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In this paper, a deterministic compartmental model is presented to assess the impact of
vaccination and non-pharmaceutical interventions (social distance, awareness, face mask,
and quarantine) on the transmission dynamics of COVID-19 with co-morbidity and re-
infection. An expression for the basic reproduction number is then derived for this
model. Theoretical analysis shows that the model exhibits backward bifurcation phe-
nomenon when the basic reproduction number is less than unity. But for the case of no re-
infection, the model has a globally asymptotically stable disease-free equilibrium (DFE)
when the basic reproduction number is less than unity. Furthermore, it is shown that in
the case of no re-infection, a unique endemic equilibrium point (EEP) of the model exists
which is globally asymptotically stable whenever the reproduction number is greater than
unity. From the global sensitivity and uncertainty analysis, we have identified mask
coverage, mask efficacy, vaccine coverage, vaccine efficacy, and contact rate as the most
influential parameters influencing the spread of COVID-19. Numerical simulation results
show that the use of effective vaccines with proper implementation of non-pharmaceutical
interventions could lead to the elimination of COVID-19 from the community. Numerical
simulations also suggest that the control strategy that ensures a continuous and effective
mass vaccination program is the most cost-effective control strategy. The study also shows
that in the presence of any co-morbidity and with the occurrence of re-infection, the
disease burden may increase.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The novel coronavirus (COVID-19) caused by SARS-CoV-2 became a global public health concern in 2020 and 2021 and is
still posing a health and economic threat throughout the world (Center for disease control and prevention, coronavirus
disease, 2022). Almost all the countries in the world are trying to deal with this new contagious disease and getting rid of
it has now become the most important challenge for all countries. It first appeared in China in December 2019 and due to its
high infectiousness, it spreads very fast all over the world, putting the world at extreme global crisis (Wu et al., 2020, Bubar
et al., 2021). It becomes more dangerous for people of any age with certain medical issues including cardiovascular disease,
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diabetes, high blood pressure, cancer, etc (World health organization emergencies preparedness response, 2022). A report
from a survey of 138 COVID-19 infected individuals confirms it by showing that more than 45% of the infected individuals had
one or more co-morbidities and that infected individuals who were admitted to the intensive care unit (ICU) had a higher
number of co-morbidities (72.2%) compared to the infected individuals who didn't admit to the ICU (37.3%) (Jain and Yuan,
2020). As of June 20, 2022, 539928791 people were infected with the Covid-19 and 6320448 people died worldwide (World
health organization, 2022).

On the one hand, its high infectious rate, and on the other hand, the frequent emergence of new variants have made the
control of COVID-19 even more challenging. In these circumstances, the invention of effective vaccines is not the only way to
address this challenge. Hence non-pharmaceutical interventions should also be maintained. At the beginning of 2020, the
genetic sequence of SARS-CoV-2 was published. After that, corporations, governments, international health organizations,
and university research groups started to work for developing vaccines against COVID-19 (Le et al., 2020, World health
organization timeline e covid-19, 2020). After the initial development and three-stage clinical trials for safety and effec-
tiveness, the following vaccines obtained World health organization's EUL (Emergency Use Listing): The Pfizer-BioNTech
Comirnaty vaccine on 31 December 2020, the SII/COVIDSHIELD and AstraZeneca/AZD1222 vaccines on 16 February 2021,
the Janssen/Ad26.COV 2.S vaccine on 12 March 2021, the Moderna COVID-19 vaccine (mRNA 1273) on 30 April 2021, the
Sinopharm COVID-19 vaccine on 7 May 2021, the Sinovac-CoronaVac vaccine on 1 June 2021, the Bharat Biotech BBV152
COVAXIN vaccine on 3 November 2021, the Covovax (NVX-CoV2373) vaccine on 17 December 2021, the Nuvaxovid (NVX-
CoV2373) vaccine on 20 December 2021 (World health organization timeline e covid-19, 2022). The Pfizer-BioNTech COVID-
19, the Moderna, and the Johnson and Johnson's Janssen vaccines are fully approved by FAD for people 18 years of age and
older and only the Pfizer-BioNTech COVID-19 has approbation for emergency use for children ages 5 years and older (Center
for disease control and prevention, 2022). More than 529 million vaccine doses have been administered in the United States
from 14 December 2020 through 18 January 2022. During this period, the mortality rate received by Vaccine Adverse Event
Reporting System (VAERS) was 0.0022% among the people who received a COVID-19 vaccine (Center for disease control and
prevention, 2022). Globally a total of 9,571,502,663 vaccine doses have been administered by 18 January 2022 (World health
organization, 2022).

Besides the use of effective vaccine andmedical research, mathematical models can be a powerful means in getting insight
into the dynamics of any infectious disease like COVID-19which can help decisionmakers take necessary decisions to prevent
the spread of COVID-19. It also helps assess the impact of vaccines and the use of NPIs in controlling the spread of the
pandemic and mitigating its life-threatening effects. A significant number of mathematical models have already been
developed and used to study the transmission dynamics of COVID-19 and also to control the disease burden. As for example, a
mathematical model with fractal-fractional operators has been designed by the authors in Atangana (2020) to assess the
effectiveness of lockdown before vaccination. A model for the dynamics of COVID-19 with re-infection has been proposed by
the authors in Zamir et al. (2021). The infection dynamics of COVID-19 is studied using mathematical models to assess the
impact of NPIs by the authors in Ngonghala et al. (2020). The authors in Gumel et al. (2021) proposed a nonlinear mathe-
matical model to understand the transmission dynamics of COVID-19 in the presece of vaccinations and non-pharmaceutical
interventions. A mathematical model with fractional order derivative has been formulated in Khan and Atangana (2020).
Impact of co-morbidity, re-infection and NPIs have been investigated by the authors in Saha et al. (2022). Again, to lessen the
disease burden, different control measures are implemented in the proposedmodel (Omame et al., 2020, Das et al., 2021, Shen
et al., 2021, Abioye et al., 2021, Asamoah et al., 2022 and so on). Infact, optimal control strategies and cost analysis has become
important to suggest effective control strategies to reduce the prevalence of COVID-19 and also to reduce the disease burden.
In Omame et al. (2020), using three control strategies authors showed that the most effective one of all the strategies is the
one which avoids COVID-19 infection by co-morbid susceptibles. Authors in Das et al. (2021), suggested that a combination of
non-pharmaceutical interventions and vaccination can reduce COVID-19 largely. In Shen et al. (2021), using four control
strategies authors showed that considering effective control strategies, infected cases can be reduced. In thework Abioye et al.
(2021), three control strategies are considered and it was shown that multifaceted approach is required to fight against
COVID-19. Bandekar and Ghosh (2022), also performed optimal control analysis. Their analysis reveals that if policies related
to testing, contact tracing, and mask-wearing are implemented, the spread of COVID-19 can be reduced. In Asamoah et al.
(2022), authors implemented four control strategies considering all possible combinations of the strategies and they
showed that practicing physical or social distancing protocols is the most cost-effective strategy. There are many other
interesting articles related to COVID-19, some of which can be mentioned here (Ivorra et al., 2020, Kucharski et al., 2020,
Mizumoto and Chowell, 2020, Ferguson et al., 2020, p. 20, Okuonghae and Omame, 2020, Mancuso et al., 2021, Srivastav et al.,
2021) and the references therein.

