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Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of nor-
mal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through 
promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors 
including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved 
isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and 
complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of 
allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes func-
tional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated 
by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis 
of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription 
factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of 
breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms 
in breast tumor pathology and documents unsolved issues.
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Introduction

Neoplasia are the uncontrolled growth of cells as a conse-
quence of disrupted gene expression and associated sign-
aling pathways as a consequence of genetic or epigenetic 
changes (Hanahan and Weinberg 2000). The term ‘epige-
netics’ refers to heritable covalent modifications of chro-
matin components which, by transforming the chromatin 
organization, affect accessibility of DNA for the regulatory 
and transcription factors without affecting the basic nucleo-
tide sequence (Egger et al. 2004). The epigenetic machin-
ery regulates gene expression by (a) DNA methylation; (b) 
post-translational modifications of histones, and (c) non-
coding RNAs. Methylation of DNA is a vital process during 
development, cellular differentiation and tissue homeostasis 

(Feil and Fraga 2012). DNA methylation is a process, where 
methyl group is covalently attached to C-5 of the cytosine 
residue and catalyzed by evolutionarily conserved isoforms 
of DNA methyl transferases (DNMTs). The mechanism of 
DNA methylation is widely associated with various physi-
ological processes such as X chromosome inactivation, chro-
mosome stability, genomic imprinting, tissue specific gene 
expression, repression of transposable elements and aging 
(Bernstein et al. 2007). Besides various genetic alterations 
such as mutations, loss of heterozygosity and inducing copy 
number variations, cancer cells harbor global epigenetic 
alterations leading to growth and metastasis demonstrat-
ing the complex interplay between genetic and epigenetic 
mechanisms in (dys)regulation of gene expression (Sadiko-
vic et al. 2008). Recent advances in high throughput DNA 
sequencing and single cell DNA methylation analysis have 
revealed existence of distinct epigenetic signatures in variety 
of cancer types and the extent of epigenetic changes is corre-
lated with tumor stage and type (Fernandez et al. 2012). The 
functions affecting DNMT isoforms including mutations are 
correlated with the biological characteristics of malignancy 
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and enhance the proliferation, migration, invasion, stemness, 
epithelial mesenchymal transition and metastasis of tumor 
cells (Dawson and Kouzarides 2012). The widespread epi-
genetic defects including DNA methylation in breast tumors 
instigated us to revisit the regulation of DNMT isoforms 
in these pathological conditions. Hence, the present review 
aimed to assimilate the existing knowledge of genetic and 
epigenetic regulation of DNMT isoforms in breast tumors 
along with functional consequences.

(Dys)regulation of DNA methylation 
during tumorigenesis

Based on the structures, DNMT isoforms are classified into 
DNMT1, DNMT2 and DNMT3 family. DNMT1, DNMT3A 
and DNMT3B isoforms expressed in human tissues are 
encoded by distinct genes DNMT1 (DNMT, AIM, MCMT, 
CXXC9, HSNE1, ADCADN), DNMT3A (DNMT3A2, TBRS, 
HESJAS), DNMT3B (ICF, ICF1) localized on chromosome 
19, 2 and 20 respectively. Three major DNA methyl trans-
ferases are involved in initiation and maintenance of DNA 
methylation patterns in humans: (a) DNMT1 (maintenance 
methyl transferase), has a strong predilection for hemi-
methylated CpG dinucleotides, consequently methylates the 
newly synthesized DNA strand considering the methylation 
in the complementary strand as gold standard; (b) DNMT2 
is shown to methylate tRNA anticodon loop and DNA meth-
ylation activity of DNMT2 is reported to be low or absent; 
(c) DNMT3 (de novo methyl transferases) isoforms are 
involved in de novo methylation and non-CpG methylation 
(Ramsahoye et al. 2000; Jones and Baylin 2002; Laird 2003; 
Hermann et al. 2003; Goll et al. 2006). DNMT3 consists of 
three subtypes: DNMT3A, DNMT3B and DNMT3-like pro-
tein (DNMT3L). DNMT3A and DNMT3B possess catalytic 
activities and are regulated by DNMT3L (Okano et al. 1999; 
Hu et al. 2008).

Alteration of DNA methylation pattern is closely associ-
ated with the initiation and progression of tumors. Rauscher 
et al., 2015 showed that the frequent DNA methylation 
alteration in promoter regions, introns, far upstream regions, 
LINE-1 and satellite 2 DNA repeats were associated with 
the breast cancer development (Rauscher et  al. 2015). 
Increased methylation in promoter CpG islands of specifi-
cally tumor suppressor genes including p16INK4A, p15INK4A, 
p53, p73, TIMP-3, BRCA1, PLCD1, PCDH17, RASSF1A, 
HIN-1, FOXD3, MLH1, MSH2, ERCC1, RUNX3, GATA-
4 and GATA-5 are frequently reported in several cancers 
such as hematological malignancies and tumors of lung, 
colon, breast, neurological, liver, nasopharyngeal, ovar-
ian and endometrium (Kang et al. 2001b; Feng et al. 2010; 
Quintás-Cardama et al. 2012; Xing et al. 2013; Zhu et al. 
2015; Cosgrove et al. 2017; Maleva Kostovska et al. 2018; 

Hentze et al. 2019; Xu et al. 2019). Global hypomethylation 
of DNA at various genomic locations including CpG-poor 
promoters, repeat sequences and retrotransposons results in 
the overexpression of proto-oncogenes and growth factors 
attributes to hallmarks of cancer. For instance, hypomethyla-
tion of uPA resulting in its overexpression is correlated with 
progression of breast, prostate and brain tumors (Pakneshan 
et al. 2005; Kandenwein et al. 2011). Several studies have 
shown that the loss of imprinting of IGF-2 due to hypo-
methylation leads to uncontrolled proliferation of tumor cells 
(Leick et al. 2011). Hypomethylation of Alu repeats in the 
intronic region of TGFB2 and region overlapping the CpG 
island of the PRDM16 exon has been observed in tumor 
cell lines (Irizarry et al. 2009). Joo et al. (2018) showed that 
heritable DNA methylation pattern is a major contributor for 
the breast cancer risk in multiple case breast cancer families 
with no known genetic mutation (Joo et al. 2018).

Overexpression of DNMT1, DNMT3A and DNMT3B at 
both transcriptional and translational levels which, in turn 
leads to reduced expression of tumor suppressor genes has 
been reported in several malignancies including colorectal, 
lung cancer, glioblastomas, hematological malignancies, 
prostate and breast (De Marzo et al. 1999; Mizuno et al. 
2001; Girault et al. 2003; McCabe et al. 2005; Lin et al. 
2007; Lorente et al. 2009; Gravina et al. 2013; Yu et al. 
2015; San José-Enériz et al. 2017). Enhanced expression 
of DNMT1 in tumor tissues is a suggestive for increased 
aggressiveness of the disease and poor prognosis. Rhee 
et al. (2002) showed that disruption of either DNMT1 or 
DNMT3B resulted in partial methylation and simultane-
ous disruption of DNMT1 and DNMT3B resulted in global 
hypomethylation and reactivation of tumor suppressor genes 
in both in vitro and in vivo colorectal cancer models lead-
ing to reduced proliferation and tumor growth (Rhee et al. 
2002). This indicated that coordinated activity of DNMT1 
and DNMT3B might be essential for neoplastic transforma-
tion. Furthermore, Xiong et al. (2005) demonstrated that 
endometrioid cancers frequently showing hypermethylation 
in the promoters of tumor suppressor genes over expressed 
DNMT1 and DNMT3B and serous endometrial cancers 
developed due to P53 mutation, loss of heterozygosity and 
aneuploidy showed substantial reduction in DNMT1 and 
DNMT3B levels than controls (Xiong et al. 2005). Fur-
thermore, authors also showed that levels of DNMT1 and 
DNMT3B were higher in poorly differentiated tumorigenic 
cell lines such as AN3, KLE, RL-95, HEC1A and HEC1B- 
compared to differentiated non-tumorigenic Ishikawa cell 
lines (Xiong et al. 2005). Approximately, 30% of breast 
cancer patients showed overexpression of DNMT3B and 
3–5% showed overexpression of DNMT1 and DNMT3A. 
Roll et al. (2008) showed that over expression of DNMT3B 
in breast cancer was strongly correlated with total DNMT1 
activity (Roll et al. 2008). Furthermore, studies have shown 
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that global DNA methylation and promoter CpG hyper-
methylation have been reported to occur simultaneously as 
independent mechanisms during breast tumorigenesis and 
at various cancer stages. However, it has been proposed that 
global DNA hypomethylation may be a process to occur at 
the later stages since increased degree of global hypomethyl-
ation of DNA has been noted with increase in lesion progres-
sion. On the other hand, promoter hypermethylation may be 
an early event during breast tumor development (Tan et al. 
2013). Taken together, these data suggested that expression 
of DNMTs is highly regulated in the tissue and regulators of 
DNMT expression and activity might play an important role 
in the dysfunction of DNA methylation machinery.

DNA methylation in breast tumors

Paradoxical DNA methylation changes have been observed 
in breast cancer: regional hypermethylation of specific 
genes and global hypomethylation. Regional hypermeth-
ylation silences genes involved in cell cycle and growth 
regulation leading to uncontrolled growth of cells, whereas 
hypomethylation is a requisite for metastasis (Steeg et al. 
2003). The semiquantitative methylation changes through 
mass spectrometry-based analysis and CpG microarray 
data have shown that regional hypermethylation signatures 
in breast cancer have unique combination of CpG islands 
which is correlated with stage of the disease and is proposed 
for exploring as diagnostic and prognostic marker(s). Sev-
eral crucial genes such as p16, BRCA1, MLH1, HMSH2, 
ESR1, ESR2, RARB, CDH9, PRAC2, TDR10, APC, GSTP1, 
BIN1, BMP6, CST6, DKK3, RASSF1A, HOXD13, SFN, 
PITX2, SFRP1, CD3D, CD6, LAX1, UBE2C, TOPBP1 and 
TIMP3 involved in cell cycle, DNA repair and adhesion 
were hypermethylated in breast tumors (Radpour et al. 2009; 
Győrffy et al. 2016). Teschendroff et al. (2016) analyzed 
397 breast tumor samples including adjacent normal tissue 
and demonstrated that differential methylation marks which 
accounted for 20–30% changes in beta values. Furthermore, 
the authors showed that these epigenetic signatures are het-
erogenous and epigenetic changes in adjacent stromal cells 
were responsible for the aggressiveness of tumor progression 
(Teschendorff et al. 2016).

TCGA-based bioinformatic analysis revealed that expres-
sion levels of DNMT1, 3A and 3B altered in several cancers 
including breast cancers (Fig. 1). Over the years, various 
independent studies have demonstrated significant role of 
DNMT isoforms in breast tumors and hence, promoted us 
to look at changes in expression levels of DNMT isoforms 
across different types of breast cancers, at different stages 
and considering menopause status (Fig. 2a). We mined 
TCGA database using http://ualca​n.path.uab.edu/index​
.html. The expression levels of DNMT1 and DNMT3A 

showed highest expression levels in triple negative breast 
cancer patients, where previous studies have observed hyper-
methylation of tumor suppressor genes. The DNMT1 and 
DNMT3A levels were down regulated in the fourth stage 
and interestingly, correlated with global hypomethylation 
as a marked signature of metastasis. Expression pattern 
of DNMT isoform did not vary significantly among pre-, 
peri- and post-menopause status. However, tumor tissues 
showed significantly increased levels compared to normal 
tissues. DNMT3B transcripts were low compared to that 
of DNMT1 and 3A in different types of breast cancers and 
stages (Fig. 2a). Furthermore, the survival analysis revealed 
that increased levels of DNMT3B significantly correlated 
with the decreased overall survival rate (p < 0.01) in breast 
cancer patients. However, marginal increased levels of 
DNMT1 (p > 0.05) and DNMT3A (p > 0.05) did not sig-
nificantly reflected on survival rate (Fig. 2b). This sug-
gested DNMT isoforms and their target genes might serve 
as good indicators of prognosis in breast cancers and hence 
we looked at status of various transcriptional regulators of 
DNMT isoforms in breast tumors.

