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Computational geometric tools 
for quantitative comparison of 
locomotory behavior
Matthew T. Stamps 1, Soo Go1 & Ajay S. Mathuru   1,2,3*

A fundamental challenge for behavioral neuroscientists is to accurately quantify (dis)similarities in 
animal behavior without excluding inherent variability present between individuals. We explored two 
new applications of curve and shape alignment techniques to address this issue. As a proof-of-concept 
we applied these methods to compare normal or alarmed behavior in pairs of medaka (Oryzias latipes). 
The curve alignment method we call Behavioral Distortion Distance (BDD) revealed that alarmed fish 
display less predictable swimming over time, even if individuals incorporate the same action patterns 
like immobility, sudden changes in swimming trajectory, or changing their position in the water 
column. The Conformal Spatiotemporal Distance (CSD) technique on the other hand revealed that, 
in spite of the unpredictability, alarmed individuals exhibit lower variability in overall swim patterns, 
possibly accounting for the widely held notion of “stereotypy” in alarm responses. More generally, we 
propose that these new applications of established computational geometric techniques are useful 
in combination to represent, compare, and quantify complex behaviors consisting of common action 
patterns that differ in duration, sequence, or frequency.

Quantitative comparison of the behavior of animals is a key element of neuroscience. As important as this is, 
even the most comprehensive ethograms fail to capture the inherent variability in the behaviors of individuals, 
whether they consist of simple or complex sets of actions1–4. This is further compounded by the error-prone 
nature of subjective assessment during human observations. A pertinent issue for behavioral studies, therefore, is 
the development of appropriate methods for the quantitative comparison of behaviors between two animals or a 
single individual under two or more conditions.

Researchers typically quantify parameters (such as the average speed or average height climbed) based on 
expert knowledge of the ethology of that species or the kinematics of a behavior. These measures are useful, yet 
they can be inadequate as descriptors of behavior for a variety of reasons. One notable reason is that they are gross 
approximations of the behavioral action being measured. Averaging of observational data may not be representa-
tive of the kinematics and can be confounded by what has been described elsewhere as “the failure of averaging2”. 
Furthermore, there can be considerable variability in the execution of even those behaviors that are considered 
“stereotypical” or instinctive. As elaborated at great length by Schleidt in 1974, individual variability can exist in 
the form of “incompleteness of the elements” that make up an innate behavior or in the form of changes in the 
characteristics of those “elements” such as their duration, sequencing, or frequency within a given episode of 
executing the behavior5. Trait variability between individuals such as locomotor handedness is also influenced by 
alellic differences6. Consequently, the above mentioned gross approximations are at best imperfect representa-
tions of the behavior that neither capture nor do justice to the intra and inter subject variability7. Another reason 
measures fail to be adequate descriptors of behavior is that even if specific parameters are defined as relevant in a 
behavioral readout, they may not be available when examining a new species or when studying previously uncat-
egorized behaviors. Quantification of infrequent events (such as episodes of immobility or jumps) is useful, but 
also somewhat unsatisfactory as a measure since it omits and obscures a large portion of the behavioral data. In an 
ideal scenario, an entire behavioral episode is represented in as complete a form as possible during quantification.

Studies over the past few years have addressed these (or related) issues by applying tools from computational 
geometry, computer vision, and machine learning to describe behaviors8. These methods have proved effective 
in describing animal behavior more comprehensively. For example, in examining the entire behavioral repertoire 
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of the hydra9, for automated annotation of behavior in fruit flies10, for discovering generative rules governing 
Drosophila locomotion11, for identifying the temporal features that explain spontaneous swimming behavior in 
worms12, for identifying the dynamics of shoaling in fish13, and for detecting sub-second modules in mice behav-
ior14. Such studies are providing new insights like the continuity between behavioral states15, between the gener-
ative rules of locomotion of vertebrates and invertebrates11, and objective means for comparison of new data-sets 
to perform spatiotemporal mapping of posture of non-stereotyped actions7. Here, we report on two new appli-
cations of computational geometric methods that can be applied broadly for the representation and quantitative 
analysis of dissimilarity in the locomotory behavior of pairs of animals moving freely in a two-dimensional space. 
We applied these methods to compare swimming behavior of pairs of fish.

The first among these methods applies a technique for automated curve alignment developed by Sebastian 
et al.16 that can be efficiently calculated with a method called dynamic time warping17. Dynamic time warping 
has been applied widely to time series analysis18,19 as well as the study of biological phenomena, such as speech 
patterns20 and cardiac filling phases21. In recent years, others have employed techniques based on dynamic time 
warping to examine and compare temporal patterns and acoustic features in bottle-nosed dolphins22, whales23, 
and songbirds24. The same technique has also been adapted to compare locomotion and infer postures in 
humans25,26. Motivated by a classic result in differential geometry called the Frenet-Serret Formula27, we intro-
duce the notion of a behavior curve associated to an animal’s trajectory and derive a measure that we call the 
Behavioral Distortion Distance (BDD). This can be efficiently calculated via dynamic time warping to provide 
meaningful quantitative comparisons for entire episodes of locomotion.

The second application we considered examines the spatiotemporal kinetics encoded in heat maps. When 
comparing heat maps between animals that represent the time spent at each location in an arena, it is not useful 
to look at a straightforward average since hot spots from different animals will average out and disappear. Instead, 
one must first align the heat maps so that corresponding hot spots coincide in order to reveal if there are common 
patterns and similarities. We implemented a well-established algorithm28–32 used previously in cortical cartogra-
phy33,34, for finding conformal (angle preserving) alignments between surfaces – a heat map can be interpreted 
as a surface in 3-dimensional space where different intensities correspond to different heights in the z-direction 
– that uses discrete geometric objects called circle packings. We call the resulting measure between heat maps the 
Conformal Spatiotemporal Distance (CSD).

As a proof-of-concept, we asked if these methods can quantitatively distinguish normal swimming behavior 
from a behavior described as “alarmed” in fish35. We compared medaka fish from a preexisting data-set that had 
been exposed either to an alarm substance or to a control36. Though the species where such a phenomenon has 
been described have expanded considerably37–40 since its discovery in minnows approximately 80 years ago41, 
alarm behavior to conspecific injury has been mainly studied in the Ostariophysi species of fish42,43. Even among 
Ostariophysi, species differ in the expression of alarmed behavior. Many different parameters, in captivity and in 
the wild, have been described for different fish including a change in inter-individual distance in shoals, freezing, 
darting, change in the vertical position in a water body, etc.44–48. As such, it is difficult to predict what an alarmed 
behavior in response to the chemosensory alarm substance will look like in a species where this has not been 
described before, or when they have multiple defensive behaviors49. We therefore chose as our test case a single 
published study (at the time we started this project) from one of the authors describing an alarm response in 
medaka36. We asked if the individuals in the two conditions (alarmed and normal) were distinguishable without 
us defining what action sequence or locomotory pattern constitutes an alarmed state.