Motivated by the above investigations on COVID-19, we have formulated a newmathematical model for the transmission
dynamics of COVID-19 based on themodel (Saha et al., 2022) incorporating vaccination of the susceptible individuals and also
considering re-infection of the recovered individuals. We have also considered vaccinating a portion of the recovered in-
dividuals who have yet to be immunized. The aim of this research is to assess the impact of vaccination and non-
pharmaceutical interventions (NPIs) on the spread of COVID-19. Our aim is also to highlight the effect of co-morbidity and
re-infection on the transmission dynamics of COVID-19. In this paper, we have also implemented four control strategies
considering all possible combinations of the strategies during the numerical simulation of the optimal control problemwhich
is a new feature of this paper as the control strategies are different from Asamoah et al. (2022) and Shen et al. (2021). The
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sensitivity analysis of the parameter of our model with respect to some response functions is performed to detect which
parameters have greater impact on the transmission of COVID-19.

The entire paper is decorated in the following manners. In section 2, the formulation of the COVID-19 model is presented
and non-negativity and boundedness of the model solutions are proved. Section 3 is engaged with the rigorous theoretical
analysis of the model to discuss about the stability of equilibrium. In section 5, the model is extended based on optimal
control theory and analyzed mathematically to prove the existence of an optimal control using the Pontryagin's maximum
principle. Numerical simulations are presented in section 6. Section 7 is devoted to the discussion and conclusion about the
findings.
2. Model formulation

We develop the model by dividing the total human population at time t, denoted by N(t), into twelve mutually exclusive
classes: susceptible (S(t)), susceptible with co-morbidity (Sc(t)), vaccinated (Sv(t)), exposed in early stage (E1(t)), pre-
symptomatic (E2(t)), asymptomatic infected without co-morbidity (Ia(t)), symptomatic infected without co-morbidity
(Is(t)), asymptomatic infected with co-morbidity (Iac(t)), symptomatic infected with co-morbidity (Isc(t)), quarantined
(Q(t)), hospitalized (H(t)) and recovered (R(t)), so that.

N(t) ¼ S(t) þ Sc(t) þ Sv(t) þ E1(t) þ E2(t) þ Ia(t) þ Is(t) þ Iac(t) þ Isc(t) þ Q(t) þ H(t) þ R(t).

To formulate the model we consider the following assumptions:

� Birth rate is not considered.
� Exposed individuals in early stage are asymptotically infected and unable to infect others.
� Pre-symptomatic infectious individuals are shedding viruses and can infect others.
� Quarantine and hospitalization are perfect and individuals belonging to these classes can not infect others.
� Individuals recovered from COVID-19 may again return to exposed in early stage class at a lower rate.

Susceptible individuals acquire infectionwith COVID-19 upon contacting with individuals in the E2, Ia, Is, Iac and Isc classes,
at a rate l, where

l ¼ ð1� emÞ b ðhe E2 þ ha Ia þ IsþT 1 IacþT 2 IscÞ
N � ðQ þ HÞ ; (1)

where, b represents the contact rate for effective transmission of COVID-19. 0 < m � 1 represents the percentage of mask
coverage and 0 < e � 1 indicates face masks efficacy. It is assumed that pre-symptomatic individuals (E2 class) and asymp-
tomatic infected individuals (Ia class) infect others at a lower rate, he b and ha b, respectively with 0 < he, ha < 1. Furthermore
modification parameter T 1; T 2 >1 indicate individuals in Iac and Isc classes can transmit COVID-19 at an increased rate,
T 1 b andT 2 b, respectively.

The equations for the transmission dynamics of COVID-19 with co-morbidity in the presence of vaccination is given by the
following system of non-linear differential equations (the schematic diagram of the model is shown in Fig. 1 and the pa-
rameters are described in details in Table 1).
Fig. 1. Schematic diagram of the COVID-19 model (2).
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Table 1
Model parameters with description.

Parameter Description

L Recruitment rate
b Effective contact rate for COVID-19 transmission
xs Vaccination rate for susceptible individuals
e Vaccine efficacy
m Proportion of individuals who use masks
e Face mask efficacy
T 1;T 2 Relative risk of high infectiousness of individuals in Iac and Isc classes

compared to individuals in Is class
T 3 Modification parameter accounting for increased susceptibility

to COVID-19 infection by co-morbid susceptible
he, ha Relative risk of low infectiousness of individuals in E1 and Ia classes

compared to individuals in Is class
U Proportion of co-morbid susceptible individuals
a Re-infection rate of recovered individuals
s1 Progression rate of early exposed individuals (E1) to pre-symptomatic (E2) class
s2 Rate of progression of pre-symptomatic (E2) individuals to infectious classes

(Ia, Is, Iac and Isc, respectively)
d1, d2 and d3 Fraction of pre-symptomatic individuals who progress to the Ia, Is and Iac classes, respectively