Fig. 1   Differential expression of DNMT isoforms in various cancers. 
The gene expression of DNMT1, 3A and 3B based on RNA sequence 
data (transcript per million) for various cancers- breast cancer (nor-
mal, n = 114; tumor, n = 1097), glioblastoma (normal, n = 5; tumor, 
n = 156), thyroid cancer (normal, n = 59; tumor, n = 505), lung can-
cer (normal, n = 59; tumor, n = 515), cervical cancer (normal, n = 3; 
tumor, n = 305), colon cancer (normal, n = 41; tumor, n = 286), endo-
metrial cancer (normal, n = 35; tumor, n = 546), head and neck (nor-
mal, n = 44; tumor, n = 520), liver cancer (normal, n = 50; tumor, 
n = 371), melanoma (normal, n = 1; tumor, n = 104), prostate (normal, 
n = 592; tumor, n = 497), pancreatic (normal, n = 4; tumor, n = 178), 
renal cancer (normal, n = 72; tumor, n = 533), stomach cancer (nor-
mal, n = 34; tumor, n = 415), testis cancer (normal, n = 59; tumor, 
n = 505), were downloaded from TCGA database and heatmap is 
plotted

http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
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Status of regulatory proteins influencing 
expression of DNMT isoforms in breast 
tumor tissues

FANTOM5 consortium includes single molecule CAGE 
profiles across 573 human samples covering major mam-
malian cell steady states. The data contains complete profiles 
of 250 different cancer cell lines and 152 human post-mor-
tem tissue samples. Zenbu genome browser is a web-based 
interactive dynamic CAGE and TSS (transcription start site) 
exploration platform which enables to survey TSS activity 
within defined genomic region with user selectable align-
ment (Severin et al. 2014).

Our Zenbu analysis of DNMT isoforms revealed differ-
ent TSS for single isoforms across the genome with var-
ied activities. The highest and lowest active TSS sites are 
shown in Fig. 3. The TSS activity of DNMT1 (Fig. 3a) and 
DNMT3A (Fig. 3b) were highest in triple negative MDA-
MB-453 among breast tumor cell lines. Activity of DNMT 
3B (Fig. 3c) TSS activity was highest in MCF-7 cell lines 
compared to MDA-MB-453 cell line. However, the TSS 

activity of DNMT3L was found nil (0.0) in both breast can-
cer cell lines (Fig. 3d).

Transcriptional regulation

Our bioinformatic analysis indicated that DNMT isoforms 
interact with several transcription factors including p53, SP1, 
SP3, E2, p300, E47. Transcription factors such as PBX1 and 
PAX6 were found to interact with only DNMT1, NRSF1, 
STAT1 with DNMT3A, XBP1 and HFH1 with DNMT3B 
and SOX5, GFI1, MAX, PPARA with only DNMT3L. How-
ever, certain other transcription factors such as HASF2, 
ATF, MYB, NFKAPPAB, AP4, OLF1, GC, RFX1, IK2, 
STAF, CREB, E47, EGR1, GATA3, ZID, SREBP1, E2, 
EGR2, HNF4, HEN1, ELK1, CAP, PAX5, NRF2, AP2, 
SP1, ARP1, GATA2, E2F, MYOD, AML1, RREB1, P300, 
GATA1, ARNT, NFE2, NFKB, EGR3, AP1, AHR, LYF1, 
P53, NGFIC, NMYC, NF1 and MZF1 shown to be bound to 
all the four DNMT isoforms. The redundancy in binding of 
these transcription factors is represented in Fig. 4.

Fig. 2   DNMTs levels are altered in breast cancer: Gene expres-
sion data from the TCGA was extracted. a The levels of DNMT1, 
3A and 3B in major subclasses of breast cancer- normal (n = 114), 
luminal (n = 566), Her2 positive (n = 37), triple negative (n = 116); 
different stages of cancer- normal (n = 114), stage 1 (n = 183), stage 

2 (n = 615), stage 3 (n = 247), stage 4 (n = 20) and levels in pre- 
(n = 230), peri- (n = 37) and post- (n = 700) menopausal women are 
plotted. b Survival analysis for DNMT1, DNMT3A and DNMT3B 
are carried out and data is shown. Red-High expression level 
(n = 810), Blue-Low expression level (n = 271)
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Fig. 3   DNMT isoforms locus, TSS and TSS activity in breast cancer. 
Images are the screen shot of ZENBU browser showing the locus of 
DNMT1(a), DNMT3A (b), DNMT3B (c) and DNMT3L (d). The 
track UCSC CpG islands shows number and locus of CpG islands 
and FANTOM 5 CAGE Phase 1 and 2 track represents histogram of 

CAGE tag counts across the entire dataset. The last track shows the 
TSS activity in breast carcinoma cell line MCF 7 and breast carci-
noma cell line MDA-MB-453. Purple, antisense strand; Green, sense 
strand

Fig. 4   Redundancy in transcrip-
tion factors (TFs) interaction 
with DNMT isoforms. In vitro 
experiments such as transcrip-
tional factor arrays, CHIP 
assays, recombinant DNMT1, 
3A, 3B and 3L constructions 
have revealed that certain TFs 
can potentially interact with all 
the isoforms or few isoforms or 
only with one specific isoform. 
The TFs binding to − 500 
to + 200 region of DNMT iso-
forms were retrieved from TF-
binding input tool and validated 
using ContraV3 tool and UCSC 
genome browser. Fluorescent 
light green, TFs binding only to 
DNMT1; Purple, TFs binding 
only with DNMT3B; Pink, TFs 
interact with DNMT3B; Olive 
green, TFs bind to DNMT3L 
only; Overlaps regions shows 
those TFs which bind to more 
than one isoform
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Transcriptional activation

SP1‑ and SP3‑mediated transcriptional activation of DNMT 
isoforms

The SP family transcription factors belongs to conserved 
zinc finger DNA-binding domain proteins that recognize 
the GC- rich box (GGG​CGG​G) and GT rich box (GGT​
GTG​GGG). These factors are important for the expression 
of different housekeeping genes and genes which are defi-
cient of TATA- or CAAT-boxes in their proximal promoters 
(Hagen et al. 1992). Several SP proteins have been identi-
fied (SP1–SP8) and among these SP1 and SP3 are ubiqui-
tously expressed. SP1 is a transcription activator and SP3 
acts as either activator or repressor depending upon the con-
text of either promoter region and cell type (Bouwman and 
Philipsen 2002). Earlier studies have shown that stoichio-
metric ratio of SP1 and p53 is required for physical inter-
action with regulatory element for DNMT1 transcription 
(Lin et al. 2010b). Total of three putative SP1-binding sites 
identified on DNMT1 promoter region and one among these 
binding sites (+ 7 to  + 20) being proximal to binding site of 
p53 (+ 30 to  + 56). At low levels, SP1 interacts with p53 
and represses DNMT1 expression and at higher levels, SP1 
targets p53 to proteasomal degradation via MDM2-mediated 
ubiquitination and directly binds to DNMT1 promoter to 
initiate transcription (Lin et al. 2010b). The cis-element in 
DNMT1 promoter located between -147 to -161 was shown 
activated by SP1 and SP3 independently of each other and 
p300 was co-activator for SP3-mediated activation (Kishi-
kawa et al. 2002). Studies have also shown that SP1 and 
SP3 also acts as the transcriptional activators of DNMT3A 
and DNMT3B. Minimal promoter regions of both DNMT3A 
and DNMT3B contain SP1-binding site at − 99 to − 87 and 
− 100 to − 92 respectively. Overexpression of these SP pro-
teins and site directed mutagenesis in the binding sites indi-
cated that DNMT3A and DNMT3B promoter activities are 
largely dependent on SP1 and SP3-binding sites (Jinawath 
et al. 2005). TCGA analysis showed that expression of SP1 
transcripts were significantly reduced in breast tumor tissues 
and SP3 RNA levels were significantly decreased in patients 
with stage IV disease indicating aberrant expression of SP1 
and SP3 might be responsible for DNA methylation changes 
during breast tumorigenesis (Fig. 5).

Involvement of Ras/AP‑1 pathway in regulation of DNMT 
isoforms

Ras superfamily GTPases are the key regulators of cell 
proliferation, contraction, intracellular asymmetry, cell 
shape, apoptosis, single and coordinated cell migration. 
Elevation of Ras-signal has been shown to play an impor-
tant role in epigenetic silencing of several genes in human 

tumors (Patra 2008). DNMT1 promoter harbors three 
c-Jun dependent enhancer regions downstream to P1 and 
upstream to P2 and P4 and number of AP-1-binding sites 
in the promoter region which explains the control of Ras 
signaling pathway on DNMT1 regulation (MacLeod et al. 
1995). Aberrant expression of Ras downstream effectors 
in breast cancer are documented and has been explored as 
therapeutic target. Pakneshan et al (2005) showed that down-
regulation of uPA (urokinase type plasminogen activator) in 
highly metastatic breast cancer cell line MDA-MB-231 via 
up regulation of Ras-mediated DNMT1 leading to uncon-
trolled cell growth (Pakneshan et al. 2005). Furthermore, 
authors showed that the promoter methylation of uPA was 
reversed in MDA-MB-231 cell lines upon the treatment 
of 5′-azacytidine (Pakneshan et al. 2005). Elangovan et al 
(2013) demonstrated that SLC5A8 a putative tumor suppres-
sor gene is inactivated due to promoter hypermethylation 
via HRas induced expression of DNMT1 leading to tumo-
rigenesis and lung metastasis in murine mammary tumors 
(Elangovan et al. 2013). Chang et al (2006) demonstrated 
that induction of Ha-Ras increases promoter methylation of 
RECK (Reversion inducing cysteine rich protein with Kazal 
motifs) which was reversed by the addition of 5′-azacytidine 
and DNMT3B siRNA indicating Ras induced DNMT3B is 
primarily responsible for the promoter methylation of RECK 
gene (Chang et al. 2006). Our TCGA analysis showed that 
21 missense mutations in RAS gene and 3 missense and 9 
truncated mutations in c-JUN. Interestingly, TCGA analysis 
showed upregulation of RAS in breast tumor tissues and 
consistency in stage-wise increase was found (Fig. 5).