We found that BDD and CSD can differentiate between alarmed and normal states. The BDD between most 
pairs of alarmed individuals were also high, which suggests that swimming trajectories can become so unpredict-
able when medaka are alarmed that they may not match a second individual responding to the same stimulus. 
On the other hand, the CSD between most pairs of alarmed individuals were low, highlighting the existence of a 
discernible spatiotemporal pattern in spite of low predictability in their swimming trajectory. Overall, our results 
suggest that BDD and CSD together are useful aides to represent long episodes of swimming behavior. Our results 
also indicate that these computational geometric methods can be applied more universally for quantitative com-
parison of locomotion of any kind, in any animal.

Results
The preexisting data-set we used for this report recorded the swimming motion of 36 medaka over a 10-minute 
interval36. The observational tanks were featureless small rectangular tanks with dimensions 20 cm × 12 cm × 5 cm 
(L × H × W). While the tanks restricted movement compared to the animals’ natural habitat, they allowed multiple 
degrees of freedom in swimming motion and can be accepted as reasonably “free” spaces for motion. In particular, 
the fish could swim in any manner across the tank approximately six to seven body lengths long, four body lengths 
deep, and one and a half body lengths wide. Half of the fish were exposed to an alarm substance (Schreckstoff or SS) at 
the same time point (minute 2 in a 10 minute observation), while the other half were exposed to a control substance 
(tank water or NSS). Mathuru36 discovered a statistically significant difference in the average speed of the experi-
mental subjects (SS) compared to the control subjects (NSS) during the post-stimulus (2–10 minute) time interval 
(Mann-Whitney U = 49.0, p = 0.0003) and a statistically significant difference in intervals of immobility (defined as 
displacement less than 3 mm in 1 second by the experimenter; Mann-Whitney U = 13.0, p = 0.000002).

Here, we explored the use of two additional measures that rely on notions of “distance” between the swim-
ming patterns of pairs of subjects using the tracked data generated from the automated tracker in the previous 
study36. The BDD or the Behavioral Distortion Distance, defined in the methods section, measures the differences 
in local locomotory behavior (independent of location and relative time) whereas the CSD or the Conformal 
Spatiotemporal Distance, also defined in the methods section, measures the spatiotemporal location pattern of a 
subject over a specified duration. For all of the results listed in this article, BDD refers to the behavioral distortion 
distance indexed by speed and curvature, or BDDΘ for Θ = {s, κ} in the notation of the Methods section.
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Analysis of pairwise differences in behavior.  The BDD and CSD between all pairs of the 36 test subjects 
over five 2-minute time intervals and the entire post-stimulus (minutes 2 to 10) time interval are illustrated in 
Fig. 1. The pairs of subjects are split into three categories: pairs of control subjects (NSS-NSS), mixed pairs with 
one control and one experimental subject (NSS-SS), and pairs of experimental subjects (SS-SS). The BDD and 
CSD for each pair of subjects and specified duration are illustrated in Figs 2 and 3, respectively, and the summary 
statistics are given in Tables 1 and 2.

Figure 1 reveals that while the pre-stimulus interval BDD are similar between the three categories, the mean 
BDD between NSS-SS pairs and between SS-SS pairs are both larger than the mean BDD in the pre-stimulus 
period, as well as the mean BDD between NSS-NSS pairs for each of the post-stimulus time intervals. In a com-
parable manner, the mean CSD between NSS-SS pairs and between SS-SS pairs are both smaller than the mean 
CSD in each of the post-stimulus time intervals, while it remains the same between NSS-NSS pairs. Figure 2 
provides a colored visual aide to compare BDD between all pairs, while Table 1 summarizes this information. It 
shows that the mean BDD ranged between 0.061 and 0.069 for NSS-NSS pairs for both the pre- and post-stimulus 
intervals. However, the ranges increased in the post-stimulus period to between 0.074 and 0.141 for NSS-SS pairs 
and SS-SS pairs. In a similar manner, Fig. 3 provides a colored visual aide to compare CSD between all pairs and 
Table 2 and shows that the mean CSD between NSS-NSS pairs over the pre- and post-stimulus time intervals 
ranged between 0.0133 and 0.0137, while, for NSS-SS pairs and SS-SS pairs, the range decreased from approxi-
mately 0.014 to between 0.0095 and 0.0125. Kruskal-Wallis H statistical tests confirmed that the differences over 
the five 2-minute time intervals for NSS-NSS pairs for both the BDD (Fig. 1A, H-statistic = 6.759, p = 0.149) and 
the CSD (Fig. 1E, H-statistic = 0.897, p = 0.925) were statistically insignificant. However, they did reveal statisti-
cally significant differences for the BDD between NSS-SS pairs (Fig. 1B, H-statistic = 387.579, p = 1.34 × 10−82), 
between SS-SS pairs (Fig. 1C, H-statistic = 259.470, p = 5.92 × 10−55); and the CSD between NSS-SS pairs (Fig. 1F, 
H-statistic = 76.781, p = 8.37 × 10−16), between SS-SS pairs (Fig. 1G, H-statistic = 124.940, p = 4.70 × 10−26). This 
suggests that the BDD and CSD over each of the specified 2-minute time intervals throughout the duration of the 
assay (10-minute) is unchanging when control substance or tank water is introduced, but statistically significant 
differences emerge when one or both members of the pair are exposed to Schreckstoff.