(d1 þ d2 þ d3 � 1)
1 � (d1 þ d2 þ d3) Fraction of individuals move from E2 class to Isc class
ss and ssc Transmission rate from Is and Isc classes to Q class, respectively
4s, 4sc and 4q Transition rate from Is, Isc and Q classes to H class, respectively
ja, js, jac, jsc, jq and jh Recovery rate of individuals from Ia, Is, Iac, Isc, Q and H classes, respectively
de, da, ds, dac, dsc and dh Disease related death rate for individuals in the E2, Ia, Is, Iac, Isc and H classes, respectively
m Natural death rate
q1 modification parameter (q1 > 1) implying high vaccination rate provided to the co-morbid susceptible individuals
q2 modification parameter (0 < q2 < 1) implying low vaccination rate provided to the recovered individuals
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_S ¼ L� l S� ðUþ xs þ mÞS;
_Sc ¼ U S�T 3 l Sc � ðq1 xs þ mÞ Sc;
_Sv ¼ xs Sþ q1 xs Sc þ q2 xs R� ð1� eÞ l Sv � m Sv;
_E1 ¼ l SþT 3 l Sc þ ð1� eÞ l Sv þ a lR� ðs1 þ mÞ E1;
_E2 ¼ s1 E1 � ðs2 þ de þ mÞ E2;
_Ia ¼ d1 s2 E2 � ðja þ da þ mÞ Ia;
_Is ¼ d2 s2 E2 � ðss þ js þ 4s þ ds þ mÞ Is;
_Iac ¼ d3 s2 E2 � ðjac þ dac þ mÞ Iac;
_Isc ¼ ð1� dÞ s2 E2 � ðssc þ jsc þ 4sc þ dsc þ mÞ Isc;
_Q ¼ ss Is þ ssc Isc � ðjq þ 4q þ mÞQ ;
_H ¼ 4s Is þ 4sc Isc þ 4q Q � ðjh þ dh þ mÞH;
_R ¼ ja Ia þ js Is þ jac Iac þ jsc Isc þ jq Q þ jh H � a lR� ðq2 xs þ mÞR;

(2)

where, d ¼ d1 þ d2 þ d3.

L is the recruitment rate of susceptible humans into the population. U represents the ratio of susceptible individuals who
have co-morbidity. It is assumed that susceptible individuals having co-morbidity are more susceptible to COVID-19 infection
(T 3 l with T 3 >1) than susceptible individuals having no co-morbidity.
3. Theoretical analysis

3.1. Fundamental properties

3.1.1. Non-negativity of the solutions
To show the non-negativity of the solutions we prove the following theorem.

Theorem 1. The solutions of the model (2), with initial conditions S(0) > 0, Sc(0)� 0, Sv(0)� 0, E1(0)� 0, E2(0)� 0, Ia(0)� 0, Is(0)
� 0, Iac(0) � 0, Isc(0) � 0, Q(0) � 0, H(0) � 0, and R(0) � 0 are positive for all time t > 0.

Proof. Let fS; Sc; Sv; E1; E2; Ia; Is; Iac; Isc; Q ; H; Rg be the set of solutions of the model (2). From the first equation of the
model (2) we can write
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d
dt

�
SðtÞ exp

�Zt

0

lðuÞ duþ k1 t
��

¼ L

�
exp

�Zt

0

lðuÞ duþ k1 t
��

; (3)

where, k1 ¼ U þ xs þ m.
From (3),

SðtÞ exp
�Zt

0

lðuÞduþ k1 t
�
� Sð0Þ ¼

Zt

0

L

�
exp

�Zx

0

lðuÞ duþ k1 t
��

dx:
Hence,

SðtÞ ¼ Sð0Þ exp
�
�
Zt

0

lðuÞ duþ k1 t
�
þ exp

�
�
Zt

0

lðuÞ duþ k1 t
� Zt

0

L

�
exp

�Zx

0

lðuÞduþ k1 t
��

dx>0:
Proceeding in the same way, it can be shown that.
Sc � 0, Sv � 0, E1 � 0, E2 � 0, Ia � 0, Is � 0, Iac � 0, Isc � 0, Q � 0, H � 0, and R � 0 for all t � 0. ,

3.1.2. Boundedness of the solution
Adding all the equations of the model (2), we get

dN
dt

¼ L� mN � de E2 � da Ia � ds Is � dac Iac � dsc Isc � dh H: (4)
It is obvious that 0 < E2 � N, 0 < Ia � N, 0 < Is � N, 0 < Iac � N, 0 < Isc � N, 0 < H � N.
It follows that

L� ðmþ de þ da þ ds þ dac þ dsc þ dhÞ N � dN
dt

< L� mN; (5)
Thus, L
mþdeþdaþdsþdacþdscþdh

� lim inf
t/∞

N � lim sup
t/∞

N � L
m .

This implies lim sup
t/∞

N � L
m .

3.1.3. Invariant regions

Now let us consider the region D ¼
n�

S; Sc; Sv; E1; E2; Ia; Is; Iac; Isc; Q ; H; RÞ2R12
þ : N � L

m

o
.

From equations (4) and (5) we can write

dN
dt

� L� mN: (6)
Solving this and using a comparison theorem as described in Lakshmikantham et al. (1989) we have NðtÞ � Nð0Þ e�m t þ
L
m

�
1� e�m t�. Particularly, it can be shown that NðtÞ � L

m if Nð0Þ � L
m . This implies all the solutions of system (2) with initial

conditions in D remains in D for all time t > 0. Thus, the region D is positive invariant and attracting (Hethcote, 2000).

3.2. Local asymptotic stability of the DFE

From the COVID-19 model (2), the disease-free equilibrium, E 0, is obtained as

E 0 ¼ �
S*; S*c ; S

*
v ; E

*
1; E

*
2; I

*
a; I

*
s ; I

*
ac; I

*
sc; Q

*; H*; R*
� ¼

�
L

k1
;

UL

k1 k2
;
L xs ðk2 þ U q1Þ

k1 k2 k3
0; 0; 0; 0; 0; 0; 0; 0; 0

	
: (7)
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To establish the condition for local asymptotic stability (LAS) of the DFE, the next generation operator method described in
Diekmann et al. (1990), Van den Driessche andWatmough (2002) is used. The next generation matrices for the new infection
terms and remaining transfer terms, denoted by F and V respectively, are given by

F ¼

0
BBBBBBBB@

0 Fe Fa Fs Fac Fsc 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
CCCCCCCCA
;V ¼

0
BBBBBBBBBB@

k4 0 0 0 0 0 0 0
�s1 k5 0 0 0 0 0 0
0 �d1 s2 k6 0 0 0 0 0
0 �d2 s2 0 k7 0 0 0 0
0 �d3 s2 0 0 k8 0 0 0
0 �ð1� dÞ s2 0 0 0 k9 0 0
0 0 0 �ss 0 �ssc k10 0
0 0 0 �4s 0 �4sc 0 k11

1
CCCCCCCCCCA
;

where.

