that target 
lipid/glucose metabolic pathways to improve inflamma-
tion control and disease outcome [5]. In addition, using 
metabolomic approach to delineate inflammation-associ-
ated metabolic status of RA patients may offer a prom-
ising method for disease activity and treatment effect 
monitoring.

The strengths of our study include that it employs a 
comprehensive multi-platform approach for metabo-
lomic and lipidomic analysis, large sample size and its 
potential to provide diagnostic value for both seroposi-
tive and seronegative RA patients. Its limitations include 
that it is still a discovery study that shows correlation of 

Fig. 5  Metabolites and lipids correlated with RA disease activity. Boxplots (A) and ROC analysis (B) of seven metabolites and lipids with differential 
levels among normal control group (NCs) and RA with low disease activity (R-L), moderate disease activity (MOD) and high disease activity (HIGH). # 
p < 0.05 versus NCs group, *p < 0.05 versus R-L group. Data are presented as mean ± SEM, and analyzed by Wilcoxon−Mann U test with FDR control
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serum markers to RA, but does not directly address the 
mechanisms of these markers in RA. The diagnostic value 
of the discovered metabolomic and lipidomic markers for 
discriminating between seronegative RA and other types 
of inflammatory arthritis such as psoriatic arthritis, reac-
tive arthritis or spondyloarthritis will be investigated in 
future studies. For developing our method into clinical 
practice, our classification model still needs to be evalu-
ated in other multinational/multiethnic cohorts.

In conclusion, we have built a serum metabolic/lipid-
omic-markers-based model that has potential diagnose 
value. Our study suggests the integrative comprehen-
sive metabolomic and lipidomic profiling is a promis-
ing system biology approach for uncovering biomarkers 
useful for RA diagnosis and disease activity monitoring.
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