To evaluate if the exposure to Shcreckstoff is the reason for the differences in the BDD and CSD measures 
above, we performed pairwise comparisons between the pre-stimulus time interval (0–2 minutes) and each of 
the four 2-minute post-stimulus intervals via Wilcoxon signed-rank T tests. This revealed statistically significant 
increases in the BDD between NSS-SS pairs (Fig. 1B, all T-statistics <4600, all p-values < 10−37) and the BDD 

Figure 1.  Panels (A–C) show the distributions, means, and standard deviations of BDD for pairs of fish over 
five 2 minute time intervals broken down into three categories: pairs of control fish (NSS-NSS; Green), mixed 
pairs with one control and one alarmed fish (NSS-SS; Orange), and pairs of alarmed fish (SS-SS; Purple). Panel 
(D) shows the distribution, mean, and standard deviation of BDD for pairs in each category over the entire 
post-stimulus time interval. Panels (E–G) show the distributions, means, and standard deviations of CSD for 
all pairs of fish over five 2-minute time intervals broken down, again, into three categories: pairs of control fish 
(NSS-NSS; Green), mixed pairs with one control and one alarmed fish (NSS-SS; Orange), and pairs of alarmed 
fish (SS-SS; Purple). Panel (H) shows the distribution, mean, and standard deviation of CSD for pairs in each 
category over the entire post-stimulus time interval. The distributions over the pre-stimulus interval (minutes 0 
to 2) are all plotted in blue.
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between SS-SS pairs (Fig. 1C, all T-statistics <1400, all p-values < 10−15). Statistically significant decreases in 
the CSD between NSS-SS pairs (Fig. 1F, all T-statistics <18000, all p-values < 10−6) and between SS-SS pairs 
(Fig. 1G, all T-statistics <2600, all p-values < 10−8) were also detected. Therefore, the BDD increases while 
the CSD decreases between pairs of medaka after stimulus delivery when at least one individual is exposed to 
Schreckstoff. Next, we also conducted pairwise comparisons of the distributions of BDD and CSD between the 
three categories of pairs over the entire post-stimulus time interval. In Fig. 1D, the mean BDD between NSS-SS 
pairs and SS-SS pairs are both larger than the mean BDD between NSS-NSS pairs. To verify that these differ-
ences are statistically significant, we conducted Mann-Whitney U tests between the distributions of BDD for 
NSS-NSS pairs and NSS-SS pairs (Fig. 1D, U-statistic = 10730.0, p = 1.49 × 10−23) and NSS-NSS pairs and SS-SS 
pairs (Fig. 1D, U-statistic = 5282.0, p = 1.05 × 10−16). In Fig. 1H, the mean CSD between SS-SS pairs is less than 
that between NSS-SS pairs, which is less than that between NSS-NSS pairs. Again, to verify that these differences 

Figure 2.  The Behavioral Distortion Distances (BDD) between all pairs of the thirty-six fish in the dataset over 
five 2-minute time intervals and the entire post-stimulus time interval. The alarmed (SS) individuals are labeled 
magenta and the control (NSS) individuals are labeled cyan.
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are statistically significant, we conducted Mann-Whitney U tests between the distributions of CSD for NSS-NSS 
pairs and SS-SS pairs (Fig. 1H, U-statistic = 15126.0, p = 9.84 × 10−6) and for NSS-SS pairs and SS-SS pairs 
(Fig. 1H, U-statistic = 30470.0, p = 5.24 × 10−5). The Mann-Whitney U tests did not reveal statistically significant 
differences between the distributions of BDD for NSS-SS pairs and SS-SS pairs (Fig. 1D, U-statistic = 25437.0, 
p = 0.64), nor did they reveal statistically significant differences between the distributions of CSD for NSS-NSS 
pairs and NSS-SS pairs (Fig. 1H, U-statistic = 26729.5, p = 0.17). Therefore, this suggests that the BDD detected 
different levels of variation in behavior between pairs of control subjects and pairs with at least one experimental 
subject. On the other hand, CSD detected different levels of variation in behavior between pairs of experimental 
subjects and pairs with at least one control subject over the post-stimulus time interval. Moreover, the variations 
in behavior measured by BDD between pairs of experimental subjects were as large as those between mixed pairs 
with one control and one experimental subject.

Figure 3.  The Conformal Spatiotemporal Distances (CSD) between all pairs of the thirty-six fish in the dataset 
over five 2-minute time intervals and the entire post-stimulus time interval. The alarmed (SS) individuals are 
labeled magenta and the control (NSS) individuals are labeled cyan.
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We also compared the distributions of BDD and CSD between the three categories of pairs and the set of all 
pairs (again over the entire post-stimulus time interval). Mann-Whitney U tests revealed that the mean BDD 
between NSS-NSS pairs is significantly lower than that of all pairs (U-statistic = 68674.5, p = 3.33 × 10−16) 
and the mean BDD between NSS-SS pairs is significantly higher than that of all pairs (U-statistic = 87351.5, 
p = 2.63 × 10−4). Additionally, Mann-Whitney U tests revealed the mean CSD between SS-SS pairs is significantly 
lower than that of all pairs (U-statistic = 57300.5, p = 2.85 × 10−4). The Mann-Whitney U tests did not reveal 
statistically significant differences between the distributions of BDD for SS-SS pairs and all pairs, nor did they 
reveal significant differences between the distributions of CSD for NSS-NSS pairs and all pairs, nor NSS-SS pairs 
and all pairs. Therefore, the variations in behavior detected by BDD between NSS-NSS pairs and NSS-SS pairs 
are significant compared to the set of all pairs, not just to SS-SS pairs and each other. Similarly, the variations in 
behavior detected by CSD between SS-SS pairs are significant compared to the set of all pairs, not just to the other 
two categories of pairs (NSS-NSS and NSS-SS).

Finally, to further illustrate that the differences reported in the previous paragraphs are unlikely to be the 
results of random fluctuations, we conducted an additional analysis based on randomized (also known as per-
mutation) tests50. For this, we compared the mean BDD between NSS-SS pairs to a distribution of mean BDD 
between randomly relabeled pairs. Specifically, we uniformly sampled 100000 of the 9075135300 ways to divide 
the 36 test subjects into two 18-element subsets and calculated the mean BDD between the subsets in each of 
those partitions. Then, we compared the mean BDD between the NSS-SS partition to the distribution of mean 
BDD for randomized partitions. The corresponding distribution statistics, standard scores, and p-values are listed 
in Table 3.

Together, these results and statistical analyses suggest that the variability in dynamics and trajectory increase, 
while the variability in spatiotemporal preference decreases, when the pair of medaka being compared contains 
at least one alarmed individual.