Fe ¼ ð1 � emÞ b heS
*þt3 S

*
cþð1�eÞ S*vþa R*

N** ; Fa ¼ ð1 � emÞ b haS
*þt3 S

*
cþð1�eÞ S*vþa R*

N** ; Fs ¼ ð1 � emÞ b S*þt3 S
*
cþð1�eÞ S*vþa R*

N** ;

Fac ¼ ð1� emÞ b t1
S* þ t3 S

*
c þ ð1� eÞ S*v þ aR*

N** ; Fsc ¼ ð1� emÞ b t2
S* þ t3 S

*
c þ ð1� eÞ S*v þ aR*

N** ; N** ¼ N* � ðQ* þH*Þ;

k1 ¼ Uþ xs þ m; k2 ¼ q1 xs þ m; k3 ¼ m; k4 ¼ s1 þ m; k5 ¼ s2 þ de þ m; k6 ¼ ja þ da þ m; k7 ¼ ss þ js þ 4s þ ds þ m;

k8 ¼ jac þ dac þ m; k9 ¼ ssc þ jsc þ 4sc þ dsc þ m; k10 ¼ jq þ 4q þ m; k11 ¼ jh þ dh þ m; k12 ¼ q2 xs þ m and d ¼ d1 þ d2 þ d3

.
Following the approach described in Chavez et al. (2002), Hethcote (2000), it can be shown that the basic reproduction

number, denoted by R c, is given by

R c ¼ r ðF V�1Þ ¼ R eþR aþR sþR acþR sc; (8)
where, r represents the spectral radius of the next generation matrix F V�1 and

R e ¼ Fe Be; R a ¼ Fa Ba; R s ¼ Fs Bs; R ac ¼ Fac Bac; R sc ¼ Fsc Bsc;
with,

Be ¼ s1
k4 k5

; Ba ¼ s1 s2 d1
k4 k5 k6

; Bs ¼ s1 s2 d2
k4 k5 k7

; Bac ¼ s1 s2 d3
k4 k5 k8

; Bsc ¼ s1 s2 ð1� dÞ
k4 k5 k9

:

Consequently, using Theorem 2 of Van den Driessche and Watmough (2002) the following result can be established.

Lemma 1. The DFE of the COVID-19 model given by (2), is locally-asymptotically stable (LAS) if R c < 1, and unstable if R c > 1.
3.3. Endemic equilibrium point (EEP)

Let E 1 ¼ ðS*; S*c ; S*v ; E*1; E*2; I*a; I*s ; I*ac; I*sc; Q*; H*; R*Þ be any equilibrium point of the model (2) and let

l* ¼ b ð1� emÞ ðhe E*2 þ ha I
*
a þ I*s þ t1 I

*
ac þ t2 I

*
scÞ

N* � ðQ* þ H*Þ (9)
Now setting the left hand side of each equation of system (2) to zero and solving for the variables we have,
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S*c ¼ U S*

ðt3 l* þ k2Þ
;

S*v ¼ A7 l
*3 þ A8 l

*2 þ A9 l
* þ A10

fð1� eÞ l* þ k3g ðt3 l* þ k2Þ ðA4 l
*2 þ A5 l

* þ A6Þ
S*;

E*1 ¼ l
ðA1 l

*2 þ A2 l
* þ A3Þ ða lþ k12Þ

ðA4 l
*2 þ A5 l

* þ A6Þ ðt3 l* þ k2Þ
S*;

E*2 ¼ We E*1; I*a ¼ Wa E*1; I*s ¼ Ws E*1; I*ac ¼ Wac E*1; I*sc ¼ Wsc E*1; Q* ¼ Wq E*1; H* ¼ Wh E
*
1;

R* ¼ Wr

a l* þ k12
E*1;

(10)

where.

We ¼ s1
k5

; Wa ¼ d1 s1s2
k5 k6

; Ws ¼ d2 s1s2
k5 k7

; Wac ¼ d3 s1s2
k5 k8

; Wsc ¼ ð1� dÞ s1s2
k5 k9

; Wq ¼ ðss Ws þ ssc WscÞ
k10

;

Wh ¼ 4s Ws þ 4sc Wsc þ 4q Wq

k11
; Wr ¼ ja Wa þ js Ws þ jac Wac þ jsc Wsc þ jq Wq þ jh Wh;

A1 ¼ ð1� eÞ t3; A2 ¼ ð1� eÞ k2 þ ð1� eÞ t3 Uþ fk3 þ ð1� eÞ xsg t3; A3 ¼ fk3 þ ð1� eÞ xsg k2 þ fk3 t3 þ ð1� eÞ q1 xsgU;
A4 ¼ a ð1� eÞ k4 � ð1� eÞaWr ; A5 ¼ ð1� eÞ k4 k12 þ k4 k3 a� fa k3 þ ð1� eÞ q2 xsgWr; A6 ¼ k3 k4 k12; A7 ¼ A4 t3 xs;

A8 ¼ xs ðt3 A5 þ A4 k2Þ þ A4 U q1 xs þ A1 q2 xs Wr; A9 ¼ xs ðt3 A6 þ A5 k2Þ þ A5 U q1 xs þ A2 q2 xs Wr;

A10 ¼ A6 U q1 xs þ A3 q2 xs Br :
Substituting (10) into (9) gives

l* ¼ b ð1� emÞ ðhe We þ ha Wa þWs þ t1 Wac þ t2 WscÞ E*1

S* þ U

ðt3 l* þ k2Þ
S* þ A7 l

*3 þ A8 l
*2 þ A9 l

* þ A10

fð1� eÞ l* þ k3g ðt3 l* þ k2Þ ðA4 l
*2 þ A5 l

* þ A6Þ
S* þ

�
Wc þ Wr

a l* þ K11

	
E*1

;
(11)

where.
Wc ¼ 1 þ We þ Wa þ Ws þ Wac þ Wsc.
After some algebraic calculation we get the following equation in terms of l*

l*
n
P5 l

*5 þ P4 l
*4 þ P3 l

*3 þ P2 l
*2 þ P1 l* þ P0

o
¼ 0; (12)

where.