STAT3‑mediated regulation of DNMT isoforms

Signal transducer and activator of transcription 3 (STAT3) 
belongs to STAT family of transcription factor which upon 
phosphorylation by the receptor associated tyrosine kinases 
form homo or heterodimers and translocate into nucleus, 
where these transcription factors modulate cell prolifera-
tion, apoptosis, cell motility, mammary gland involution 
and angiogenesis (Bromberg and Darnell 2000; Yu et al. 
2009). Activation of STAT3 is regulated by phosphoryla-
tion at serine and tyrosine residues and post-translationally 
by the demethylation at K140 and acetylation at K685 (Kang 
et al. 2015). Constitutive persistent activation of STAT3 has 
been implicated in the pathogenesis of whole spectrum of 
malignancies including that of breast tumors (Burke et al. 
2001). STAT3 also been shown to increase methylation of 
CpG islands in genes including PTPN6, ESR1 and SOCS3 
via upregulating DNMT1 expression binding to the pro-
moter region (Zhang et al. 2005; Thomas 2012; Huang et al. 
2016). Lee et al. (2012) showed that acetylation of STAT3 is 
crucial for promoter methylation of tumor suppressor genes 
and treatment with resveratrol resulted in demethylation in 
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breast tumor and melanoma cell lines (Lee et al. 2012). This 
indicated, role of resveratrol as epigenetic modifier in breast 
tumors. Elevated levels of acetylation of STAT3 at K685 
is known in subjects with melanoma, colon carcinoma and 
triple negative breast cancer compared to respective normal 
tissues. STAT3 K685 acetylation led to hypermethylation 

and silenced several genes including CDKN2, STAT1 and 
DLEC1 and authors further showed that promoter methyla-
tion are not as a consequence of STAT3 phosphorylation at 
Y705 but due to acetylation (Lee et al. 2012; Thomas 2012). 
In addition, chromatin immunoprecipitation confirmed 
the binding of acetylated STAT3 to DNMT1 promoter as 

Fig. 5   Transcriptional regulation of DNMT isoforms. Regulation of 
transcriptional activation and repression of DNMT1, DNMT3A and 
DNMT3B by different pathways and alteration of these factors in 
different stages of breast cancer-normal (n = 114), stage 1 (n = 183), 
stage 2 (n = 615), stage 3 (n = 247), stage 4 (n = 20), the mechanism 
of deregulation of these factors are shown. SP1 specificity protein 1, 

SP3 specificity protein, K-RAS Kristen rat sarcoma viral oncoprotein, 
AP1 Activator protein 1, STAT3 signal transducer and activator of 
transcription, p300 E1A-binding protein p300, MDM2 Mouse double 
minute 2, p53 Tumor protein p53, TET1 ten-eleven translocation 1, 
TET2 10–11 translocation 2, RB, Retinoblastoma susceptibility pro-
tein, E2F PRB-binding protein E2F, FOXO3A Forkhead box O3
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a consequence of increased p300 levels and subsequent 
interaction with DNMT1 in malignant T lymphocytes and 
breast cancer cell lines (Macaluso et al. 2003; Zhang et al. 
2005). TCGA data analysis revealed the significant aberrant 
expression of both STAT3 and p300 in breast tumor tissues 
indicating their crucial role in epigenetic changes during 
tumorigenesis and metastasis (Fig. 5).

MDM2‑mediated regulation of DNMT isoforms

MDM2 is a nuclear localized E3 ubiquitin ligase and pro-
motes accelerated cell growth and tumor formation upon 
inducing proteasomal degradation of tumor suppressor pro-
teins such as TP53 and RB (Michael and Oren 2003; Sdek 
et al. 2005). Overexpression of MDM2 has been observed 
in several cancer types including breast tumors. Distinct 
promoter usage and alternative splicing of MDM2 has been 
reported in breast cancer cell lines and breast tumor tissues 
leading to aberrant expression of MDM2 disrupting TP53 
pathway in breast tumors (Lukas et al. 2001; Okumura et al. 
2002). TCGA analysis also confirmed aberrant expression of 
MDM2 and p53 in breast tumor tissues indicating their role 
in breast tumor initiation and progression (Fig. 5).

Transcriptional repression

Role of TP53 in regulating DNMT isoforms

TP53 gene encodes for the tumor suppressor protein con-
taining DNA binding, oligomerization and transcriptional 
activation domains. In response to cellular stress, TP53 regu-
lates expression of target genes thereby inducing cell cycle 
arrest, programmed cell death, senescence, DNA repair and 
metabolic changes (Hager and Gu 2014; Kang et al. 2015; 
Kruiswijk et al. 2015). Mutations in TP53 gene are asso-
ciated with variety of malignancies including Li-Fraumeni 
syndrome (Petitjean et al. 2007), colon cancer (Munro et al. 
2005), lung cancer (Peifer et al. 2012), esophageal cancer 
(Makino et al. 2010), ovarian cancer (Ahmed et al. 2010), 
breast cancer (Olivier et al. 2006) and are attributed to 
aggressiveness of the disease (Schmitt et al. 2002). Miller 
et al. (2005) have shown that TP53 expression signature is 
consistently associated with patient survival and is a prog-
nostic and predictive indicator in breast cancer (Miller et al. 
2005). The loss of TP53 gene is often through large dele-
tions, frame shift mutations, however, many mutations in 
the tumor cells are found to be single nucleotide missense 
variants leading to dominant negative phenotype of variable 
degree. Majority of these mutations are localized to DNA-
binding domain resulting in loss of transcriptional function 
of TP53 (Miller et al. 2005). TP53-binding sites have been 
identified in the 5′ flanking region and exon-1 (− 19 to + 317) 
of promoter region of the human DNMT1 gene. Several 

p53-binding regions were also identified in the 5′ region of 
the mouse DNMT1 (Peterson et al. 2003; Lin et al. 2010b). 
In MCF-7 cells overexpression of TP53 showed reduced lev-
els of both SP1 and DNMT1. Coimmunoprecipitation assay 
showed that TP53 does not bind directly to SP1 and instead 
promoter activity was reduced with mutant SP1-binding 
site in luciferase reporter assays indicating that DNMT1 
expression is regulated by TP53 via SP1 in breast tumor 
cells (Zhang et al. 2016). Furthermore, in MDA-MB-468, 
triple negative basal type breast cancer cell line mutant TP53 
was shown to stabilize the DNMT1-MeCP2-HDAC1 com-
plex leading to suppression of ESR1, survivin and cdc25c 
gene expression via hypermethylation (Estève et al. 2005; 
Arabsolghar et al. 2013). Under physiological conditions, 
p53 repressed transcription of both DNMT3A and DNMT3B 
while inducing TET1 and TET2 which are crucial for the 
conversion of 5-methyl cytosine to 5-methyl hydroxy cyto-
sine (Laptenko and Prives 2017). In addition, Wang et al. 
(2005) showed that interaction of DNMT3A with TP53 is 
crucial for the stability of DNMT3A and transcriptional sup-
pression of TP53-mediated gene expression in MCF-7 cell 
lines (Wang et al. 2005). TCGA data analysis revealed that 
deregulation in TP53 expression is significantly correlated 
with breast cancer stages which may be due to mutations 
in TP53 gene and/or due to the overexpression of MDM2 
which targets TP53 to proteasomal degradation. Mutation 
analysis for TP53 in TCGA showed 684 missense mutations, 
436 truncated mutations, 19 frame shift mutations and 2 
fusions have been reported in breast cancer patients (Fig. 5).

RB‑mediated regulation of DNMT isoforms

RB gene encodes for the retinoblastoma (RB) protein which 
negatively regulates cell cycle progression (Weinberg 1995). 
The protein maintains the overall integrity of the chroma-
tin structure through the interaction with BRG1 SUV39H1 
(Shao and Robbins 1995), SWI/SNF (Zhang et al. 2000) and 
HDAC1 (Luo et al. 1998). The active dephosphorylated form 
of the protein binds directly to E2F1 promoter region and 
acts as the transcriptional repression of E2F1 targeted genes 
and when phosphorylated by CDK3/cyclin-C it promotes 
G0-G1 transition and progression of the cell cycle (Ren 
and Rollins 2004). Robertson et al. (2000) demonstrated 
that DNMT1 forms the complex with RB/E2F/HDAC1 and 
represses transcription of E2F responsive promoters in both 
in vitro and in vivo using calf brain (Robertson et al. 2000). 
DNMT1 promoters in prostate epithelial cell line of both 
mouse and human harbors functional E2F-binding sites 
which is crucial for the regulation of RB/E2F (McCabe et al. 
2005). Disruption of p16INK4A, maintain RB in its active 
form, transcription was associated with aberrant CpG DNA 
methylation in breast cancer cell lines and primary breast 
tumors (Herman et al. 1995). Macaluso et al. (2003) showed 
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that pRb2/p130-E2F4/5-HDAC1-DNMT1-SUV39H1 mul-
timeric complex suppressed ERα expression by promoter 
hypermethylation in breast cancer cell lines (Macaluso et al. 
2003). In addition, the same laboratory demonstrated that 
5′-Aza-2′-deoxycytidine reorganization of pRB2/DNMT1 
multimeric complex on ERα gene promoter and modulated 
its expression in breast cancer cell lines (Macaluso et al. 
2007). These data together suggests that RB pathway is cru-
cial for the regulation of DNMT1-mediated gene promoter 
methylation.

The promoter region of DNMT3A harbors E2F1-binding 
sites and was transcriptionally repressed by RB/E2F com-
plex formed at these sites. Tang et al. (2012) reported that 
RB depletion resulted in overexpression of MDM2 leading 
to transcriptional activation of DNMT3A which subse-
quently reduced expression of downstream tumor suppres-
sor genes via promoter hypermethylation (Tang et al. 2012). 
TCGA data analysis revealed that significant alteration in the 
transcript expression of both RB and E2F can be attributed 
to mutations in breast tumors- 20 missense mutations, 61 
truncated and 2 fusion of RB; 12 missense and 7 truncated 
mutations in E2F1 (Fig. 5).

FOXO3A‑mediated regulation of DNMT isoforms

Forkhead Box O3A (FOXO3A) belongs to forkhead fam-
ily of transcription factors characterized by the conserved 
distinct DNA-binding domain ‘forkhead’ (Benayoun et al. 
2011). FOXO family proteins have been considered as tumor 
suppressors due to their inhibitory action on cell prolifera-
tion and inducers of apoptosis (Wang et al. 2014). Ectopic 
overexpression of FOXO3A upregulated Bcl2 interacting 
mediator of cell death (BIM) resulted in impaired tumor 
progression in both in vitro and xenograft models of breast 
tumors (Zou et al. 2008; Smit et al. 2015). In paclitaxel 
sensitive breast cancer cell lines, paclitaxel reduced tumor 
cell survival and induced apoptosis by upregulating BIM 
via FOXO3A (Sunters et al. 2006). Human primary breast 
tumors negative for phospho-Akt showed FOXO3A in 
the cytoplasm and high levels of IκB kinase β-modulator 
of NFκB pro inflammatory pathway. Over expression of 
FOXO3A reversed the IκB kinase β dependent stimula-
tion of cell cycle progression, proliferation and tumorigen-
esis in mice (Hu et al. 2004). Yang et al (2014) showed 
that FOXO3A binds to promoter region (+ 163- + 173) 
of DNMT3B and negatively regulates promoter activ-
ity. FOXO3A nuclear localization reduced the DNMT3B 
expression by establishing repressed chromatin structure, 
whereas knockdown of FOXO3A resulted in open chromatin 
structure and increased DNMT3B mRNA and protein lev-
els (Yang et al. 2014). TCGA analysis showed significantly 
reduced mRNA expression of FOXO3A in breast tumors 
which was correlated with stages. Three missense mutations 

and three fusions are reported in FOXO3A gene according to 
TCGA-BRCA database (Fig. 5).

Other transcription factors regulating DNMT isoforms

Several other transcription factors have been reported regu-
lating expression of DNMT isoforms in both physiologi-
cal and pathological conditions. Homeobox B3 induced 
DNMT3B overexpression resulted in the epigenetic silenc-
ing of tumor suppressor gene RASSF1A in MDA-MB-231 
cell lines (Palakurthy et al. 2009). The t(8;21) translocation 
in acute myeloid leukemia induced the formation of RUNX1 
(runt-related transcription factor 1)-MTG8 which was shown 
to interact directly or indirectly with DNMT1 and there by 
silencing target gene expression (Liu et al. 2005). In breast 
cancer cells knockdown of RUNX1 resulted in aberrant 
expression genes related to chromatin organization- NEAT1, 
MALAT1 and ECM components including fibronectin 1 and 
fibrillin 2 (Barutcu et al. 2016). In addition, specificity in the 
expression of transcription factors confined to specific tis-
sue and/or cell type may limit their role in regulating DNA 
methylation to specific tissues and/or cell types.