Individual variability and classification.  Following our analyses of pairwise comparisons, we asked if 
BDD and CSD could yield meaningful information about individual behavioral episodes, without direct com-
parison to other episodes in a larger data-set. One approach for this is to measure the distance between a subject 
and itself over different (non-overlapping) time intervals. This is not practical for CSD, since that method only 
captures meaningful information over extended periods of time. We calculated the mean BDD from each sub-
ject to itself over 1000 non-overlapping sub-intervals of the post-stimulus time interval, sampled uniformly at 
random. The resulting values, which we call the Intra-Individual BDD (IIBDD) for each subject, are listed in 
Supplementary Table 1. A Mann-Whitney U test showed that the mean IIBDD of experimental subjects is sig-
nificantly higher than that of control subjects (U-statistic = 23.5, p-value = 1.25 × 10−5). Therefore, the variation 
in behavior measured by BDD from an experimental subject to itself is, on average, significantly larger than that 
from a control subject to itself.

Time 
Interval
(minutes)

Mean Standard Deviation

All NSS-NSS NSS-SS SS-SS All NSS-NSS NSS-SS SS-SS

0–2 0.061 0.062 0.061 0.061 0.0076 0.0074 0.0076 0.0076

2–4 0.073 0.065 0.076 0.074 0.0145 0.0105 0.0146 0.0145

4–6 0.109 0.066 0.115 0.140 0.1057 0.0115 0.1055 0.1394

6–8 0.108 0.069 0.111 0.140 0.1071 0.0132 0.1068 0.1422

8–10 0.103 0.066 0.105 0.136 0.1080 0.0114 0.1077 0.1445

2–10 0.075 0.061 0.080 0.078 0.0207 0.0085 0.0223 0.0200

Table 1.  The means and standard deviations for the BDD between pairs of subjects over five 2-minute time 
intervals and the post-stimulus time interval, broken down into three categories: pairs of control subjects (NSS-
NSS), mixed pairs with one control and one experimental subject (NSS-SS), and pairs of experimental subjects 
(SS-SS).

Time 
Interval
(minutes)

Mean Standard Deviation

All NSS-NSS NSS-SS SS-SS All NSS-NSS NSS-SS SS-SS

0–2 0.0139 0.0133 0.0140 0.0142 0.00388 0.00383 0.00394 0.00375

2–4 0.0125 0.0135 0.0125 0.0114 0.00373 0.00348 0.00371 0.00374

4–6 0.0116 0.0137 0.0117 0.00957 0.00394 0.00382 0.00361 0.00365

6–8 0.0118 0.0135 0.0119 0.0099 0.00410 0.00413 0.00396 0.00352

8–10 0.0119 0.0137 0.0119 0.0102 0.00392 0.00409 0.00364 0.00352

2–10 0.0127 0.0135 0.0129 0.0114 0.00408 0.00409 0.00393 0.00406

Table 2.  The means and standard deviations for the CSD between pairs of subjects over five 2-minute time 
intervals and the post-stimulus time interval, broken down into three categories: pairs of control subjects (NSS-
NSS), mixed pairs with one control and one experimental subject (NSS-SS), and pairs of experimental subjects 
(SS-SS).
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This led us to ask if IIBDD could be used to classify normal and alarmed behaviour by itself. We conducted 
three logistic regressions on the thirty-six test subjects using average speed, and immobility, the parameters used 
in the previous report, and IIBDD. The logistic regression for average speed had an intercept of 4.449 and a coef-
ficient of −0.168 (χ2 = 15.562, p-value = 7.98 × 10−5); the logistic regression for immobility had an intercept of 
−3.005 and a coefficient of 0.302 (χ2 = 30.659, p-value = 3.08 × 10−8); and the logistic regression for IIBDD had 
an intercept of −20.680 and a coefficient of 244.250 (χ2 = 25.494, p-value = 4.44 × 10−7). The data used for these 
regressions are in Supplementary Table 1 and the corresponding classifications are given in Table 4. The logistic 
regressions show that all three parameters can be used to classify normal and alarmed behavior, with duration of 
immobility and IIBDD exhibiting better goodness of fit than average speed. Therefore, IIBDD allows for classi-
fication of a new animal’s behavior as alarmed or normal if the new experiment replicates the conditions of the 
original experiment.

Discussion
Complex behaviors with common action patterns or modules, albeit in exaggerated or in compressed forms, can 
be precluded from identification as different. To address this issue we investigated two new applications of known 
techniques in computational geometry for curve alignment, which we call the Behavioral Distortion Distance or 
BDD, and for surface alignment that we call the Conformal Spatiotemporal Distance or CSD. These applications 
were motivated by the aim of devising generic methods that can be used to detect differences in a locomotory pat-
tern without the need for experimenters to define the action sequence that constitutes a particular behavioral state. 
We applied them here to reexamine a report of an alarm response in medaka36. As the pattern of change in locomo-
tion when a fish is alarmed is not universal and can vary in a species or context dependent manner38,39, it serves as 
a good test case for the two applications. We find that both BDD and CSD are suitable for quantitative comparison 
of such behaviors without the need to rely on domain specific expert knowledge of the underlying ethology. They 
confirm that indeed medaka behavior changes after exposure to Schreckstoff derived from conspecifics. The meth-
ods section describes the mathematical framework and definitions applied to develop these applications in detail.

The section analyzing pairwise differences shows that the fish in the two groups have similar locomotory 
behavior in the first 2-minutes, or in the pre-stimulus period. Therefore, there is no intrinsic behavioral difference 
between the groups at the onset. A significant change in BDD and CSD between the pre- and post-stimulus time 
intervals is noticeable only when the pairs had at least one fish exposed to Schreckstoff. This can be visualized 
more clearly in Figs 2 and 3. In such cases, the changes in BDD and CSD were complementary in the sense that 
the BDD was larger and the CSD was smaller. Notably, we did not observe significant differences in BDD between 
pairs of experimental fish and mixed pairs with one control fish and one experimental fish. This suggests that the 
behaviors of pairs of alarmed fish are as different from one another as they are from fish exhibiting normal behav-
ior. In particular, BDD did not identify a stereotypical alarm response. While the CSD between mixed pairs was 
not significantly different from that of control pairs and experimental pairs, the mean CSD between experimental 
pairs was significantly lower than control (in fact, all) pairs. This suggests that alarmed fish exhibited a lower 
level of variability in their action pattern. One possible interpretation for this, following a visual inspection of the 
heatmaps of these individuals, is that this reduced variability could be due to periods of immobility represented 
as hot spots in their heatmaps.