P5 ¼ Wc a ð1� eÞA1;
P4 ¼ A1 Wc a k3 þ ð1� eÞA1 ðWc k12 þWrÞ þ A2 Wc a ð1� eÞ þ A4 t3 ð1� eÞ � A1 ð1� eÞa;
P3 ¼ A4 t3 k3 þ ð1� eÞA4 k2 þ ð1� eÞA5 t3 þ A7 þ A1 k3 ðWc k12 þWrÞ þ A2 Wc a k3 þ ð1� eÞA2 ðWc k12 þWrÞþ

A3 Wc a ð1� eÞ � A1 ð1� eÞ k12 � A1 a k3 � A2 ð1� eÞa;
P2 ¼ A4 k2 k3 þ A6 t3 ð1� eÞ þ A5 t3 k3 þ A5 ð1� eÞ k2 þ A8 þ A3 Wc a k3 þ ð1� eÞA3 ðWc k12 þWrÞþ

A2 k3 ðBc k12 þWrÞ � A1 k3 k12 þ A3 ð1� eÞaþ A2 ð1� eÞ k12 þ A2 a k3;
P1 ¼ A5 k2 k3 þ A6 t3 k3 þ ð1� eÞ k2 A6 þ A9 þ A3 k3 Wc k12 þ A3 k3 Wr � A2 k3 k12 � A3 ð1� eÞ k12 � A3 a k3;
P0 ¼ A6 k2 k3 þ A10 � A3 k3 k12:
Out of the six roots, the root l* ¼ 0, of (12), corresponds to the DFE E 0. Equation (12) says that the non-zero equilibria of
the model satisfy
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f ðl*Þ ¼ P5 l
*5 þ P4 l

*4 þ P3 l
*3 þ P2 l

*2 þ P1 l* þ P0 ¼ 0: (13)
Using the parameter values as given in Table 2, it can be shown that R c < 1 and out of the five roots, two roots are real
positive, one is real negative and other two roots are complex. Thus there exists two positive endemic equilibria of system (2)
which implies the possibility of the presence of backward bifurcation phenomena.

3.4. Backward bifurcation analysis

Here wewill discuss about the possibility of having backward bifurcation phenomena. To explore this phenomenawewill
use the center manifold theory described in Carr (2012), Van den Driessche and Watmough (2002) and apply change of
variable formula. For this, let S ¼ x1, Sc ¼ x2, Sv ¼ x3, E1 ¼ x4, E2 ¼ x5, Ia ¼ x6, Is ¼ x7, Iac ¼ x8, Isc ¼ x9, Q ¼ x10, H ¼ x11 and

R ¼ x12, and hence model (2) can be written as dX
dt ¼ ðf1; f2; f3; f4; f5; f6; f7; f8; f9; f10; f11; f12ÞT , where

X ¼ ðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12ÞT and then we have

d x1
d t

¼ f1 ¼ L� l x1 � k1 x1;

d x2
d t

¼ f2 ¼ U x1�T 3 l x2 � k2 x2;

d x3
d t

¼ f3 ¼ xs x1 þ q1 xs x2 þ q2 xs x12 � ð1� eÞ l x3 � k3 x3;

d x4
d t

¼ f4 ¼ l x1þT 3 l x2 þ ð1� eÞ l x3 þ a l x12 � k4 x4;

d x5
d t

¼ f5 ¼ s1 x4 � k5 x5;

d x6
d t

¼ f6 ¼ d1 s2 x5 � k6 x6;

d x7
d t

¼ f7 ¼ d2 s2 x5 � k7 x7;

d x8
d t

¼ f8 ¼ d3 s2 x5 � k8 x8;

d x9
d t

¼ f9 ¼ ð1� dÞs2 x5 � k9 x9;

d x10
d t

¼ f10 ¼ ss x7 þ ssc x9 � k10 x10;

d x11
d t

¼ f11 ¼ 4s x7 þ 4sc x9 þ 4q x10 � k11 x11;

d x12
d t

¼ f12 ¼ ja x6 þ js x7 þ jac x8 þ jsc x9 þ jq x10 þ jh x11 � a l x12 � k12 x12;

(14)

ð1� emÞ b ðhe x5 þ ha x6 þ x7þT 1 x8þT 2 x9Þ
l ¼
N � ðx10 þ x11Þ

:

The Jacobian of system (14) is given by:
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Table 2
Estimated parameters for model (2).

Parameter Baseline Values Units References

L 5000 Day-1 Estimated from Omame et al. (2020)
b 0.395 Day-1 Fitted
m 0.4 - Ngonghala et al. (2020)
e 0.8 - Ngonghala et al. (2020)
T 1;T 2 1.15, 1.25 - Fitted
T 3 1.5 - Fitteed
he, ha 0.6, 0.65 - Fitted
xs 0.0001 Day-1 Fitted
a 0.0001 Day-1 Estimated from Omame et al. (2020)
e 0.001 - Estimated from Omame et al. (2020)
s1, s2 0.2, 0.11 Day-1 Ngonghala et al. (2020)
d1, d2 and d3 0.25, 0.525, 0.075 - Assumed
1 � (d1 þ d2 þ d3) 0.15 - Assumed
ss, ssc 0.116, 0.2 Day-1 Ngonghala et al. (2020)
U 0.2 Day-1 Ngonghala et al. (2020)
4s, 4sc and 4q 0.15, 0.2, 0.25 Day-1 Fitted
ja, js, jac, jsc, jq and jh 0.14, 0.12, 0.13, 0.11, 0.2, 0.09 Day-1 Ngonghala et al. (2020)
de, da, ds, dac, dsc and dh 0.0095, 0.02, 0.025, 0.03, 0.0095, 0.015 Day-1 Ngonghala et al. (2020)
m 0.0001 Day-1 Ngonghala et al. (2020)
q1, q2 1.2, 0.8 - Fitted
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JðE 0Þ ¼