The transcription factor screening using TF-binding input 
showed DNMT isoforms shows redundancy for transcrip-
tion factors. This indicates the intricate regulation of DNMT 
isoforms expression (Fig. 4).

Epigenetic regulation of DNMT isoforms

Next, we screened for CpG density on promoters of genes 
encoding human DNMT isoforms. Our bioinformatic analy-
sis and literature survey indicates that DNMT isoforms con-
tain CpG islands (Fig. 3). However, the complete regulation 
of DNMT isoforms expression via their CpG sequence meth-
ylation is not well understood.

Post‑transcriptional regulation of DNMT 
isoforms

miRNA‑mediated regulation of DNMT isoforms

Micro RNAs (miRNAs) induce translational repression, 
deadenylation or degradation by imperfectly aligning with 
the 3′ UTR region of target mRNAs (Filipowicz et al. 2008). 
Dysregulation of miRNA expression have been reported in 
several tumors including lung, bladder, pancreatic, liver, 
esophageal, colon, prostate, ovarian and breast (Lu et al. 
2005; Melo and Esteller 2011; Ferreira and Esteller 2018). 
Recent studies have indicated that specific miRNAs regu-
late DNA methylation machinery and are linked to aberrant 
methylation pattern in altering cancer epigenome (Fig. 6). 
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The expression of miR-29a and miR-29b were found to tar-
get DNMT3A and DNMT3B in in vitro and in vivo mod-
els of breast cancer (Sandhu et al. 2012). Knock down and 
re-expression of miRNAs showed that miR-26b, miR-29a, 
miR-29b, miR-29c and miR-148b down regulate DNMT3B 
in breast cancer cells (Sandhu et al. 2012). The miR-143 was 
shown to directly target DNMT3A mRNA and downregulate 
protein expression in colorectal cancers (Ng et al. 2009) and 
breast (Ng et al. 2014). Additionally, miR-194 was dem-
onstrated to regulate DNMT3A expression pattern in drug 
resistant breast cancer cells and DNMT3A was shown to be 
the direct target of miR-194 (Le et al. 2010).

Long noncoding RNA‑mediated regulation of DNMT 
isoforms

Long noncoding RNA (lncRNA) is a pivotal factor in regu-
lating chromatin structure, chromosome looping, nucleo-
some positioning, DNA methylation and histone modifi-
cations (Böhmdorfer and Wierzbicki 2015; Ferreira and 
Esteller 2018). Numerous studies have demonstrated that 
lncRNA breast cancer growth (Shen et al. 2015), prolifera-
tion, invasion (Shi et al. 2015), apoptosis (Tuo et al. 2015) 
and chemotherapeutic resistance (Li et al. 2015). Further-
more, Wu et al. (2018) demonstrated that linc00152 pro-
motes tumorigenesis of triple negative breast cancer by tar-
geting DNMT1, DNMT3A and DNMT3B, which resulted 

in modulation of BRCA1 and PTEN expression both in vitro 
and in vivo. In addition, authors showed that knockdown of 
lnc00152 in MDA-MB-231 cells resulted in down regulation 
of DNMT1, DNMT3A and DNMT3B in association with 
up regulation of BRCA1 and PTEN leading to decreased 
proliferation, invasion and enhanced apoptosis of these cells 
(Wu et al. 2018).

piRNA‑mediated regulation

Aberrant expression of piRNAs and piwi family proteins 
is associated with hall marks of cancer and have shown 
promise as novel diagnostic and prognostic biomarkers in 
several malignancies such as lung squamous cell carci-
noma, gastric carcinoma, colon adenocarcinoma and breast 
cancers (Cheng et al. 2011; Mei et al. 2013). Mouse germ 
cells that were deficient in Piwi subfamily members Mili 
or Miwi-2 showed defective de novo methylation of trans-
posons (Kuramochi-Miyagawa et al. 2008). Genome wide 
methylation microarray analysis using HumanMethylation 
450 array platform showed MCF cell lines transfected with 
piRNA mimics showed 117 genes were differentially meth-
ylated. Authors validated that mRNA expression of 6 genes 
-CDK4, FAM150A, KDM3A, LHX5, SYCE1 and VAMP3- 
were significantly associated with the expression of piRNA 
(Fu et al. 2014). The direct interaction between piRNA or 

Fig. 6   Post-transcriptional 
regulation of human DNA 
methyl transferases. a miRNAs 
and HuR protein that target 
DNMT isoforms are indicated. 
miRNAs (micro RNAs) bind to 
either 3′ UTR or coding region 
destabilizes the mRNA and 
subsequently protein levels are 
reduced. HuR (Hu-antigen R) 
binds to 3′ UTR od DNMT3B 
and increases its stability. 
DNMT DNA methyl transferase, 
miRNA microRNA, mRNA mes-
senger RNA, UTR​ untranslated 
region. b The expression levels 
of these miRNAs in different 
stages- normal (n = 76), stage 
1 (n = 135), stage 2 (n = 427), 
stage 3 (n = 171), stage 4 (n = 8) 
of breast cancer are shown
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Piwi family proteins with DNMT3A and DNMT3B have not 
been explored so far.

HuR (Hu‑Antigen R)‑mediated post‑transcriptional 
stabilization of DNMT transcripts

HuR protein is a member of embryonic vision family 
(ELAV) and possess three RNA recognition motifs rich 
in AU- and U-rich sequences and binds to target mRNAs 
with higher specificity and affinity. HuR protein is reported 
to alter the stability of mRNA or translation or both there 
by regulating target gene expression (Kuwano et al. 2008). 
HuR has been shown to play major role in cell proliferation, 
immune response, stress response, senescence and tumo-
rigenesis post-transcriptionally by influencing the stabili-
zation of mRNAs including those of cyclin A, cyclin B1, 
cyclin D1, c-fos, c-myc, TNF- α, Mcl1, cyclooxygenase-2, 
β-catenin, p21, p27, p53, VEGF, iNOS, GM-CSF, SIRT1, 
uPA and uPAR (Levy et al. 1998; Wang et al. 2000b, a; 
Brennan and Steitz 2001; Ming et al. 2001; Chen et al. 2002; 
Sengupta et al. 2003; Tran et al. 2003; Lal et al. 2004; Song 
et al. 2005; Abdelmohsen et al. 2007, 2008). Bioinformatic 
analysis showed that DNMT3B mRNA 3′ UTR region has 
a consensus motif HuR and is one of the putative target of 
HuR. López de Silanes et al. (2009) experimentally showed 
that HuR bind to DNMT3B mRNA and enhance its stabil-
ity leading to increased steady state levels of DNMT3B. 
Furthermore, the authors demonstrated that cisplatin treat-
ment lower DNMT3B levels via inducing the dissociation 
of DNMT3B mRNA from HuR followed by instability of 
mRNA in colorectal carcinoma cell lines (López de Silanes 
et al. 2009). Recently, CRISPR/Cas9-mediated deletion 
of RMST (rhabdomyosarcoma 2-associated transcript) in 
MCF cell lines showed that RMST promotes HuR binding 
to DNMT3B 3′ UTR region increasing stability of DNMT3B 
and its upregulation (Peng et al. 2020).

Post‑translational regulation of DNMT 
isoforms

Post-translational modifications (PTMs) including phospho-
rylation, acetylation, SUMOylation, glycosylation, ubiquit-
ination, nitrosylation, sulfation, butyrylation, propionylation, 
ADP-ribosylation, methylation and citrullination of proteins 
play significant role in regulating gene expression, protein 
activity and function (Reinders and Sickmann 2007). Bio-
chemical and molecular biology studies have confirmed that 
stability, catalytic properties and functions of DNMTs are 
also regulated by phosphorylation, acetylation, methylation, 
SUMOylation and ubiquitination (Fig. 7).

Protein phosphorylation

Following the initial identification of insect DNMT1 phos-
phorylation at S515 (Glickman et al. 1997), enumerable phos-
phorylated serine and threonine residues are identified in 
purified DNMT1 from human cells by targeted high-through-
put proteomic approaches. More than sixty phosphorylation 
sites have been mapped on human and mouse DNMT1 pro-
tein (https​://www.phosp​hosit​e.org) albeit only few of them 
have been functionally characterized. The phosphorylated 
S515 located within the amino terminal of replication foci tar-
geting domain is require to preserve the interaction between 
DNMT1 N-terminal and catalytic domains that is crucial 
for the enzyme activity (Goyal et al. 2007). Casein kinase 1 
delta/epsilon reduces DNA-binding affinity of DNMT1 by 
phosphorylating S146 in the N-terminal regulatory domain 
(Sugiyama et al. 2010). In mouse and human glial cells, 
Akt and PKC phosphorylate DNMT1 at S127/S143 and S143 
respectively and there by control the interaction of DNMT1 
with PCNA and UHRF1 (Hervouet et al. 2010). Phospho-
rylation of S143 residue by Akt1 stabilizes the DNMT1 pro-
tein in a cell cycle dependent manner (Estève et al. 2011). 
Previous studies have shown that Akt inactivates GSK3β 
(Ser/Thr kinase) resulting in recruitment of E3-ubiquitin 
ligase βTrCp followed by degradation of downstream target 
proteins (Sharma et al. 2002; Taketo 2004). Lin et al (2010a, 
b) demonstrated that GSK3β phosphorylates DNMT1 at S410 
and S414 and induce DNMT1 binding to βTrCp leading to its 
proteasomal degradation (Lin et al. 2010a). In addition, PKC 
α, βI, βII, δ, γ, η, ζ and μ phosphorylates DNMT1 and phos-
phorylation of DNMT1 in its N-terminal domain by PKCζ 
reduces its methyltransferase activity in vitro. Furthermore, 
phosphorylation of DNMT1 by CDK 1, 2 and 5 at S154 is 
shown to enhance the protein stability and activity (Hervouet 
et al. 2010; Lavoie et al. 2011; Lavoie and St-Pierre 2011). 
Phosphorylation of either single or multiple residues of both 
serine and threonine reduces the activity of DNMT1 which 
is shown involved in the regulation of global DNA methyla-
tion changes and tumorigenesis in HEK-293 and HeLa cell 
lines (Lavoie et al. 2011). Using cell lines and extensive bio-
informatic analysis, Esteve et al. (2016) showed that 14-3-3 
is a reader protein of DNMT1 S143 and interact with phos-
phorylated DNMT1 inducing aberrant DNA methylation and 
alter gene expression leading to tumor progression and cell 
invasion in breast cancer (Estève et al. 2016). Phosphoryla-
tion of DNMT3 family proteins and their functions are not 
well understood. However, experimental evidences suggests 
that Casein kinase 2 phosphorylating DNMT3A in both mice 
and humans (Deplus et al. 2014; Richter et al. 2019). This 
phosphorylation guides DNMT3A to specific sequence of 
the genome and controls subnuclear partitioning (Deplus 
et al. 2014). Sacco et al (2016) showed that phosphorylation 
of DNMT3A at S7 site is associated with glucose response 

https://www.phosphosite.org
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and regulates target gene expression in human pancreatic 
beta and HEK 293 cell lines (Sacco et al. 2016).