Our analysis of the medaka alarm response using BDD and CSD brings together two seemingly contrasting 
ideas of stereotypic innate behavior and individual variability. Combining our observations, we conclude that 
the alarm response to Schreckstoff in medaka comprises increased variation in the local geometry and kinematics 
of a trajectory with a common spatiotemporal pattern. This is consistent with the ethogram of periods of erratic 
swimming interspersed with periods of immobility. Increased variation in the local geometry suggests swimming 
trajectories become less predictable over time in alarmed fish that likely serves as an advantageous anti-predator 
strategy. Yet, the ability of CSD to capture a commonality mirrors a description in Schleidt5 of “observer’s eye and 
mind perform a complex task of averaging and assigning weights to many different characteristics”, essentially 
integrating information over the experimental time period.

Following our analysis of pairwise BDD and CSD, we investigated the ability of Intra-Individual BDD (IIBDD, 
the average BDD from a subject to itself over many randomly sampled non-overlapping time intervals) to clas-
sify normal and alarmed behaviors. We found that IIBDD performed comparably in this task to the duration of 
immobility via logistic regressions.

Time 
Interval
(minutes)

Randomized Partitions NSS-SS Partition

Distribution Mean
Distribution Std. 
Dev.

Mean 
BDD Z-score P-value

0–2 0.061 0.00023 0.061 −0.48 0.628

2–4 0.073 0.00046 0.076 6.93 4.21 × 10−12

4–6 0.109 0.00069 0.115 8.42 3.80 × 10−17

6–8 0.108 0.00047 0.111 6.67 2.64 × 10−11

8–10 0.103 0.00042 0.105 4.28 0.000019

2–10 0.075 0.00054 0.079 9.24 2.36 × 10−20

Table 3.  The mean BDD between NSS-SS pairs compared to the distribution of mean BDD between pairs 
from randomly generated partitions of the 36 assay subjects into two 18-element subsets, with corresponding 
standard scores and p-values, over each of the specified time intervals.
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For our implementation of BDD, we took into account kinematic factors of medaka swimming such as the 
instantaneous speed (rate of displacement), as well as intrinsic geometric properties of the trajectory such as cur-
vature (the rate of change of turning while traveling at unit speed; see Fig. 4 and Supplementary Video S1). Our 
choice of these factors was dependent on the information available in the original data-set, however, additional 
factors such as posture, if available, can be easily incorporated to calculate the distance between two generic 
behavioral curves. When comparing two behavioral curves, multiple optimal solutions are possible. In our con-
text, such cases are considered equivalent. For instance, if we compare an episode in which an animal turned 
exactly once to an episode where a second animal turned exactly twice with the same curvature for each turn and 
speed, there will be two minima for BDD - aligning the single spike in curvature from the first episode to either 
of the two spikes in curvature from the second episode. Both these possible alternative alignments will give the 
same BDD score. We consider the two alternative alignments to be equivalent as they do not reveal any additional 
information about the behavior of the two animals other than the fact that the two episodes exhibited different 
behaviors.

A general caveat of using the BDD and CSD for analysis is that they can only be applied to a pair of curves 
(resp. heat maps) at a time. It therefore accompanies a degree to difficulty in visualizing a characteristic feature, if 
any, common to all individuals when comparing two conditions. As demonstrated here, it is possible to overcome 
this limitation to an extent by (1) statistical analysis of all pairs and (2) intra-individual comparisons. Another 

Subject
Speed 
Classification

Immobility 
Classification

IIBDD 
Classification

NSS 01 NSS (0.189) NSS (0.069) NSS (0.065)

NSS 02 NSS (0.222) NSS (0.074) SS (0.754)

NSS 03 SS (0.764) SS (0.658) NSS (0.437)

NSS 04 NSS (0.218) NSS (0.137) NSS (0.152)

NSS 05 SS (0.760) SS (0.804) NSS (0.411)

NSS 06 NSS (0.209) NSS (0.045) NSS (0.063)

NSS 07 NSS (0.309) NSS (0.080) NSS (0.038)

NSS 08 NSS (0.029) NSS (0.056) NSS (0.009)

NSS 09 NSS (0.141) NSS (0.052) NSS (0.032)

NSS 10 NSS (0.251) NSS (0.074) NSS (0.009)

NSS 11 NSS (0.147) NSS (0.045) NSS (0.006)

NSS 12 SS (0.593) NSS (0.120) NSS (0.447)

NSS 13 SS (0.591) NSS (0.347) NSS (0.257)

NSS 14 SS (0.523) NSS (0.267) SS (0.806)

NSS 15 NSS (0.119) NSS (0.049) NSS (0.031)

NSS 16 NSS (0.108) NSS (0.074) NSS (0.193)

NSS 17 NSS (0.332) NSS (0.056) NSS (0.085)

NSS 18 NSS (0.118) NSS (0.056) NSS (0.297)

SS 01 SS (0.507) SS (0.998) SS (0.988)

SS 03 SS (0.866) SS (1.000) SS (0.889)

SS 04 NSS (0.380) SS (0.791) SS (0.966)

SS 05 SS (0.864) SS (0.998) SS (1.000)

SS 06 SS (0.960) SS (1.000) SS (0.613)

SS 07 SS (0.636) SS (0.874) SS (0.847)

SS 08 NSS (0.405) SS (0.952) NSS (0.323)

SS 09 SS (0.816) SS (0.927) SS (0.518)

SS 10 NSS (0.140) NSS (0.188) SS (0.534)

SS 14 SS (0.757) NSS (0.493) SS (0.635)

SS 15 SS (0.782) SS (0.998) SS (0.993)

SS 16 SS (0.872) SS (1.000) SS (1.000)

SS 17 SS (0.779) SS (0.813) SS (0.986)

SS 20 SS (0.907) SS (1.000) NSS (0.266)

SS 21 NSS (0.132) NSS (0.200) SS (1.000)

SS 22 SS (0.962) SS (1.000) SS (1.000)

SS 23 SS (0.970) SS (1.000) SS (1.000)

SS 24 SS (0.607) SS (0.512) NSS (0.349)

Accuracy 75% 86% 86%

Table 4.  Logistic regression results for classifying normal (NSS) versus alarmed (SS) behavior given the average 
speed, duration of immobility, and Intra-Individual BDD (IIBDD), respectively. Regression outputs less than 
0.5 are classified as NSS and those greater than 0.5 are classified as SS. Incorrect classifications are indicated with 
bold font.
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caveat of these measures is the assumption that the behavior being analyzed can be described by the intrinsic 
geometric and kinematic properties of locomotion. Indeed, behavioural posture is unaccounted in these analyses. 
However, here this limitation exists because of the recording technique employed. It can be overcome if postural 
data is identified in videos with higher resolution recordings that could then be incorporated to compute the BDD 
and CSD. In medaka, a higher BDD value and a lower CSD value represented an alarmed state. This may not be a 
characteristic feature of alarmed states in all species. However, if there is any substantial change in the pattern of 
locomotion compared to normal state in a species, it will likely be revealed in a change in BDD and CSD values in 
spite of individual differences in the execution of the motor action.