0
BBBBBBBBBBBBBBBBBB@

�k1 0 0 0 �he J1 �ha J1 �J1 �t1 J1 �t2 J1 0 0 0
U �k2 0 0 �he J2 �ha J2 �J2 �t1 J2 �t2 J2 0 0 0
xs q1 xs �k3 0 �he J3 �ha J3 �J3 �t1 J3 �t2 J3 0 0 q2 xs
0 0 0 �k4 he J4 ha J4 J4 t1 J4 t2 J4 0 0 0
0 0 0 s1 �k5 0 0 0 0 0 0 0
0 0 0 0 d1 s2 �k6 0 0 0 0 0 0
0 0 0 0 d2 s2 0 �k7 0 0 0 0 0
0 0 0 0 d3 s2 0 0 �k8 0 0 0 0
0 0 0 0 ð1� dÞ s2 0 0 0 �k9 0 0 0
0 0 0 0 0 0 ss 0 ssc �k10 0 0
0 0 0 0 0 0 4s 0 4sc 4q �k11 0
0 0 0 0 0 ja js jac jsc jq jh �k12

1
CCCCCCCCCCCCCCCCCCA

;

where,

J1 ¼ ð1� emÞ b k2 k3
k1 k2

; J2 ¼ ð1� emÞ b k3 t3 U
k1 k2

; J3 ¼ ð1� emÞ b ð1� eÞ xs ðk2 þ q1 UÞ
k1 k2

;

and J4 ¼ ð1� emÞb fk2 k3 þ t3 U k3 þ ð1� eÞ xs ðk2 þ q1 UÞg
k1 k2

:

Now consider R c ¼ 1 and b ¼ b* is a bifurcation parameter. Thus we get

b ¼ b* ¼ N**

ð1� emÞ
S* þ t3 S
*
c þ ð1� eÞ S*v þ aR*

� ðhe Be þ ha Ba þ BsþT 1 BacþT 2 BscÞ
:

The Jacobian JðE 0Þ of (14) with b ¼ b* (b* calculated at the DFE, E 0), denoted by J
b
* , has a simple zero eigenvalue (with all

other eigenvalues having negative real part). Hence, center manifold theory (Carr, 2012, Castillo-Chavez and Song, 2004), can
be applied.

Eigenvectors of J
b
* ¼ JðE 0Þ

��
b¼b

* :

When R c ¼ 1, a right eigenvector corresponding to the zero eigenvalue of the jacobian ðJ
b
* Þ is given by w ¼

½w1; w2; w3; w4; w5; w6; w7; w8; w9; w10; w11; w12�T , where.
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w1 ¼ �ðhe J1w5þha J1w6þ J1w7þt1 J1w8þt2 J1w9Þ
k1

;

w2 ¼ Uw1�ðhe J2w5þha J2w6þ J2w7þt1 J2w8þt2 J2w9Þ
k2

;

w3 ¼ xsw1þq1xsw2þq2xsw12�ðhe J3w5þha J3w6þ J3w7þt1 J3w8þt2 J3w9Þ
k3

;

w4 ¼ k5w5

s1
; w5 ¼ w5; w6 ¼ d1s2w5

k6
; w7 ¼ d2s2w5

k7
; w8 ¼ d3s2w5

k8
; w9 ¼ ð1�dÞs2w5

k9
;

w10 ¼ ssw7þsscw9

k10
;w11 ¼ 4sw7þ4scw9þ4qw10

k11
; w12 ¼ jaw6þjsw7þjacw8þjscw9þjqw10þjhw11

k12
:

Further, a left eigenvector of J
b
* corresponding to the zero eigenvalue is given by v ¼ [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,

v12]
where.

v1 ¼ v2 ¼ v3 ¼ v10 ¼ v11 ¼ v12 ¼ 0; v4 ¼ v4;

v5 ¼ he J4 v4 þ d1 s2 v6 þ d2 s2 v7 þ d3 s2 v8 þ ð1� dÞ s2 v9
k5

;

v6 ¼ ha J4 v4
k6

; v7 ¼ J4 v4
k7

; v8 ¼ t1 J4 v4
k8

; v9 ¼ t2 J4 v4
k9

:

Computations of a and b:
The expression for a and b from Carr (2012), Castillo-Chavez and Song (2004) is:

a ¼ Pn
k;i;j¼1 vkwiwj

v2fk
vxivxj

ðE 0; b
*Þ,

and b ¼ Pn
k;i¼1 vkwi

v2fk
vxivb

ðE 0; b
*Þ;

which becomes

a ¼ 1

LðUk3þUq1xsþk2k3þk2xsÞ2
f2ð1�emÞbk1k2k3ðhaw6þhew5þt1w8þt2w9þw7ÞðþUv4w1k3�Uv4w2q1xs

þUv4w3k3�Uv4w4q1xs�Uv4w5q1xs�Uv4w6q1xsþUev4w7q1xs�Uk3t3v4w7þek2v4w7xsþev4w1xsk2þev4w2xsk2

�ev4w3k2k3þev4w4xsk2þev4w5xsk2þev4w6xsk2þev4w8xsk2þev4w9xsk2þev4w12xsk2þv4w2xsk2t3þv4w2k2k3t3

þUav4w12xcþUav4w12k3þUev4w1q1xsþUev4w2q1xs�Uev4w3k3þUev4w4q1xsþUev4w6q1xsþUev4w8q1xs

þUev4w9q1xsþUev4w12q1xs�Uv4w1k3t3þUv4w2q1xst3�Uv4w3k3t3�Uv4w4k3t3�Uv4w5k3t3�Uv4w6k3t3

�Uv4w8k3t3�Uv4w9k3t3�Uv4w12k3t3þav4w12xsk2þav4w12k2k3�Uv4w8q1xs�Uv4w9q1xs�Uv4w12xc

�v4w2xsk2�v4w2k2k3�v4w4xsk2�v4w4k2k3�v4w5xsk2�v4w5k2k3�v4w6xsk2�v4w6k2k3�v4w8xsk2�v4w8k2k3