SUMOylation

Small ubiquitin like modifier (SUMO) proteins are capable 
of covalently and reversibly attached to other proteins in 

cells. SUMOylation has emerged as critical post-transla-
tional mechanism regulating protein stability, sub cellular 
localization, enzyme activity and protein–protein inter-
actions (Verger et al. 2003). DNMT1 possess more than 
ten putative SUMOylation sites throughout its primary 
amino acid sequences (Xue et al. 2006). Using in vitro 
wild type/mutant cell lines and in vivo knockout models, 

Fig. 7   Post-translational regula-
tion of human DNA methyl 
transferases. Summary of cova-
lent post-translational modifica-
tions of DNMT1, DNMT3A 
and DNMT3B are shown along 
with the position, amino acid 
modified and biological sig-
nificance. These modifications 
include phosphorylation (P), 
SUMOylation (S), methylation 
(M), acetylation (A) and ubiq-
uitination (Ub). The proteins 
mediate these modifications, if 
any, are indicated. DNMT DNA 
methyltransferase, SUMO small 
ubiquitin like modifier, Set7/9 
SET domain containing protein 
7/9; Set8 SET domain contain-
ing protein 8, LSD1 Lysine 
specific demethylase 1, Tip60 
Tat interacting protein 60 kDa; 
HDAC histone deacetylase, 
SIRT1 Sirtuin 1, HAUSP herpes 
virus associated ubiquitin spe-
cific protease
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Lee and Muller (2009) demonstrated that SUMOylation of 
DNMT1 is mediated by SUMO1 and is crucial for methyl 
transferase activity of DNMT1 (Lee and Muller 2009). 
Recently, Borgermann et al. (2019) showed that 5-Aza-2′-
deoxycytidine treatment targets DNMT1-DNA crosslinks by 
enhancing SUMOylation of DNMT1 in Human U2OS cell 
lines. Authors, further showed that inhibition of SUMOyla-
tion by the knockdown of SUMO E2 enzyme UBC9 strongly 
impaired the DNMT1-DNA adducts and DNA replication 
(Borgermann et al. 2019). This indicated that SUMOylation 
of DNMT1 plays critical in the resolution of DNMT1-DNA 
adducts post-replicatively. Although the complete mecha-
nism and enzyme which aid in SUMOylation of DNMT3A 
and DNMT3B are unidentified. However, preliminary 
data suggest that SUMOylation of DNMT3A transforms 
its ability to interact with HDAC (Kang et al. 2001a; Ling 
et al. 2004). Furthermore, Seo et al. (2019) demonstrated 
that mutations at R882 residues in acute myeloid leukemia 
patients resulted in enhanced SUMOylation by SUMO1 pro-
tein leading to weak complex formation between DNMT3A 
and HDAC. This weaker association of DNMT3A-HDAC 
complex induces acetylation of H3K27 and overexpression 
of PD-L1 attributing to escape from immune surveillance 
and drug resistance (Seo et al. 2019).

Methylation, acetylation and ubiquitination 
of DNMT isoforms

Lysine methylation is another functionally important reversi-
ble post-translational modification of DNMTs. DNMT1 con-
tains over 120 lysine residues and is methylated at multiple 
sites (Wang et al. 2009). Wang et al. (2009) showed that in 
DNMT1 K1096 (K1094 in humans) methylation is regulated by 
Set7/9 and LSD1 (Lysine specific demethylase 1) and affects 
global DNA methylation in murine embryonic stem cells 
(Wang et al. 2009). Parallel research by Esteve et al. (2009), 
showed that in humans Set7 methylate K142 of DNMT1 and 
knockdown of Set7 led to increased DNMT1 levels (Estève 
et al. 2009). Studies have shown that methylation at K142 
is inhibited by Akt1-mediated phosphorylation of DNMT1 
at S143 and the methylation of DNMT1 at K142 is recog-
nized by CRL4 ubiquitin E3 ligase to target DNMT1 for 
ubiquitin dependent proteasomal degradation (Estève et al. 
2011; Leng et al. 2018). Set8 is also found to regulate DNA 
methylation targeting methylated DNMT1 and methylated 
UHRF1 to proteasomal degradation which is an opposite 
action to LSD1-mediated DNMT1 protection (Zhang et al. 
2019). Methylation-dependent DNMT1 proteolysis is tightly 
coordinated with cell cycle regulation in that activity of 
DNMT1 being highest in S phase. During S phase of the 
cell cycle, DNMT1 was protected by LSD1 and PHF20L1 
via inhibiting the binding of L3MBTL3 to DNMT1. Upon 
dissociation from PHF20L1 and reduced LSD1, L3MBTL3 

is known to bind to methylated DNMT1 leading to proteoly-
sis of DNMT1 in late S and G2 phases (Leng et al. 2018). 
Furthermore, L3MBTL3- CRL4 complex is also shown to 
induce proteolysis of methylated E2F1. DNMT1 along with 
E2F1 forms complex with HDAC1 and RB53 to regulate 
target gene expression and degradation of both methylated 
E2F1 and methylated DNMT1 by L3MBTL3- CRL4 com-
plex indicate their highly controlled regulation during cell 
cycle (Leng et al. 2018; Levy 2019).

G9a (also known as euchromatin histone methyl 
transferase)-mediated demethylation of DNMT3A at K47 
is demonstrated to be recognized by the chromodomain of 
methyl-H3K9-binding protein MPP8 (M phase phospho 
protein) forming DNMT3A/H3K9/MPP8 complex which 
represses de novo methylation. G9a is shown to methylate 
DNMT1 at K70 but the functional consequences are yet to 
be determined (Chang et al. 2011).

Agoston et al (2005) demonstrated that deletion of N-ter-
minal 120 amino acids mapped to destruction domain of 
DNMT1, which is responsible for proper ubiquitination, 
results in increased protein stability and genomic cytosine 
hypermethylation in normal human breast epithelial cells 
(Agoston et al. 2005). Authors further showed that this 
destruction domain is dysfunctional in MCF-7 breast cancer 
cell lines compared to normal human breast epithelial cells 
and is responsible for differential expression of DNMT1 
among these cell lines (Agoston et al. 2005). Furthermore, 
Zhou et al (2008) showed that deletion of 120 amino acids 
of N-terminal region inhibits LBH589 (clinically relevant 
HDAC inhibitor)-induced DNMT1 ubiquitination in MDA-
MB-231 cells, indicating that impairment in regular ubiqui-
tination leads to genomic hypermethylation in breast cancer 
cell lines (Zhou et al. 2008).

DNMT isoforms have been shown to destabilize by acet-
ylation. An acetyltransferase Tip60 along with RGS6 and 
DAMP1 are shown to promote acetylation of DNMT1 at 
K173, K1113, K1115, K1117 and subsequently leads to ubiq-
uitination by E3 ligase UHRF1 followed by proteasomal 
degradation during late S phase. Conversely, HAUSP (her-
pesvirus-associated ubiquitin specific protease) and HDAC1 
protected DNMT1 from proteolysis via deubiquitination 
and deacetylation respectively (Du et al. 2010). In contrast, 
SIRT1 is shown to physically interact with DNMT1 and 
deacetylates DNMT1 both in vitro and in vivo. Deacetyla-
tion at K1349 and K1415 residues of DNMT1 by SIRT1 has 
been shown to enhance the methyl transferase activity of 
enzyme in breast cancer cell lines (Peng et al. 2011). Using 
the extensive proteomics analysis 12 new acetylated lysine 
residues have been identified in DNMT1 both in vitro and 
in vivo and the deacetylation impaired methylase activity 
and transcription repression (Peng et al. 2011; Kar et al. 
2012).
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Regulation of enzyme activity of DNMT isoforms

Auto inhibitory mechanism and allosteric regulation

The autoinhibitory mechanism for methylation has been 
potential target for novel small molecule inhibitors for can-
cer therapy. Several SAM and DNA competitors including 
RG108 (Siedlecki et al. 2006; Asgatay et al. 2014), RG119-1 
(Rondelet et  al. 2017), SGI-1027 (Datta et  al. 2009), 
CM-272 (San José-Enériz et al. 2017), BIX-01924 (Rotili 
et al. 2014), DC-05 and DC-517 (Chen et al. 2014) have 
been shown to acts as demethylating agents and antiprolif-
erative in various human malignancies. Recently, Muvarak 
et al. (2016) showed that Poly (ADP-ribose) polymerase 
inhibitors enhanced binding of PARP1 and DNMT1 at the 
DNA damage site inducing cytotoxic effects in the breast 
cancer xenograft model (Muvarak et al. 2016). Furthermore, 
using molecular simulation, Xie et al. (2019) demonstrated 
that SFG (DNMT1 and DNMT3A inhibitor), DG-05 (selec-
tive inhibitor of DNMT1) and GSKex1 (selective inhibitor 
of DNMT3A) inhibitors binds specifically to SAM-binding 
pocket in particular Val1580/Trp893, Asn1578/Arg891adn 
Met1169/Val1665 of DNMT1/DNMT3A via van der 
Waals interaction and inhibit the methylation (Xie et al. 
2019). Recently, Krishna et al. (2017) demonstrated that 
small molecule DNMT1 inhibitors JFD01881, RJC02836, 
RJC02837 and 5-azacytidine binds to Cys1226 and Glu1266 
within SAM-binding pocket and inhibit methylation activ-
ity. Authors further showed that these compounds display 
significant in vitro anti-proliferative activity using MDA-
MB-231 breast cancer cell lines (Krishna et al. 2017).

Regulation of DNMTs by interacting factors

Over the years, mounting evidences have reported that 
the large variety of proteins interact with DNMT isoforms 
including methyltransferases (both DNA and histone), 
DNA/chromatin-binding proteins, chromatin modifiers, 
tumor suppressors, transcriptional activators and cell cycle 
regulators (Hervouet et al. 2018). These interactions subse-
quently results in stimulation or inhibition of enzyme activ-
ity, increase or decrease the efficiency of the enzyme, guide 
DNMT isoforms to methylation sites, enable dissociation 
from target DNA or specific methylation patterns mainte-
nance. The discrepancy between the high processivity of 
replication (1 nucleotide per ~ 0.035 s) and low methyla-
tion turnover rate (70–450 s per methyl group addition) by 
recombinant DNMT1 in vitro (Jackson and Pombo 1998; 
Pradhan et al. 1999) suggests that additional mechanisms 
and proteins are required for interacting machineries to 
increase the DNMT isoforms activity normal physiological 
processes (Fig. 8).