More generally, we have implemented the curve alignment process so that it can be used to compare any two 
curves that change over a common length of time. Our implementation can generate parametric curves from 
tracking data normally obtained for analysis of behavior (that is, x- and y-coordinates, time-stamp, frame rate, 
etc.) These new applications can therefore be used to compare locomotion dependent behavior of any animal 
tracked in a two dimensional arena. They will be particularly useful for characterizing the degree of similarity 
when comparing two or more conditions - such as when different treatments of a drug are applied to different 
groups, or in studying differences in exploratory pattern in different groups of animals. As demonstrated above, 
another useful aspect of these measures is that once a data-set is generated, the IIBDD from a smaller subset in a 
subsequent experiment is also informative provided the conditions of the original experiment are replicated when 
generating new data. These applications can also be applied to animals moving in 3-dimensional arena. We expect 
these methods will be more widely used after this demonstration of their utility. Accordingly, our software pack-
age is publicly available at the GitHub repository: https://github.com/mechunderlyingbehavior/locomotion.git.

Methods
Behavioral data.  The data used for testing the applications comes from Mathuru36. Details of the experi-
mental setup, including the method for preparation of the alarm substance (Schreckstoff), can be found in the 
methods section of the original publication. Briefly, fish behavior was recorded on an external Agent v5 HD web 
camera placed approximately 50 cm in front of the tank. Recorded videos were digitized at 20 frames/second. The 
frames were converted to 8-bit grayscale thresholded images by subtracting the background on ImageJ (from 
https://imagej.nih.gov/ij/). The spatial resolution of the videos was 2.4 pixels/mm. Fish position was tracked 
automatically on MetaMorph 6.3 (from https://www.moleculardevices.com) using the “track objects” algorithm. 
The original tracking data used in our model is uploaded to public data repository and is provided with this 
paper. Experiments in the original dataset were performed in accordance to the guidelines recommended by the 
Institutional Animal Care and Use Committee (IACUC) of the Biological Resource Center at A*STAR. Approved 
experimental protocols (IACUC 161110) were followed.

Curve alignment and behavioral distortion distance (BDD).  Our first method compares the behavior 
of two animals by comparing the intrinsic geometric properties and dynamics of their trajectories. It is an appli-
cation of the edit distance between curves introduced by Sebastian et al.16, which can be calculated via a technique 
known as dynamic time warping introduced by Sakoe and Chiba20.

Theoretical framework and definitions.  We assume that the trajectory of each fish is a continuous, smooth para-
metric curve given by a vector-valued function t tr: [ , ]f0

3→  where t0 and tf denote the start and end times of a 
specified time interval, respectively. To identify the geometric and dynamic features of the trajectories that are 
most relevant to behavior, we first calculate the rate at which an animal’s motion is changing relative to its current 
frame of reference. We model an animal’s frame of reference at a point along its trajectory with its Frenet-Serret 
frame at that point: For a non-degenerate, continuously differentiable, parametric curve C with the vector-valued 
function t tr: [ , ]f0

3→   it is well known in differential geometry27 that the unit tangent, normal, binormal vec-
tors, defined by

=
′

|| ′ ||
=

′
|| ′ ||

= ×T t t
t

N t T t
T t

B t T t N tr
r

( ) ( )
( )

, ( ) ( )
( )

, and ( ) ( ) ( ),

respectively, at each point of the trajectory form an orthonormal basis of 3 . (Here, g′(t) denotes the derivative of 
a function g with respect to t, ||v|| denotes the magnitude of a vector v 3∈  , and × denotes the cross product.) In 
other words, we can recoordinatize 3  according to a fish’s position and orientation at each moment in time. 
Measuring the rate of change of an animal’s frame of reference at a given point is equivalent to calculating the rate 

Figure 4.  The trajectory, speed, and curvature plots of the first 15 seconds of the fish NSS 01. The same color 
scale is used in each plot so corresponding points on each curve are colored with the same color.
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of change of its Frenet-Serret frame, given by the famous Frenet-Serret formula51,52, which states that if 
→t tr: [ , ]f0

3 is a non-degenerate, continuously differentiable, parametric curve and T(t), N(t), and B(t) are its 
unit tangent, normal, and binormal vectors at time t, then

d
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The upshot of the Frenet-Serret formula in our context is that the rate of change of the Frenet-Serret frame 
is completely determined by s(t), κ(t), and τ(t), which are the speed, curvature, and torsion, respectively, of r at 
time t. While speed will be familiar to many readers as the rate of displacement, the curvature indicates the rate 
at which the curve is turning while traveling at unit speed, and the torsion indicates the rate which the curve is 
twisting while traveling at unit speed. Portions of the trajectory, speed, and curvature of the Medaka NSS 01 fish 
(Supplementary Video 1) over the first fifteen seconds of its experiment are shown in Fig. 4 and in Supplementary 
Video 2.

Depending on the application, there may be additional factors that are relevant to behavior, such as position, 
posture, or distance to an object of interest. To accomodate such factors, we introduce the following notion:

Definition 1. Let t tr : [ , ]f0
3→  be the trajectory of an animal and let θ θΘ = …{ , , }m1  be a set of m behavioral 

factors, such as s, κ, and τ. The behavior curve of the trajectory indexed by Θ is the parametric curve 
C t t: [ , ]f

m
0 →Θ   given by θ θ= …ΘC t t t( ) ( ( ), , ( ))m1 .