�v4w9xsk2�v4w9k2k3�v4w12xsk2�v4w12k2k3þUev4w5q1xs�Uv4w7q1xs�k2k3v4w7�k2k3v4w7xsÞg;

b¼ ð1�emÞ
ðUk3þUq1xsþk2k3þk2xsÞ

ðhaw6þhew5þt1w8þt2w9þw7ÞðUev3 q1xs�Uev4 q1xs�Uk3t3v2þUk3t3v4þek2v3xs

�ek2v4xs�Uv3 q1xsþUv4 q1xs�k2k3v1þk2k3v4�k2v3xsþk2v4xsÞ:

Hence according to Theorem 4.1 of Castillo-Chavez and Song (2004), it follows that model (2) will exhibit backward bifur-
cation at R c ¼ 1 whenever a > 0 and b > 0. In this case with a ¼ 10 and all other parameters as given in Table 2, we have a ¼
0.00002083149795 > 0 and b ¼ 0.4997487034 > 0. Thus backward bifurcation phenomenon occurs atR c ¼ 1. This is shown
in the figure (Fig. 2) below.
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Fig. 2. Backward bifurcation diagram of model (2).
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4. Dynamics of the model considering no re-infection

Now we will discuss the cases when there is no re-infection.

4.1. Global stability of DFE with a ¼ 0

Theorem 2. The DFE of the COVID-19 model (2) with a ¼ 0, given by E 0, is globally asymptotically stable (GAS) whenever
R c � 1.

Proof. We consider the following linear Lyapunov function:

L ¼ [1 E1 þ [2 E2 þ [3 Ia þ [4 Is þ [5 Iac þ [6 Isc;
where,

[1 ¼ s1
k4 k5 k6 k7 k8 k9

½he k6 k7 k8 k9þk7 k8 k9d1s2haþk6 k8 k9d2s2haþk6 k7 k9 d3s2T 1þk6 k7 k8 ð1�dÞs2T 2�;

k4 ha k9 k9 T 1 k9
[2 ¼
s1

[1; [3 ¼
k6 T 2

; [4 ¼
k7 T 2

; [5 ¼
k8 T 2

; [6 ¼ 1:
Differentiating the above Lyapunov function we have the following

_L ¼ [1
_E1 þ [2

_E2 þ [3
_Ia þ [4

_Is þ [5 _Iac þ [6
_Isc

¼ [1 fl SþT 3 l Sc þ ð1� evÞ l Sv þ a lR� k4 E1g þ [2 ðs1 E1 � k5 E2Þ þ [3 ðd1 s2 E2 � k6 IaÞþ
[4 ðd2 s2 E2 � k7 IsÞ þ [5 ðd3 s2 E2 � k8 IacÞ þ [6 fð1� dÞs2 E2 � k9 Iscg
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¼ ð�[1k4þ[2s1ÞE1þ
�
[1he

bð1�emÞ ðS*þt3S
*
cþð1�eÞS*v Þ

N** �[2k5þ[3d1s2þ[4d2s2þ[5d3s2þ[6 ð1�dÞs2
�
E2þ

�
[1ha

bð1�emÞ ðS*þt3S
*
cþð1�eÞS*v Þ

N**
�[3k6

�
Iaþ

�
[1

bð1�emÞ ðS*þt3S
*
cþð1�eÞS*v Þ

N**
�[4k7

�
Isþ

�
[1t1

bð1�emÞ ðS*þt3S
*
cþð1�eÞS*v Þ

N** �[5k8

�
Iacþ

�
[1t2

bð1�emÞ ðS*þt3S
*
cþð1�eÞS*v Þ

N** �[6k9

�
Isc
After some rigorous calculation it can be shown that

_L � he k9
t2

�
t2
k9

R c�1
	
E2þ

ha k9
t2

�
t2
k9

R c�1
	
Iaþk9

t2

�
t2
k9

R c�1
	
Isþt1 k9

t2

�
t2
k9

R c�1
	
Iacþk9

�
t2
k9

R c�1
	
Isc:
Thus

_L � k9
t2

�
t2
k9

R c � 1
	
ðhe E2 þ ha Ia þ IsþT 1 IacþT 2 IscÞ

¼ lN** k9
b ð1� emÞ t2

�
t2
k9

R c � 1
	

< 0 for R c � k9
t2

< 1:
Also _L ¼ 0 if and only if E2 ¼ Ia ¼ Is ¼ Iac ¼ Isc ¼ 0. Hence _L � 0. Therefore, L is a Lyapunov function on D and thus it
follows by the LaSalle's invariance principle (LaSalle, 1976) that, the DFE of the model (2) is globally asymptotic stable
whenever R c � 1. ,

4.2. Endemic equilibrium point (EEP) with a ¼ 0

When a ¼ 0 equation (12) reduces to

f ðl*Þ ¼ M4 l
*4 þM3 l

*3 þM2 l
*2 þM1 l* þM0 ¼ 0: (15)

where,

M4 ¼ð1�eÞA1ðWck12þWrÞþA4t3ð1�eÞ;
M3 ¼A4t3k3þð1�eÞA4k2þð1�eÞA5t3þA7þA1k3ðWck12þWrÞþð1�eÞA2ðWck12þWrÞþA4Uð1�eÞ

�bð1�emÞðheWeþhaWaþWsþt1Wacþt2WscÞA1ð1�eÞk12;
M2 ¼ A4k2k3þA6t3ð1�eÞþA5t3k3þA5ð1�eÞk2þA8þð1�eÞA3ðWck12þWrÞþA2k3ðWck12þWrÞþA4Uk3þA5Uð1�eÞ

�bð1�emÞðheWeþhaWaþWsþt1Wacþt2WscÞðA1k3k12þA2ð1�eÞk12Þ;
M1 ¼ A5k2k3þA6t3k3þð1�eÞk2A6þA9þA3k3Wck12þA3k3WrþUA5k3þUA6ð1�eÞ

�bð1�emÞðheWeþhaWaþWsþt1Wacþt2WscÞðA2k3k12�A3ð1�eÞk12Þ;
M0 ¼ UA6k3þA6k2k3þA10�A3bð1�emÞðheWeþhaWaþWsþt1Wacþt2WscÞk3k12;

where Ai's, i ¼ 1, 2, 3, ….., 10 are the expressions from subsection 3.3 with a ¼ 0.
4.2.1. Local asymptotic stability of endemic equilibrium point (EEP) with a ¼ 0
Using the parameter values as given in Table 2 with a¼ 0, it can be shown thatR c > 1 and out of the four roots, one root is

real positive, one root is real negative and other two roots are complex. So there exists a unique endemic equilibrium of
system (2). Again using the same parameter values in the expression of a and b, we get a¼� 0.000001860809076 < 0 and b¼
0.4997487034 > 0. Thus according to the Center Manifold Theorem (Castillo-Chavez and Song, 2004), this unique endemic
equilibrium is locally asymptotically stable when R c > 1.