DNMT1 carries out post-replicative conservation of 
methylation patterns encompassing complete genome in 
successive generation by directly interacting with PCNA. 
The non-obligatory interaction of DNMT1 and PCNA 
enhances the efficiency of methylation activity by two fold 
and aids for diverse enzyme kinetics in faithful propaga-
tion of methylation information (Iida et al. 2002). DNMT1 
has been shown to bind to DNMT3A and DNMT3B sug-
gesting an intricate network between DNMT isoforms for 
the efficient and non-erroneous methylation of target DNA 
(Kim et al. 2002). Although DNMT1 is self-capable to rec-
ognize and bind hemi methylated CpG sites, interaction with 
methylated CpG-binding proteins such as MeCP2, UHRF 
family and MBD2/3 have shown to increase the enzyme 
efficiency. MeCP2 induces chromatin compaction by bind-
ing to DNA and interact with DNMT1 via TRD domain. 
MeCP2 and MBD2/3 recognizes methylated CpG sites and 
MBD3 binds to HDAC1 and HDAC2 which ultimately inter-
act with DNMT1 (Tatematsu et al. 2000; Robertson et al. 
2000; Kimura and Shiota 2003; Bronner et al. 2007). These 
interactions suggest the complex mechanism in maintaining 
hypomethylation and transcriptional repression. This com-
plex also interacts with DMAP1 (DNMT associated protein 
1) and transcriptional coregulator DAXX (death domain 
associated protein) mediating repression which is independ-
ent of HDAC (Muromoto et al. 2004). In addition, these 
interactions enhance the heterochromatin region formation 
at highly methylated regions. Recent studies have shown 
that UHRF1 is essential for DNA methylation maintenance 
and genetic aberration in UHRF1 leads to hypomethylation 
which was similar to homozygous knock down in embryonic 
stem cells (Bostick et al. 2007). Throughout the S-phase co-
localization and interaction of UHRF1 and DNMT1 leads 
to preferential binding of these proteins to hemimethylated 
DNA sequence along with H3K9me3 (Arita et al. 2008). 
The crystal structure of SET and Ring associated (SRA) 
domain of UHRF1 in complex with hemimethylated DNA 
revealed that the 5-methyl cytosine is flipped out of the DNA 
double helix suggesting DNMT1 preferably not directly 
bind to hemimethylated DNA rather DNMT1 is recruited 
by UHRF1 (Avvakumov et al. 2008; Hashimoto et al. 2008; 
Qian et al. 2008). Studies showed that UHRF2, another 
protein of UHRF family also interact with DNMT1 and 
represses epigenetic changes indicating the non-redundant 
functions of UHRF1 and UHRF2 during the development 
(Pichler et al. 2011). Nishiyama et al. (2020) demonstrated 
that replication timing-dependent dual mono ubiquitina-
tion of PCNA associated factor 15 (PAF15) via UHRF1 is 
a prerequisite for chromatin recruitment of DNMT1 and for 
high fidelity DNA methylation inheritance in mouse embry-
onic stem cells (Nishiyama et al. 2020). Moreover, UHRF1, 
UHRF2 and DNMT1 together interact with DNMT3A and 
DNMT3B exhibiting the complex interplay in establishing 
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methylation patterns and its maintenance (Fatemi et al. 2002; 
Pichler et al. 2011). In addition, Liu et al (2018) showed that 
trimethylation of H3K27 by EZH2 leading to the forma-
tion of H3K27me3-EZH2-DNMT1 complex formation and 
hypermethylation of Kibra (wwc1) gene CpG island resulted 
in epithelial mesenchymal transition of triple breast cancer 
cell lines (Liu et al. 2018). Besides these, DNMT1 associa-
tion with transcription factors and regulators such as CFP1 
(Butler et al. 2008), SP1 (Estève et al. 2007), SP3 (Estève 
et al. 2007), STAT3 (Zhang et al. 2005) and NRIP1 (Kiskinis 
et al. 2007) aid in the regulation of cell signaling.

On contrary to DNMT1, which is mainly recruited in 
replication foci during S-pahse of cell cycle, DNMT3A and 
DNMT3B are not concentrated to these foci. During the 
replication process, DNMT3B interact with human chro-
mosome associated proteins (hCAP) C, E and G and con-
densing complexes leading to chromosomal condensation 
indicating DNMT3B dependent methylation is, at least par-
tially independent of DNA replication (Margot et al. 2001; 
Geiman et al. 2004). DNMT3A/DNMT3B interactions with 
DNMT3L has been demonstrated in recruiting DNMT3A 
and DNMT3B on DNA during genomic imprinting. The 

Fig. 8   Regulation of DNMT 
isoforms by interacting factors: 
Regulation of DNMT1 is cell 
cycle dependent. The recruit-
ment of DNMT1 to replication 
site is carried out by MeCP2, 
MBD2/3. The interaction 
of DNMT1 with HAUSP, 
HDAC1/2 and PCNA increases 
the stability and activity of 
DNMT1. Furthermore, interac-
tion of DNMT1 with AKT1 and 
CDK/cyclin increases meth-
ylation activity. At the G2/M 
phase acetylation, SUMOyla-
tion followed by ubiquitination 
be various interacting factors 
including Tip60, UHRF1, 
RGS6, SIRT1 and UBC9 leads 
to decrease in DNMT1 stability 
and proteasomal degradation 
(a). Similarly, DNMT3A/3B/3L 
multimeric complex was shown 
to be recruited by CUL4A/
HP1/SUV39H1 complex and 
the stability was increased by 
the interaction with MeCP2/
MBD2/3 and HDAC. Stability 
of DNMT3 multimeric complex 
was shown to be decreased due 
to the ubiquitination and the 
complex was later cleared by 
proteasomal degradation
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Table 1   List of proteins interacting directly or indirectly with DNMTs and their expression in breast cancer based on TCGA database

Protein Full name Function Levels in breast cancer (TCGA)

Chromatin modifiers
 HDAC1 Histone deacetylase 1 Deacetylation of N-terminal 

residues on histones

0 50 100 150 200 250

HP1β

SMARCA5

TIP5

KAT5

SETD7

EZH2

SUV39H1

EHMT2

LSH

LSD1

HDAC2

HDAC1

Normal

Tumor

TPM

 HDAC2 Histone deacetylase 2 Deacetylation of N-terminal 
residues on histones

 LSD1 Lysine specific demethy-
lase 1

Demethylate lysine residues 
of histone

 LSH Lymphoid specific helicase DNA strand separation
 G9a (EHMT2) Euchromatic histone lysine 

methyltransferase 2
specifically mon- and di- 

methylates H3K9
 SUV39H1 Suppressor of variegation 

3–9 homolog 1
Histone methyltransferase 

specifically trimethylates 
H3K9

 EZH2 Enhancer of zeste 2 poly-
comb repressive complex 
2 subunit

Polycomb group protein
Catalytic subunit of PRC2/

EED/EZH2 complex
 SETD7 SET domain containing 7, 

lysine methyltransferase
Histone methyltransferase 

specifically monomethylates 
H3K9

 KAT5 Lysine acetyltransferase 5 Catalytical subunit of histone 
acetyl transferase complex

TIP5 TTF-I interacting peptide 5 Essential component of 
nuclear remodeling complex

 SMARCA4 &5 SWI/SNF Related, Matrix 
Associated, Actin 
Dependent Regulator Of 
Chromatin, Subfamily A, 
Member 4 & 5

Helicase that possess intrinsic 
ATP-dependent nucleosome 
remodeling activity

 HP1 β Heterochromatin protein 
1 beta

Recognizes and binds methyl-
ated H3K9

Transcription regulators
 DMAP1 DNMT associated protein 1 Involved in transcriptional 

repression/activation

0 20 40 60 80 100

Slugh

SNAIL1

NRIP1

CFP1

DMAP1

TPM

Tumor
Normal

 CFP1 CXXC finger protein 1 Transcriptional activator, 
Exhibits DNA-binding 
activity specific for unmeth-
ylated CpG sites

 NRIP1 Nuclear receptor interacting 
protein 1

Modulates transcriptional 
activation/repression

 SNAIL1 Snail family transcription 
repressor 1

Transcriptional repressor

 Slug Snail family transcription 
repressor 2

Transcriptional repressor
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Table 1   (continued)

Protein Full name Function Levels in breast cancer (TCGA)

(Methyl) CpG binding
 MeCP2 Methyl CpG-binding 

protein 2
Methylated CpG-binding 

protein

0 50 100 150

UHRF2

UHRF1

MBD3

MBD2

MeCP2

TPM

Tumor
Normal

 MBD2 Methyl CpG domain-bind-
ing protein 2

Methylated CpG-binding 
protein

 MBD3 Methyl CpG domain-bind-
ing protein 3

Methylated CpG-binding 
protein

 UHRF1 Ubiquitin like PHD and 
RING finger domain 1

Hemimethylated CpG-binding 
protein

 UHRF2 Ubiquitin like PHD and 
RING finger domain 2

Hemimethylated CpG-binding 
protein, E3 ubiquitin protein 
ligase

Cell cycle regulators
 PCNA Proliferating cell nuclear 

antigen
Targtes DNMT1 to replica-

tion foci

0 100 200 300 400 500

PCNA

CENPC Tumor
Normal

 CENP-C Centromere protein C Component of kinetochore 
plate and cell cycle regula-
tor

Others
 DAXX Death domain associated 

protein
Adapter protein in the MBD2/

DAXX/USP7 complex

0 100 200 300 400 500

CK1

PARP1

AKT1

UBC9

USP7

CUL4A

LASP1

DNMT3L

DAXX

TPM

Tumor
Normal

 DNMT3L DNA methyltransferase 3 
like

Stimulates DNMT3A/3B

 LASP1 LIM and Sh3 protein 1 Cytoskeletal remodeling
 CUL4A Cullin 4A DNA damage response and 

repair
 USP7 Ubiquitin specific peptidase 

7
Hydrolase and ubiquitinates 

target proteins
 UBC9 Ubiquitin carrier protein 9 E2 ubiquitin conjugating 

enzyme
 AKT1 AKT serine/threonine 

kinase 1
Ser/Thr protein kinase

 PARP1 Poly (ADP-ribose) poly-
merase 1

Poly(ADP) ribosylation

 CK1 Casein kinase 1 Phosphorylates large number 
of proteins

DNMT3L and DNMT3A forms either dimer or tetramers 
which results to refolding of DNMT3A leading to increased 
de novo enzyme activity up to 20-fold (Suetake et al. 2004; 
Kareta et al. 2006). The recruitment of DNMT3A/DNMT3L 
complexes was more frequent on Alu sequences imprinted 
gene promoters and CpG-rich regions (Jia et  al. 2007; 
Glass et al. 2009). Furthermore, interaction of DNMT3 iso-
forms with LSH (lymphoid specific helicase) increased the 

processivity of these enzymes and nullification of LSH in 
embryonic stem cells provoked hypomethylation of repeat 
elements and decreased expression of specific genes (Myant 
and Stancheva 2008). DNA de novo methylation is initi-
ated by SUV39H1 and subsequent binding of HP1 leads 
to recruitment of DNMT3A and/or DNMT3B on the tar-
get sequence (Fuks et al. 2003). DNMT3B interaction with 
SUV39H1 is involved in the pericentric heterochromatin 
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and gene silencing causing enhanced epithelial mesenchy-
mal transition, a function of DNMT1 which is entirely differ-
ent from the previously known biological function, in basal 
like breast cancer cell lines (Dong et al. 2013). Furthermore, 
Duvall-Noelle et al. (2016) showed that LASP-1 (LIM and 
SH3 protein 1) interaction with UHRF1-DNMT1-Snail1 
complex is associated with alteration in epigenetic modi-
fications leading to breast tumor cell migration, local inva-
sion and metastasis (Duvall-Noelle et al. 2016). Recently, 
Pradhan et al. (2019) demonstrated that the treatment of 
breast cancer cell lines with the sublethal dosage of hydro-
gen peroxide induces DNMT1, Snail, Slug and HDAC1 
via ERK pathway and induces chromatin remodeling at 
the E-cadherin promoter. Authors showed that treatment 
of breast cancer cell lines with 5-aza-deoxycytidine pre-
vented the promoter CpG methylation of E-cadherin and 
treatment of cells with ERK inhibitor reduced the expres-
sion of DNMT1, Slug and snail indicating the synergistic 

methylation and not in the methylation of centromeric 
regions. On the other hand interaction of DNMT3B 
with CENP-C favors methylation of centromeric areas 
(Gopalakrishnan et al. 2009).

