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Abstract: Uranium and thorium are two common natural radioactive elements with high concen-
trations in Earth’s crust. The main aim of this study is to estimate the inhaled effective dose of
uranium and thorium caused by a typical radioactive rare earth ore to the occupational population
and the surrounding public. The particulate matter (PM) concentrations in the atmosphere of four
typical workplaces and one surrounding living area were obtained by a high-flow sampling equip-
ment with a natural cellulose filter membrane. The critical parameter for the inhaled effective dose
estimation—the activity median aerodynamic diameter (AMAD)—was determined. The AMAD val-
ues of uranium and thorium in the atmosphere PM were 3.36 and 3.64 µm, respectively. The estimated
median effective dose caused by inhalation thorium among the occupational population ranged from
15.3 to 269.0 µSv/a, and the corresponding value for the surrounding public was 2.3 µSv/a. All
values for the effective dose caused by the inhalation of uranium were in the nSv magnitude.

Keywords: occupational exposure; particulate matter; radioactive elements; inhaled effective dose

1. Introduction

Radiological hazards in industries involving naturally occurring radioactive material
are a widespread radioactive problem and thus have attracted the attention of many
researchers [1,2]. Uranium and thorium are two of the most enriched natural radioactive
elements in Earth’s crust and thus represent a high concern. Uranium and thorium are
both radioactive and chemical toxicants and can cause leukemia, renal and nervous system
diseases, cancer, and so on [3,4]. Ingestion and inhalation are the two main pathways for
uranium and thorium entering the body. However, inhalation is the dominant intake route
for places with high particulate matter (PM) concentration in the atmosphere. Therefore,
the knowledge of uranium and thorium concentrations in the atmosphere is important for
evaluation of inhaled effective doses, which can predict their radiological hazard to the
population [5]. The inhaled uranium and thorium continue to decay until a stable nuclide is
formed. In this process, ionizing radiation that induces biological damage in human organs
is emitted [5]. The main biological effects for such ionizing radiation were heritable diseases
and cancer [6,7]. It has also been reported that the total risk of the above-mentioned effects
for adults was 4.2 × 10−2/Sv [7]. Past epidemiological studies [8] showed that the elevated
standard mortality ratio (SRM) due to pancreatic ailments among 592 workers exposed
to thorium PM was 4.13. Moreover, a 30-year follow-up study consisting of 995 workers
from a uranium-processing facility revealed a significant increase in death due to various
causes [9].

The ore mine in Bayan Obo, as selected in this study, is a typically associated radioac-
tive rare earth (RE) mine with high radiation levels. The maximum values of the external
radiation dose for this ore area and the surrounding living area were previously reported
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as 1184 and 172 nGy/h, respectively [10]; these values are higher than the world average
level (57 nGy/h) [11]. The average thorium concentration in this RE ore is approximately
0.04% [12], which is nearly 50 times higher than that in the earth’s crust [11]. The present
studies concerning the radioactivity of radioactive mines have mainly focused on the ioniz-
ing radiation dose rate of different workplaces, the radionuclide contents of the ore, radon
concentrations in the atmosphere, and so on [10,13,14]. However, the data are limited in
terms of the estimation of internal doses during ore occupational activities as a result of the
inhalation of radioactive uranium and thorium in the atmosphere.

PM size and its concentration in the atmosphere are the two important factors for
determining their potential hazard to the human body [15]. The activity median aero-
dynamic diameter (AMAD) is the most commonly used parameter to describe PM size.
The previous studies [16,17] showed that AMAD is a dominating factor for determining
pulmonary deposition. The smaller the PM, the easier it is to deposit in smaller airways;
the larger is the PM, the easier it is to deposit in the larger airways. Besides, AMAD is
a critically assumed parameter for estimating the effective dose of inhaled radionuclide.
Therefore, determining the AMAD of PM and the atmospheric concentration when the
inhaled effective dose is estimated is necessary.

The RE production activity of ore manifests potential radioactive hazard to occupa-
tional workers and the surrounding public. During ore mining activities, inhalation is
the main pathway for uranium and thorium PM to enter the human body. Therefore, the
inhaled effective dose of workers and the surrounding public require great attention. In
China, the atmospheric concentrations of uranium and thorium of an associated radioac-
tive area and their PM sizes are rarely investigated. Thus, this study aims to estimate
the effective dose of uranium and thorium inhaled by humans in the workplace and the
surrounding area.