Our objective is to find an acceptable notion of distance between the behavior curves of two episodes. Because 
it is virtually impossible to deliver an external chemical stimulus simultaneously to two freely swimming animals 
(as the stimulus takes time to disperse through the tank water), it is not meaningful to compare two behavior 
curves at common moments in time. For instance, a slight time lag due to different reaction times could yield 
arbitrarily large quantitative differences between two animals that exhibit identical sequences of behaviors with 
that approach. Instead, we must identify an appropriate correspondence between pairs of points from each behav-
ior curve in order to make a meaningful comparison. To solve this curve alignment problem, we apply the edit 
distance developed by Sebastian et al.16, which measures the least amount of energy required to bend, stretch, and/
or compress one parametric curve onto another by finding an alignment that minimizes a specified energy. In our 
context, an alignment between two parametric curves C t t: [ , ]f

d1
0

1→  and ⁎ ⁎C t t: [ , ]f
d2

0
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for each i ∈ {1, 2}, and the energy we seek to minimize is given by

E
u u

C u C u du( ) 1 ( ( ( )) ( ( )))
f u

u

i

d

i i
0 1

1
1

2
2

2f

0
∫ ∑ϕ ϕ ϕ=

−
− .

=

We can now define the behavioral distortion distance:

Definition 2. Let t tr : [ , ]f
d

1 0 →  and ⁎ ⁎t tr : [ , ]f
d

2 0 →   be the trajectories of two animals and let { , , }m1θ θΘ = …  
be a set of behavioral factors. The behavioral distortion distance between r1 and r2 with respect to Θ is

Er rBDD ( , ) ( )1 2 minϕ=Θ

where ϕmin is an alignment between the behavior curves ΘC 1  and ΘC 2 corresponding to r1 and r2, respectively, that 
minimizes E.

An example optimal alignment between the behavior curves with Θ = {s} for the first 15 seconds of observa-
tion for the Medaka NSS 01 fish and Medaka SS 01 fish is illustrated in Fig. 5. Supplementary Video 3 is an ani-
mation example that illustrates this alignment over a 30 second observation interval of the same pair of animals.

Implementation.  We obtain the trajectories from the “track objects” method in the MetaMorph software as 
sequences of x- and y-coordinates in the real plane. While the observational tank is 3-dimensional, the camera 
only captures the projection of a 2-dimensional, 20 cm × 12 cm, vertical cross-section of an animals movement. 
As described in Mathuru36, since videos were recorded from the front of the tank, displacement in the orthogonal 
width could not be recorded, effectively reducing a three dimensional space to a two dimensional observation. 
Ideally, we would be able to capture 3-dimensional trajectories; however, the BDD has the same derivation for 
2-dimensional trajectories. The Frenet-Serret frames of a plane curve are given by the tangent and normal vectors 
and the Frenet-Serret formula is identical with torsion constantly equal to 0.

We use dynamic time warping (DTW) to calculate BDD, the same approach Sebastian et al.16 use to calculate 
edit distance. Our implementation of the DTW algorithm is an extension of the standard DTW method in the 

https://doi.org/10.1038/s41598-019-52300-8


1 1Scientific Reports |         (2019) 9:16585  | https://doi.org/10.1038/s41598-019-52300-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Machine Learning module, mlpy53, in Python (see Muller54 for a description of how DTW works). Specifically, we 
modified the existing DTW method in mlpy to compare multivariate time series (instead of only univariate time 
series) by changing the distance function from 1-dimensional Euclidean distance to m-dimensional Euclidean 
distance for a specified m. While our method is able to handle input data of an arbitrarily high dimension (any 
number of behavioral factors), the analyses in this study have only used speed and curvature. The speed and cur-
vature values are generated from the x- and y-coordinates using the formulas

κ= ′ + ′ =
| ′ ″ − ′ ″ |s t x t y t t x t y t y t x t

v t
( ) ( ) ( ) and ( ) ( ) ( ) ( ) ( )

( )
,2 2

3

where the derivatives are computed by applying the gradient function in the NumPy55 Python package to the x 
and y time series. We smoothed the trajectories using the Savitzky-Golay function in the SciPy56 Python package 
(see Savitzky and Golay57 for a description of the Savitzky-Golay smoothing filter). That function takes two inte-
ger parameters, namely the order of the polynomials used for smoothing and length (number of frames) of the 
smoothing window centered at each frame. Since the choice of parameters is application dependent, we searched 
for the parameters that simultaneously minimized mean square error (deviation from raw trajectory) and jerk 
(rate of change of acceleration) for every order between 1 and 9 and every window length up to 600 frames 
(30 seconds). We encountered numerical instability for orders above 7. The products of mean square error and 
mean jerk with respect to window length are plotted for each order between 1 and 7 in Fig. 6. We used the order 
5 Savitzy-Golay smoothing with a window length of 53 frames.

Furthermore, to account for variations in mean values of behavioral factors between animals and differences 
in magnitudes between behavioral factors themselves, we normalize all of the data using the sigmoid function

=
+ μ σ− −

x
e

sig ( ) 1
1

,x( )/

where μ and σ are the mean and the standard deviation of the respective input sequence. We chose the sigmoid 
function for our particular application because the distribution of the curvatures of the trajectories is positively 
skewed, as can be seen from Fig. 4. Since the range of the sigmoid function is [0, 1], the value of BDDΘ is bounded 
above by the square root of the number of factors in Θ.

Surface alignment and conformal spatiotemporal distance (CSD).  The second application we con-
sidered compares the spatiotemporal distributions between two animals. When comparing heat maps of time 
spent at each location in an arena between animals, it is not useful to look at a straightforward average since hot 

Figure 5.  An alignment between the speed curves of the NSS 01 and SS 01 medaka over the first 15 seconds of 
the experiment. (A) The optimal alignment ϕmin; (B) the speed curve for NSS 01; (C) the speed curve for SS 01; 
(D) the two curves plotted simultaneously with pairs of matched points indicated by gray line segments; (E) the 
two curves plotted with parameterized or “warped” time.
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spots from different animals will average out and disappear. Instead, one must first align the heat maps so corre-
sponding hot spots coincide in order to reveal if there are common patterns and similarities. To do this, we apply 
the symmetric distortion energy between surfaces introduced by Koehl and Hass30,58.

Theoretical framework and definitions.  To examine the overall spatiotemporal patterns of an animal within an 
enclosure, we study its spatiotemporal distribution function, that is, the continuous function ρ Ω →:  where Ω 
is the enclosure of the animal and ρ(z) is the number of seconds the animal spends at location z within Ω over a 
specified time interval I. When Ω is a region in the plane, this function can be visualized/interpreted as a heatmap 
where small values of ρ correspond to “cold” points and large values of ρ correspond to “hot” points. Alternatively, 
the spatiotemporal distribution function can be visualized/interpreted as the surface in 3 with points {(x, y, ρ(x, 
y)|(x, y) ∈ Ω)}, as illustrated in Fig. 7. We assume that this surface is smooth and Riemannian, that is, it is equipped 
with a well-defined notion of distance and angles.