These DNMTs interacting factors were reported to be 
altered in tumors. In the CUL4A (component of cullin-ring-
based E3 ubiquitin protein ligase complex) over expressing 
tissues such as hepatomas and breast cancer DNMT3B activ-
ity was enhanced due to its interaction with CUL4A-NEDD8 
resulting in hypermethylation (Shamay et al. 2010). Jin et al. 
(2010) reported that UHRF1 is overexpressed in BRCA1 
hyper methylated breast tumor tissues and overexpression 
of UHRF1 in breast cancer cell lines led to deacetylation 
of H3/H4 followed by DNMT1 recruitment on to BRCA1 
promoter and hypermethylation (Jin et al. 2010). Dong et al. 
(2013) reported that elevation in Snail-SUV39H1 complex 
was in coordination with the elevation in H3K9me3 at the 
E-cadherin promoter leading to the recruitment of DNMT1 

Fig. 9   Hormonal regulation of human DNA methyl transferases. 
Expression of DNMT isoformsin mammary gland in response to 
different hormones is shown. Estrogen (E2) upon binding to estro-
gen receptor either directly binds to estrogen response elements on 
DNA or via activating transcription factors such as AP1and STAT3. 
Growth factors, cytokines and chemokines activates ERK which in 
turn phosphorylates estrogen receptor independent of estrogen lead-
ing to aberrant DNMT isoforms expression. Progesterone binding 
to its receptor directly binds to DNA or activates ERK and subse-
quently activates transcription factors leading to decreased expres-
sion of DNMT isoforms. DNMT isoforms also showed to possess 
binding sites to glucocorticoid receptor and expression of mRNA 
is influenced by glucocorticoids. On the other hand, gonadotropins 

such as LH and FSH, prolactin, androgens, melatonin and cortisol 
shown to induce aberrant expression of DNMT1, DNMT3A and 
DNMT3B when present, however, the pathway through which they 
act is unknow. Other hormones which significantly influence breast 
cancer growth, such as βhCG, oxytocin, Serotonin, T3, T4, TSH, 
PTH, Calcitonin, growth hormone, Catecholamines and insulin have 
not yet been shown whether or not they affect expression of DNMT 
isoforms. E2 estrogen, ER estrogen receptor, ERE estrogen response 
element, RE response element, Src steroid receptor coactivator, PI3K 
Phosphatidylionosiyol-3-kinase, TFs transcription factors, P4 proges-
terone, PR progesterone receptor, GC glucocorticoid, GR glucocorti-
coid receptor, GRE glucocorticoid response element
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role of histone methylation, deacetylation and methylation-
mediated chromatin remodeling during breast tumorigen-
esis (Pradhan et al. 2019). Table 1 summarizes alterations 
of interacting factors of the DNMT isoforms in breast tumor 
tissues as analyzed in TCGA database.

Hormonal regulation of DNMT isoforms

Hormones are essential for the growth, function, mainte-
nance of tissue homeostasis of mammary gland and vari-
ation in the levels are known to cause several pathological 
conditions. The mammary gland undergoes several major 
changes postnatally in every stages of woman’s life includ-
ing puberty, pregnancy, lactation and involution. Initially at 
birth, mammary gland consists of a primary duct and few 
secondary ducts and resembles that of man. During puberty, 
dramatic changes occur including significant development 
of ducts in terms of elongation, branching and accumula-
tion of fat in the adipose tissue of the breast in females. 
Along with every ovarian cycle, mammary gland undergoes 
cyclic changes and major differentiation with lobuloalveolar 
growth occurs from pregnancy to throughout lactation. Post-
lactation involution of mammary gland results in regressed 
ducts and lobuloalveolar structures. In all these stages of 
mammary gland hormones play major role at the genetic, 
molecular and epigenetic levels (Rijnkels et  al. 2010; 
Brisken and O’Malley 2010; Macias and Hinck 2012; Hol-
liday et al. 2018). In the gynecological malignancies such as 
breast carcinoma, ovarian cancers and endometrial adeno-
carcinoma involvement of hormones and their receptors in 
the tumor initiation, growth, invasion and metastasis have 
been reported (Garrett and Quinn 2008; Rice 2010). The 
role of hormones (if any) in regulating DNMTs in the breast 
cancer context is discussed below and illustrated in Fig. 9.

Estrogen

Epidemiological data suggests that women are at 100 fold 
higher risk of breast cancer development than men and 
bilateral oophorectomy before the age 35 years reduces 
75% of life time breast cancer incidence (Santen et  al. 
2007). Enhanced period of exposure to estrogen due to 
early menarche, late menopause, obesity and high bone 
density is shown to be associated with the increased risk 
of breast cancer (Hsieh et al. 1990). Clinical studies have 
shown that women with high plasma free estradiol levels 
experience 2.5 fold higher rate of breast cancer over the 
years than those who have low plasma free estradiol lev-
els (Kaaks et al. 2005; Beattie et al. 2006). Lowering the 
estrogen by tamoxifen or raloxifene treatment reduced breast 
cancer incidence by 38% and aromatase inhibitors reduces 
it by 50–65% in the high risk women (Cuzick et al. 2003). 

Furthermore, during adjuvant therapy use of aromatase 
inhibitors or anti-estrogens showed to prevent the develop-
ment of cancer occurrence in contralateral breast (Fisher 
et al. 1998; Santen et al. 2010). Effects of estrogen on tar-
get cells in the breast are mediated via several mechanisms 
(Fig. 9). Most widely accepted mechanism utilizes estrogen 
receptor-mediated transactivation of genes which favor cell 
proliferation and survival (Liao et al. 2014; Jameera Begam 
et al. 2017). Another mechanism elucidates genotoxicity of 
by-products of estrogen metabolism directly damage DNA 
altering apoptosis, DNA repair and cell cycle regulations 
resulting in clonal expansion of pre-cancer cells (Lippert 
et al. 2003). Cheng et al (2008), for the first time showed 
that exposure to estrogen altered DNA methylation patterns 
in humans (Cheng et al. 2008) and subsequently Koval-
chuk et al. (2007) showed that estrogen induced epigenetic 
changes occur prior to the tumor initiation in mice mod-
els (Kovalchuk et al. 2007). In vitro studies have shown 
that estradiol treatment increased DNMT1, DNMT3A and 
DNMT3B levels, activity, binding to the target genes and 
methylation (Wu et al. 2019). Furthermore, estrogen recep-
tor alpha (ERα) was shown to interact directly with DNMT1 
and DNMT3B and recruit them on the target genome to sup-
press the gene expression (Si et al. 2016). Our bioinformatic 
analysis revealed that DNMT1, DNMT3A and DNMT3B 
promoters harbors multiple ERα-binding sites (Fig. 4).

Progesterone

Progesterone acts as pro-proliferative factor for the breast 
tissues and functions in concert with estrogen and estrogen 
receptors to induce the expansion of glandular structures 
during puberty (Brisken and O’Malley 2010). Due to the 
mode of action and functions, progesterone and progesterone 
receptors gained constant attention for their emerging role 
as critical modulators of gynecological cancers including 
breast cancer (Diep et al. 2015). Progesterone induces prolif-
eration of breast cancer cells by activating Ras/ERK pathway 
(Migliaccio et al. 1998). The elevated progesterone levels 
combined with estrogen levels has shown more detrimen-
tal effects on breast by guiding cells towards tumorigenesis 
than either of them alone (Hankinson et al. 2004). Though 
the progesterone play key role in breast tumor development 
its effect on DNA methylation in breast is not studied. The 
ER+/PR+ breast cancer cells have shown differential meth-
ylation pattern than ER−/PR− breast cancer cells (Li et al. 
2010a; Verde et al. 2018). Furthermore, studies have demon-
strated that progesterone receptor regulates methylation and 
expression of ESR1 (ERα) upon binding to ESR1 promoter 
sequence (Verde et  al. 2018). In addition, progesterone 
treatment either alone or combined with estrogen showed 
to downregulate DNMT1, DNMT3A and DNMT3B levels 
leading to hypomethylation in human endometrial stromal 
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cells (Yamagata et al. 2009). The authors also showed that 
varied cyclic levels of these hormones during luteal phase 
and mid secretory phase were associated with differential 
levels of DNMT isoforms in endometrium (Yamagata et al. 
2009).

Gonadotrophins

Gonadotrophin releasing hormone antagonists, that sup-
press the release of FSH (Follicle Stimulating Hormone) 
and LH (Luteinizing Hormone), have been shown to be 
effective in the treatment of breast cancer in fertile women 
(Robertson and Blamey 2003). Planeix et al (2015) dem-
onstrated that VEGFR2 negative endothelial cells of breast 
cancer expressed FSHR and these FSHR positive blood ves-
sels extended 2 mm to 5 mm outside the tumor periphery 
indicating their involvement in vascular remodeling in anti 
VEGFR2 resistance breast tumors (Planeix et al. 2015). 
Sanchez et al (2016), showed that the FSHR and LHR are 
functionally expressed in several breast cancer cell lines and 
the extent of expression was found to be involved in the 
modulation of cell migration and invasion via activation of 
G proteins on the plasma membrane (Sanchez et al. 2016). 
Furthermore, the inclusion of LH or FSH in the cancer 
cell growth medium in vitro phosphorylates moesin (actin 
remodeling protein) and focal adhesion kinase ultimately 
leading to the formation of molecular bridges between integ-
rins, focal adhesion complexes and actin which enhances cell 
motility (Sanchez et al. 2016). Uysal et al (2018), showed 
that administration of FSH and/or LH analogues caused 
aberrant expression of DNMT1, DNMT3A, DNMT3B 
and DNMT3L and also affected their subcellular locali-
zation in mouse oocytes and embryos (Uysal et al. 2018). 
LH surge has been demonstrated to hypomethylate the pro-
moter regions of several genes including CYPA11a1 and 
CYPA19a1 which are involved in the estrogen and progester-
one synthesis (Okada et al. 2016) In addition, gonadotropin 
surge can causes change in methylation pattern indirectly by 
controlling estrogen and progesterone levels (Okada et al. 
2016).

Pregnancy associated hormones

Upregulation of pregnancy associated hormones such as 
estrogen, progesterone and others are shown to be respon-
sible for transiently increased risk for breast malignancies 
during pregnancy and post-partum period. Placental pro-
duction of estrogen, progesterone, placental growth factor, 
human chorionic gonadotrophin and placental lactogen 
leading to substantial alteration in the hormonal milieu dur-
ing pregnancy which influence the proliferation, growth, 
differentiation and expansion of mammary gland tissues 
(Ishida et al. 1992; Smith et al. 2001; Cnattingius et al. 

2005; Froehlich et al. 2019). However, these hormones act 
beneficial in certain circumstances, for instance, ER+/PR+ 
MCF or T47D breast cancer cell lines co-cultured with first 
trimester placental tissue showed reduction of breast cancer 
cell numbers and reduced expression of ERα on these cells 
which is responsible for proliferation (Tartakover-Matalon 
et al. 2010). Furthermore, expression of ERβ, antagonist for 
tumor cell proliferation and invasion was found to be two 
fold higher in parous women than in nulliparous women 
(Asztalos et al. 2010). An important hormone in maintain-
ing pregnancy, human chorionic gonadotrophin, is found to 
mammary gland protective and reduces the risk of breast 
malignancies (Russo and Russo 2011). Placental hCG 
along with tumor suppressor inhibin downregulates ERα 
expression by inducing CpG methylation (Russo and Russo 
2007). However, the ectopic expression of β-hCG in breast 
cancer patients has shown to be associated with high grade 
tumors and poor prognosis (Chang et al. 2005). Ectopically 
expressed β-hCG exerts anti-apoptotic effect by blocking 
TGFβ receptors, promotes invasion and migration by down 
regulating E-cadherin, inducing ERK1/2 and MMP-2 (Wu 
and Walker 2006; Li et al. 2013b, c). Although the direct 
link between β-hCG and DNMT isoforms have not been 
established, the increased β-hCG has shown to be associated 
with global DNA hypomethylation in the DNA isolated from 
the serum of pregnant women compared to non-pregnant 
women (Pauwels et al. 2016).