2. Materials and Methods
2.1. Sample Collection

All samples were collected using natural cellulose filter membranes. In view of
estimating the inhaled effective dose of workers and the surrounding public, the samples
were obtained from four typical workplaces and one surrounding living area by using
high-flow sampling equipment. The four typical working areas are located in the ore site
of Bayan Obo, while the surrounding living area is approximately 4 km away from this
ore site. A total of 39 samples (31 samples from the workplaces and 8 samples from the
surrounding living area) were obtained. The sampling flow rate was 2.0 m3/min, and the
height of the sampling detector was approximately 1.2 m from the ground. The sampling
time in the workplaces was half an hour due to the high PM concentration in these areas,
while time in the surrounding living area was 6 h. Both sampling time and sampling
location were recorded. The collected samples were carefully placed in numbered plastic
bags after sampling.

As a means of determining the AMAD of uranium and thorium PM in the living area,
the samples were acquired using a size-segregated sampling equipment. The sampling
filter membranes were classified into the following six grades: 0.39–0.69, 0.69–1.3, 1.3–2.1,
2.1–4.2, 4.2–10.2, and >10.2 µm. The collecting time was 12 h per sample, and the sampling
flow rate was maintained at 0.57 m3/min. A total of 37 samples involving 222 filter
membranes were obtained. However, workplace AMAD is still assumed to be the value
recommended in a previous report [18].

2.2. Apparatus and Reagents

The inductively coupled plasma mass spectrometry (ICP-MS) apparatus used in this
research was Element 2 (Thermo Finnigan, Bremen, Germany), which is commonly applied
to the sector field with high resolution. A high-volume and size-segregated sampler
(IFIA 2, Staplex, New York, NY, USA; Model 236, Staplex, New York, NY, USA) and
its corresponding cellulose filter membranes (Staplex, New York, NY, USA), microwave
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digestion system (Preeken EXCEl, Shanghai, China), multi-standard uranium and thorium
solutions (Spex Certiprep Inc, Metuchen, NJ, USA) were all used in this work. The ultrapure
water (18.2 MΩ/cm) was obtained from the Milli-Q System (Millipore, Billerica, MA, USA).
Before measurement, 209Bi (Spex Certiprep Inc, Metuchen, NJ, USA) was added to all
solutions as the internal standard. The reference materials of the National Institute of
Standards and Technology (SRM 2783), International Atomic Energy Agency Standards
(IAEA-312), and National Reference Materials of China (GBW-07103) were all applied to
experimental assessment. All reagents containing hydrochloric acid (37% w/w, Beijing),
nitric acid (69% w/w, Beijing), and hydrogen peroxide (30% w/w, Beijing) were of analytical
grade except hydrofluoric acid (GR, Shanghai, China).

2.3. Sample Digestion

All samples were digested by the microwave system. The samples collected from
the living area were digested by 1.5 mL of nitric acid, 1.0 mL of hydrogen peroxide, and
4.5 mL of hydrochloric acid. The digestion temperature was maintained at 150 ◦C for 5 min
and 205 ◦C for 15 min at the maximum standard atmospheric pressure settings of 20 and
40 kPa, respectively. The samples collected from the occupational workplace were digested
by 4.0 mL of nitric acid, 1.0 mL of hydrogen peroxide, 12.0 mL of hydrochloric acid, and
3.0 mL of hydrofluoric acid. The digestion temperatures were maintained at 120 ◦C for
20 min (20 kPa), 180 ◦C for 20 min (30 kPa), and 200 ◦C for 45 min (40 kPa). After digestion,
the solution was heated to nearly dry. Then, the dryness solution was transferred into a
capacity bottle, and the washing procedure was performed using ultrapure water. Finally,
the volume of the solution was adjusted to 10 mL with ultrapure water. The digestion
procedures of the blank and reference materials were prepared in the same manner.

2.4. Sample Analysis

All samples were determined using ICP-MS. The instrument parameters settings were
taken from a published report [19]. The tuning fluid of the mass spectrometer was applied
for quality correction and resolution calibration, and 209Bi was added to all solutions as
the internal standard before measurement. Calibration curves for a series of uranium and
thorium standard solutions (10, 100, and 500 ng/L and 1, 5, and 10 µg/L) were created for
each analysis. The cleaning fluid during measurement was 2% (v/v) nitric acid. All of the
testing samples were filtered with 0.22 µm of hydrophilic membrane before analysis by
ICP-MS. The cellulose filter membrane reference (SRM 2783), the soil standard materials
(IAEA-312), and the rock standards (GBW-07103) were all applied in the evaluation of the
experimental process. The results obtained by using our procedure were all compared with
the concentrations of known reference standard materials.