We can compare the spatiotemporal distribution functions between two animals by taking an appropriate 
norm between them, but that will be sensitive to a variety of factors that cannot be controlled, such as the posi-
tion of an animal when the substance is administered. Mirroring our formulation of BDD, we must build some 
flexibility into our model by first aligning the corresponding surfaces before calculating a norm between them.

To align a pair of Riemannian surfaces S1 and S2, we look at the space of diffeomorphisms between them. A 
differentiable map f: S1 → S2 is a diffeomorphism if it is a bijection and its inverse f  −1 is also differentiable. A dif-
feomorphism gives a point-to-point correspondence between surfaces in a way that does not introduce any tears 
or folds, but it can distort the shape of a surface in unusual ways, for instance by stretching it. Ideally, we would 
like to find a diffeomorphism that does not distort S1 while mapping it onto S2; such a mapping is called an isom-
etry. Unfortunately, an isometry between S1 and S2 may not exist. Any diffeomorphism between surfaces with 
different areas, for instance, will have to stretch one of the surfaces somewhere. While we cannot hope to find an 
isometry between S1 and S2, we can always find a map that preserves angles, such a map is called conformal. This 
is the content of a deep result in geometry called the Uniformization Theorem59, which states that every simply 
connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the 
complex plane, or the Riemann sphere. While a conformal mapping f : S1 → S2 may distort distances, it will stretch 
S1 uniformly in all directions at each point. This defines a function λ →S:f 1  that maps each point z in S1 to the 
factor by which vectors at p are stretched by f. The map f is an isometry if and only if λf(z) = 1 for all z ∈ S1. 
Accordingly, one can measure how far a conformal diffeomorphism is from being an isometry be calculating how 
far the stretching factor is from 1 at each point. Koehl and Hass58 introduced the symmetric distortion energy of a 
conformal diffeomorphism f : S1 → S2 with dilation functions λ →S:f 1  and S:f 21λ →−  as

∫ ∫λ λ= − + − .−( ) ( )E f z dA z dA( ) ( ) 1 ( ) 1sd
S

f
S

f
2 2

1 2

1

In our context, an optimal alignment between S1 and S2 will be a conformal diffeomorphism that minimizes 
the symmetric distortion energy. We can then measure the difference between two aligned surfaces by calculating 
the L2-norm between their corresponding functions.

Definition 3. Let S1 and S2 be the surfaces of spatiotemporal distribution functions :1ρ Ω →  and 
ρ Ω →:2 , respectively, and for every diffeomorphism f : S1 → S2 and z ∈ Ω let zf denote the unique point such 
that f z z z z(( , ( ))) ( , ( ))f f1 2ρ ρ= . The conformal spatiotemporal distance between S1 and S2 is given by

( ) ( )S S z z dA z z dACSD( , ) 1
2

( ) ( ) ( ) ( )f f1 2 1 2

2

2 1

2
1∫ ∫ρ ρ ρ ρ=

||Ω||






− + −



Ω Ω∗ ∗

−

where ||Ω|| denotes the area of Ω and =⁎f E fargmin ( )f sdconformal .

Figure 6.  Products of mean square error and mean jerk of Savitzky-Golay smoothing with respect to window 
length for each odd order between 1 and 7. The plots for the pairs of orders 2 and 3, 4 and 5, and 6 and 7 were 
indistinguishable in the graph, so the even orders were omitted.
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Implementation.  To approximate the spatiotemporal distribution function for each fish, we subdivide the rec-
tangular cross-section of the experimental enclosure into an m × n rectangular grid and assign to each subrectan-
gle the percentage of time spent in that region throughout a specified duration of time. We model the surface 
corresponding to this function by triangulating each of the rectangular regions and taking the induced triangula-
tion on the corresponding set of points in 3. To approximate a conformal mapping from this surface to the unit 
disk, it will be helpful to have a regular or uniform (all of the edge lengths are approximately equal) triangulation 
of the surface. Accordingly, we subdivide the edges of our preliminary triangulated surface so that all of the edge 
lengths are within a specified tolerance of equality and apply the Bowyer-Watson algorithm60,61 to obtain a 
Delaunay triangulation of the resulting vertex set.

We apporixmate the set of conformal mappings between two such triangulations with the Discrete 
Uniformization theorem62. In particular, we use an algorithm developed by Collins and Stephenson63 to find a 
discrete conformal mapping f S:i i →  from each triangulated surface / heat map to a triangulation of the unit 
disk. Once we have these conformal flattening maps, f1 and f2, we can express every conformal mapping f : S1 → S2 
as = −f f m f2

1
1 
 where  m : →  is a Möbius transformation of the unit disk. Finding an optimal alignment 

between S1 and S2 is then reduced to finding a Möbius transformation →m :   whose composition f m f2
1

1
−
 

 
minimizes the symmetric distortion energy. This is illustrated in Fig. 7.

A well known application of Schwarz’s Lemma64 in complex analysis is that every Möbius transformation from 
 to itself is determined by which point is sent to the origin and a rotation. For stability reasons, we map the cen-
troid of each surface to the origin58. This also reduces the minization problem to a single rotation, which we 
approximate by brute force, although there are algorithms in the literature for this29. We use the following discrete 
analogue of the symmetric distortion energy presented in Koehl and Hass58: If T1 and T2 are triangulations of 
smooth Riemannian surfaces S1 and S2, respectively, and f : S1 → S2 is a conformal mapping, then
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where eij denotes an edge in T1 or T2,  denotes the length of an edge (or its image), and Aij is the sum of the areas 
of the two triangles that contain the edge eij. Here the sums run over all of the interior edges in T1 and T2 
respectively.

Statistical analyses.  All of the Kruskal-Wallis H, Mann-Whitney U, and Wilcoxon T tests presented in the 
Results section were executed in SciPy56. A p value of 0.01 was considered significant. When multiple compari-
sons were made Bonferroni correction for multiple comparisons was applied to determine statistial significance. 
When reporting, the P values up to the third decimal place are presented instead of an asterisk sign.
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Figure 7.  The approximately uniform Delaunay triangulations corresponding to the heat maps of the NSS 01 
and SS 01 medaka, their conformal flattenings to the unit disk, the symmetric distortion minimizing Möbius 
transformation from the unit disk to itself, and corresponding alignments.
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