Glucocorticoids

Glucocorticoids are involved in the development of mam-
mary gland during puberty and pregnancy (Casey and Plaut 
2007). The expression of GR is observed in normal breast 
and all stages of breast cancer tissue with the decline in 
expression from normal to precancerous lesions and to 
malignant carcinomas (Teulings and van Gilse 1977; Allegra 
et al. 1978). Glucocorticoids exerts anti-proliferative and 
anti-apoptotic activity on breast cancer epithelial cells, at 
least in part, via modulating transcriptional regulation of 
genes encoding cell survival pathways such as SGK1 and 
MKP1/DUSP1 (Mikosz et al. 2001; Wu et al. 2004; Melhem 
et al. 2009). Furthermore, using triple negative breast can-
cer mouse xenograft models, Skor et al. (2013) showed that 
treatment with GR antagonists might be useful in multidrug 
resistant triple negative GR+ breast cancer cells (Skor et al. 
2013). However, recently Obradovik et al. (2019) demon-
strated that GR activity is higher in metastatic breast tumor 
and higher expression of GR induces lung metastasis in 
mouse xenograft models (Obradović et al. 2019). However, 
there are no studies related to influence of glucocorticoids 
on DNMT isoforms. Our bioinformatic analysis showed 
that DNMT1 promoter harbor putative-binding site for GR 
(Fig. 4).
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Cortisol

The negative impact of increased stress on human health has 
been well explained and known to increase the possibilities 
of developing migraines, diabetes, heart attacks, ulcers and 
malignancies (Cohen et al. 2012). In accordance with this 
greater than 70% of breast cancer patients showed high lev-
els of serum cortisol levels. Nineteen years follow up survey 
of 18,932 women conducted by Nilsen et al. (2008) showed 
women working in highly fast paced jobs with high stress are 
more prone to develop breast cancer than the women work-
ing at slower pace with less stress (Nielsen et al. 2008). The 
dysregulated cortisol release showed positive correlation 
with disease progression, increased mortality rate, recur-
rence and increased fatigue (Sephton et al. 2000; Abercrom-
bie et al. 2004). The role of cortisol in breast epigenetics 
has not been established. However, Intabli et  al (2019) 
showed that treatment of triple negative breast cancer cell 
lines MDA-MB-231 and Hs578T with cortisol decreased 
the expression of DNMT1 leading to hypomethylation of 
promoter regions of key tumor suppressor genes including 
DAPK1, AKT1, ABL1, CDKN1A and MGMT (Intabli et al. 
2019).

Oxytocin, prolactin, gonadotrophins, androgens, mela-
tonin, serotonin, thyroid and parathyroid hormones, calci-
tonin, and catecholamines have been shown to participate in 
etiology of breast tumor etiology and progression. However, 
their influence on regulation of DNMT isoforms is poorly 
understood.

Influence of cytokines and growth factors 
in regulating DNMT isoforms

Inflammation has been attributed as one of the hallmarks 
of cancers and altered levels of cytokines has been shown 
to regulate global DNA methylation changes in breast 
cancer (Fleischer et al. 2014; Fogel et al. 2017). Numer-
ous cytokines have been shown associated with chronic 
inflammation designated as tumor enabling characteristic 
drive pathogenic changes in breast tumor microenvironment 
(Esquivel-Velázquez et al. 2014). However, understanding of 
the involvement of these cytokines in epigenetic modulation 
in breast cancers is sparse. As mentioned earlier, activated 
STAT3 which is a downstream signaling molecule for sev-
eral cytokines belong to IL-6 cytokine family including IL-6, 
transcriptionally activates DNMT1 leading to hypermethyla-
tion of anti-apoptotic genes. IL-6 via IL-6R/STAT3 pathway 
regulates DNMT1 expression in tumor cells (Huang et al. 
2016). Our recent studies in clinically characterized human 
breast tumor tissues, we demonstrated IL-6 induced protea-
somal degradation of DNMT1 which led to promoter DNA 
hypomethylation of VEGFR2 promoter and subsequently to 

disorganized sprout formation in endothelial cells isolated 
from malignant part of breast tissue (Hegde et al. 2020).

Growth factors such as epidermal growth factor, fibroblast 
growth factor, vascular endothelial growth factor, insulin 
like growth factor1 and 2 are known to be proliferative to 
breast cells and are positively correlated with disease pro-
gression, end stage, metastatic spread, poor diagnosis and 
mortality (Richard et al. 1987; Adams et al. 2000; Dick-
son et al. 2000; Zhang and Yee 2000). Among these, only 
IGF 1 has been shown to regulate DNA methylation. IGF 
1 binding to IGF 1R leads to downregulation of miR152 
which elevates DNMT1 levels and also by activating Akt 
and subsequent nuclear translocation of GSK3 leading to 
prevention of proteasomal degradation of DNMT1 in breast 
tumors. This results in overall changes in the methylation 
pattern of cells in vivo (Wen et al. 2017). Breast cancer cells 
which express human epidermal growth receptor 2 (HER 2) 
which is activated mainly by epidermal growth factor has 
shown differential methylation patterns than those breast 
cells which do not express these receptors (Fiegl et al. 2006). 
However, underlying mechanisms are unknown.

Nutrition and diet influencing expression 
of DNMT isoforms and significance in breast 
cancers

Breast cancers are complex multi-genic disorders and gene-
nutrient interactions has been shown as major contributor 
in health management and disease prevention (Freuden-
heim et al. 1996; Franceschi et al. 1996; Rock and Demark-
Wahnefried 2002). Over the years, studies in the context of 
diet and nutrition have shown that nutrient drive epigenetic 
changes to alter gene expression, susceptibility to disease 
including cancer (Anderson et al. 2012; Singh et al. 2014; 
Andreescu et al. 2018). Many studies indicate that early life 
nutrition exert imprinting effects on genome which might 
influence the risk of developing multifactorial chronic dis-
eases in the adulthood (Junien 2006; Dolinoy et al. 2007). 
Accumulating evidences suggests that dietary intake of 
nutrition alter expression of genes involved in cell cycle 
regulation, apoptosis and tumor suppressor genes (Landis‐
Piwowar et al. 2008; Li and Tollefsbol 2010).

S-adenosyl methionine (SAM) is a methyl group donor 
in methylation reactions catalyzed by DNMT isoforms (Feil 
and Fraga 2012). SAM is synthesized from dietary pre-
cursors such as methionine (essential amino acid), folate, 
choline and betaine. Reduced availability of these dietary 
nutrients results in reduction of SAM synthesis leading to 
DNA methylation changes, while increased availability of 
methyl donors showed enhanced methylation reactions. Fur-
ther availability of nutrients involved in one carbon metab-
olism such as folate, cobalamin, riboflavin, pyridoxin and 
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methionine have been demonstrated to alter cancer related 
DNA methylation (Cheng and Blumenthal 2008; Zeisel 
2009; Niculescu and Lupu 2011). Low intakes of cobala-
min, riboflavin, niacin, pyridoxine and methionine positively 
correlated with an increased risk for breast cancer and sup-
plementation of folic acid showed reduced breast cancer risk 
in premenopausal women (Maruti et al. 2009).

Phytoestrogens, including resveratrol and genistein are 
known to interact with estrogen receptors and regulate 
estrogen-responsive genes (Thanos et al. 2006). Genistein 
is a isoflavone from soybean demonstrated to alter DNA 
methylation of several genes such as p21, p16INK4A, c-MYC 
and BMI1 thereby preventing growth of breast cancer cells 
(Li et al. 2013a). In addition, Xie et al (2014) showed that 
genistein decreases DNMT1 expression, methyltransferase 
activity and global DNA methylation in MCF-7 and MDA-
MB-231 cell lines (Xie et al. 2014). Our earlier studies in 
lab showed genistein induced reduction in PEPCK-C expres-
sion is via promoter DNA methylation at cytosine + 34, + 45 
and + 71 positions in fibroblasts and contrarily, genistein 
increased expression of PEPCK-C in HepG2 cell lines 
(Seenappa et al. 2016). We also demonstrated that genistein 
maintain glucose homeostasis by inducing glycogenolysis 
in HepG2 cell lines (Seenappa et al. 2016). Bioflavonoids 
such as catechins of tea and polyphenols of coffee, curcumin 
(component of turmeric powder), lycopene found in toma-
toes, papayas, watermelons and carrots have shown to alter 
DNA methylation patterns in various normal and cancer cell 
lines.

Viral infections regulating DNMT isoforms

The involvement of viruses and the viral oncogenes in regu-
lating DNMTs has been described earlier in several tumors 
including that of breast (Hattori and Ushijima 2016). Epstein 
Barr virus (EBV) have been shown to be involved in the 
etiology of various malignancies including head and neck 
cancers, T-cell lymphoma, Burkitt’s lymphoma, gastric car-
cinoma and breast cancer (Amarante and Watanabe 2009; 
Tempera and Lieberman 2014). Tsai et al. (2002) dem-
onstrated that introduction of EBV product LMP1 (latent 
membrane protein 1) oncoprotein in to MCF-7 breast can-
cer cell line activated DNMT1, DNMT3A and DNMT3B 
resulted in the silencing of CDH1 (Tsai et al. 2002). Human 
immunodeficiency virus type I induces DNMT1 through the 
response element in the − 1634 to + 71 region leading to 
the hypermethylation of p16INK4A. Huschtscha et al. (2001) 
showed that normal human mammary epithelial cells can be 
immortalized by SV-40 induced transformation (Huschtscha 
et al. 2001). Furthermore, Hachana et al. (2009) showed that 
methylation of TIMP3, RASSF1A, SHP1 and BRCA1 were 
higher in case of patients with SV40 positive than matched 

normal breast tissues indicating the role of virus in breast 
cancer progression (Hachana et al. 2009).

DNMT isoforms as therapeutic targets 
in breast tumors

With the mounting evidence of how DNA methylation 
orchestrates abnormal gene expression to drive breast 
tumorigenesis, there is an increasing focus on developing 
pharmacological interventions for clinical management. 
Currently two DNMT inhibitors (DNMTi): 5-azacytidine 
(Vidaza, Celgene) and 5-aza-2′-deoxycytidine or decitabine 
(Dacogene, Supergen) have been approved by US Food 
and Drug Administration (FDA) for the treatment of acute 
myeloid leukemia and high risk myelodysplastic syndrome 
respectively (Kaminskas et al. 2005a, b). Phase I and II clini-
cal trials investigating the efficacy of demethylating agents 
in breast cancer yielded promising results (Connolly et al. 
2017). Triple negative breast cancers which do not express 
ER, PR or HER2 receptors are not amenable to conventional 
therapies. Li et al (2010a, b) demonstrated that treatment of 
breast cancer cell lines with DNMT inhibitors induced epi-
genetic reactivation of endogenous estrogen and progester-
one receptors (Li et al. 2010b). Furthermore, clinical phase 
II trials conducted by Connolly et al. (2017) showed that 
improved efficacy of the treatment when 5-azacytidine was 
administered along with the hormonal therapy (Connolly 
et al. 2017). Yu et al (2018) showed that decitabine treatment 
significantly decreases DNMT protein levels and inhibits 
tumor growth in triple negative breast cancer xenograft mod-
els (Yu et al. 2018). This indicated levels of DNMT isoforms 
might serve as prognostic marker in triple negative breast 
cancer patients. The list of DNMT inhibitors along with their 
outcome in clinical management of breast cancers is given 
in Table 2.

Conclusion

The regulation of gene expression, activity and recruitment 
of DNMT isoforms have been tightly regulated by the coor-
dinated functions of transcriptional, post-transcriptional, 
translational and post-translational events. Several extrin-
sic and intrinsic factors such as hormones, growth fac-
tors, cytokines, vitamins and life style/nutrients have been 
demonstrated to modulate DNMT isoforms in health and 
disease. From the previous studies and our bioinformatic 
analysis confirm that alteration in any of these might lead 
to tumor initiation, aggressiveness, metastasis and differen-
tial response to drugs. Interestingly, alterations in DNMT 
expression and function have also been attributed in progno-
sis of breast cancer subjects. The knowledge of the complete 
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regulation of DNMT isoforms is inadequate. Although num-
ber of drugs have been explored against DNMT isoforms 
in several malignancies clinically, failure to reverse meth-
ylation changes and/or preventing further changes in gene 
expression indicates the necessity and importance of under-
standing the regulation of expressions of these proteins.
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