3. Results
3.1. Activity Median Aerodynamic Diameter Determination Experiment

Here, 222 uranium and thorium contents, including six scales (0.39–0.69, 0.69–1.3,
1.3–2.1, 2.1–4.2, 4.2–10.2, and >10.2 µm), were obtained. The observed particle sizes of
uranium and thorium and their corresponding relative mass concentration percentages
are listed in Figure 1. The 50% cumulative frequency cutoff point was set in the range of
2.1–4.2 µm.
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Figure 1. PM size distribution of uranium and thorium in atmosphere.

Researchers generally believe that the particle size distribution of radionuclide in
the atmosphere has a log-normal distribution [20–22]. The particle size distributions of
uranium and thorium are also assumed to have a log-normal distribution. Thirty-seven
AMAD values of uranium and thorium were obtained on the basis of the log-normal
distribution assumption in this study. The min, 25th, median, 75th, and max of the AMAD
for the 37 samples are shown in Table 1. The average AMAD values of the uranium and
thorium PM were 3.36 and 3.64 µm, respectively.

Table 1. Descriptive parameters of AMAD for uranium and thorium PM.

AMAD Min P25 Median P75 Max

Uranium 2.07 2.97 3.36 3.92 5.68
Thorium 2.37 3.27 3.64 4.01 6.84

P25 and P75 are the 25th and 75th percentiles, respectively.

3.2. Estimation of Inhaled Effective Doses of Uranium and Thorium for Workers and the
Surrounding Public

According to the natural abundance of uranium in the crust, the gram (g) unit of
natural uranium was converted into Becquerel (Bq) by using the conversion factor of
1 g = 12.35 kBq of 238U, 0.57 kBq of 235U, and 12.38 kBq of 234U. The conversion factor of
natural thorium was 1 g = 4.07 kBq of 232Th.

The protective mask used by the occupational population in the ore site is KN90,
which means that 10.0% of the PM can penetrate the mask [23]. The occupational workers
are assumed to have been involved heavy labor, and the inhalation volume during working
time is 13.5 m3/day [24]. Also, all employees are assumed to have stayed in the surrounding
living area except during working time, and the total inhalation volume is 13.3 m3/day
during the non-working time of employees [24]. The activities of the residents of the
surrounding living area are recognized as light labor, and the inhalation volume is assumed
to be 22.9 m3/day [24]. According to the responses from the self-designed questionnaire,
the median working time of the employees is 251 days per year and 8 h per day.

The dose coefficient is greatly affected by AMAD. However, only a few dose coef-
ficients based on dispersed AMAD have been reported in the international commission
on radiological protection (ICRP) reports [25], including 0.001, 0.003, 0.01, 0.03, 0.1, 0.3,
1.0, 3.0, 5.0, 10.0, and 20.0 µm. The AMAD in this study was assumed to be 5 µm for the
occupational workplace [15] and 3 µm for the surrounding living area in accordance with
Section 3.1. The dose coefficients were obtained from ICRP 137 [25]. Formula (1) [26,27] was
applied to estimate the inhaled effective dose of uranium and thorium in the atmosphere.
The calculated effective doses of uranium and thorium are listed in Table 2.

E(τ) = (1 − η)× Cj × B × e(τ)j (1)
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where
η—mask filtration efficiency, in which 90.0% is obtained for the workers in this study
Cj —activity of radionuclide j in the air, Bq/m3

B —annual ventilation rate, m3/year
e(τ)j—dose coefficient for the inhalation of radionuclide j, SV/Bq
E(τ)—annual effective dose, Sv

Table 2. Effective dose of uranium and thorium inhaled by workers and the public.

Sample Spots
Uranium (nSv/a) Thorium (µSv/a)

P25 Median P75 P25 Median P75

Surrounding public 0.8 0.8 1.4 2.3 2.3 3.9
Employees at spot 1 70.0 82.7 104.6 227.8 269.0 340.4
Employees at spot 2 8.1 17.0 41.8 26.0 55.1 135.7
Employees at spot 3 6.7 15.1 28.2 21.5 49.0 91.4
Employees at spot 4 2.9 4.8 13.2 9.2 15.3 42.5

P25 and P75 are the 25th and 75th percentiles, respectively.

4. Discussion

Natural uranium and thorium are the parent nuclei of most natural decay products
and are ubiquitously in the crust where they are present at average concentrations of 2.8
and 7.4 µg/g [11]. In our study, hydrofluoric acid was necessary for digesting the PM for
the workplace samples, but it was not obligatory for digesting PM in the living place speci-
mens. The probable cause may be attributed to the different size distributions or chemical
compositions of PM between the workplace and living area. The methods of digestion
and measurement were assessed on the basis of their corresponding reference materials.
Similar experimental procedures were previously reported by some studies [19,26,28–31].

AMAD is an important parameter when evaluating the hazardous effect of radionu-
clide in PMs on the human body [32]. PM is characterized as particles that dynamically
impact each other and undergo sedimentation and diffusion [18]. Large PM is likely
blocked by the nose, mouth, and lager respiratory tract and has low likelihood to reach
the lung area. PM that enters the bronchioles of the lungs is the main hazard to the hu-
man body. The AMAD of natural radionuclides (40K, 210Pb, and 7Be) have been reported
in the literature [15,20–22,33], but the AMAD of natural uranium and thorium is rarely
investigated. The average AMAD values of natural uranium and thorium in the living area
were estimated to be 3.36 and 3.64 µm, respectively. However, due to the certain limiting
factors, such as the management policy and poor operability of occupational places, the
determined AMAD of uranium and thorium needs to be further studied. According to the
literature [18], when the AMAD of the inhaled nuclide is unknown, the AMAD for occupa-
tional workplaces is always assumed to be 5 µm. Given that the dose coefficient has been
given on the basis of several various dispersed AMAD, the AMAD for the occupational
population is 5 µm when the dose coefficient can be obtained. Meanwhile, the AMAD for
the surrounding public was assumed to be 3 µm on basis of the fact that the AMAD of
uranium and thorium was close to 3 µm in our study.

The measurement of inhalation can be performed using personal air samplers (PAS),
which is generally known to be the most accurate method. However, this approach
cannot be used routinely owing to several existing difficulties, such as the unwillingness
of workers to wear PAS and the resulting low sampling volume. High-flow sampling
equipment techniques can be used to complement these deficiencies.

The occupational place in our study only involved the areas where the physical
processes of ore mining and beneficiation activities are being conducted. The uranium and
thorium isotopes in our study area have natural abundance. The thorium in the natural
environment exists almost entirely in the form of 232Th, while uranium exists in 99.275% of
238U, 0.720% of 235U, and 0.005% of 234U [34]. Therefore, when the inhaled effective doses
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of uranium and thorium were estimated, the natural abundance of the radionuclides of
238U, 235U, 234U, and 232Th were all considered.

In the experimental procedure, the possible components of the sample, including
living area and occupational site, were analogically analyzed by using standard materials
containing SRM 2783, IAEA-312, and GBW-07103. The measurement results were all
consistent with the reference values, indicating that the measurement process could truly
reflect the actual values. In the process of effective dose estimation, the following possible
influencing factors were considered: AMAD, mask filtration efficiency, various residence
times and dose coefficients of the workplace and the surrounding public, inhalation volume
of different working environments, and so on. With this approach, the estimation of
effective dose is expected to be close to the true value.

The median of the inhaled effective doses of uranium and thorium for the occupational
workers ranged from 4.8 to 82.7 nSv/a and from 15.3 to 269.0 µSv/a, and the corresponding
values for the surrounding public were 0.8 nSv/a and 2.3 µSv/a. The limited number
of samples collected from the non-workplace in this study showed the consistent result
with previous study [26]. The recorded data were all significantly less than the annual
radiation dose induced by the natural source (2.4 mSv/a) [11] and lower than that in
China (2.3 mSv/a) [35], but they are significantly higher than those for the normal living
environment of China (1.206 µSv/a) [26].

5. Conclusions

The annual effective doses caused by inhaling uranium and thorium from typical
radioactive RE ore were in the nSv and µSv magnitudes according to its concentrations in
the atmosphere, respectively. However, the inhaled effective doses of uranium and thorium
from the selected radioactive ore sites were lower than the doses induced by natural
radiation sources. The obtained value was much higher than that of the normal living
environment presented in other reports, especially for workers of ore sites. Significant
attention should be given to the inhalation of uranium and thorium by workers and the
surrounding public from associated radioactive ore sites in the future.
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