4.2.2. Global asymptotic stability of EEP with a ¼ 0

Theorem 3. The EEP of the model (2) with no re-infection (a ¼ 0) is globally asymptotically stable (GAS) whenever R c > 1.

The graph-theoretic approach discussed in Shuai and Driessche (2013) will be used to construct a Lyapunov function and
to prove this theorem. Using Theorem 3.3, Theorem 3.4 and Theorem 3.5 of Shuai and Driessche (2013), the Lyapunov
function can be constructed as follows:
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Proof. The following Lyapunov function is considered:

L 1 ¼
�
S� S* � S* ln

S
S*

	
þ
�
Sc � S*c � S*c ln

Sc
S*c

	
þ
�
Sv � S*v � S*v ln

Sv
S*v

	
þ
�
E1 � E*1 � E*1 ln

E1
E*1

	
;

L 2 ¼ E2 � E*2 � E*2 ln
E2
E*2

; L 3 ¼ Ia � I*a � I*a ln
Ia
I*a
; L 4 ¼ Is � I*s � I*s ln

Is
I*s
; L 5 ¼ Iac � I*ac � I*ac ln

Iac
I*ac

;

L 6 ¼ Isc � I*sc � I*sc ln
Isc
I*sc

:

Differentiating with respect to t we get

L 0
1 � b he ð1� emÞ E*2



S* þ t3 S

*
c þ ð1� eÞ S*v

�
N**

�
E2
E*2

� ln
E2
E*2

� E1
E*1

þ ln
E1
E*1

	
¼: a12 G12

þ b ha ð1� emÞ I*a


S* þ t3 S

*
c þ ð1� eÞ S*v

�
N**

�
Ia
I*a
� ln

Ia
I*a

� E1
E*1

þ ln
E1
E*1

	
¼: a13 G13

þ b ð1� emÞ I*s


S* þ t3 S

*
c þ ð1� eÞ S*v

�
N**

�
Is
I*s
� ln

Is
I*s
� E1
E*1

þ ln
E1
E*1

	
¼: a14 G14

þ b t1 ð1� emÞ I*ac


S* þ t3 S

*
c þ ð1� eÞ S*v

�
N**

�
Iac
I*ac

� ln
Iac
I*ac

� E1
E*1

þ ln
E1
E*1

	
¼: a15 G15

þ b t2 ð1� emÞ I*sc


S* þ t3 S

*
c þ ð1� eÞ S*v

�
N**

�
Isc
I*sc

� ln
Isc
I*sc

� E1
E*1

þ ln
E1
E*1

	
¼: a16 G16;

L 0
2 � s1 E

*
1

�
E1
E*1

� ln
E1
E*1

� E2
E*2

þ ln
E2
E*2

	
¼: a21 G21;

L 0
3 � d1 s2 E

*
2

�
E2
E*2

� ln
E2
E*2

� Ia
I*a
þ ln

Ia
I*a

	
¼: a31 G31;

L 0
4 � d2 s2 E

*
2

�
E2
E*2

� ln
E2
E*2

� Is
I*s
þ ln

Is
I*s

	
¼: a41 G41;

L 0
5 � d3 s2 E

*
2

�
E2
E*2

� ln
E2
E*2

� Iac
I*ac

þ ln
Iac
I*ac

	
¼: a51 G51;

L 0
6 � ð1�dÞs2 E*

�
E2
E*2

� ln
E2
E*2

� Isc
I*sc

þ ln
Isc
I*sc

	
¼: a61 G61;

where.

a12 ¼ b he ð1�e mÞ E*
2 fS*þt3 S

*
cþð1�eÞ S*vg

N** ; a13 ¼ b ha ð1�e mÞ I*a fS*þt3 S
*
cþð1�eÞ S*vg

N** ,

a14 ¼ b ð1�e mÞ I*s fS*þt3 S
*
cþð1�eÞ S*vg

N** ; a15 ¼ b t1 ð1�e mÞ I*ac fS*þt3 S
*
cþð1�eÞ S*vg

N** ,

a16 ¼ b t2 ð1�e mÞ I*sc fS*þt3 S
*
cþð1�eÞ S*vg

N** ,

a21 ¼ s1 E
*
1; a31 ¼ d1 s2 E

*
2; a41 ¼ d2 s1 E

*
2; a51 ¼ d3 s2 E

*
2; a61 ¼ ð1 � dÞ s2 E*2.

With the constants aij and A ¼ [aij], the following directed graph (Fig. 3) can be constructed.
P

Gij ¼ 0 along each of the
cycles on the graph; for instances, G41þ G14¼ 0, G61þ G16¼ 0, and so on. Then by Theorem 3.5, there exist constants ci, i¼ 1, 2,

…., 6 such that L ¼ P6
i¼1 ci L i is a Lyapunov function for equation (2). To find the constants ci we use Theorem 3.3 and

Theorem 3.4. dþ(2) ¼ 1 we have c2 a21 ¼ c1 a12.

Hence setting c1 ¼ 1 we get c2 ¼ b ð1�e mÞ fS*þt3 S
*
cþð1�eÞ S*vg he E

*
2

s1 E
*
1 N**

dþ(3) ¼ 1 implies c3 a31 ¼ c1 a13.
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Fig. 3. Directed graph of system (2).
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Hence setting c1 ¼ 1 we get c3 ¼ b ð1�e mÞ fS*þt3 S
*
cþð1�eÞ S*vg ha I

*
a

d1 s2 E
*
2 N**

dþ(4) ¼ 1 implies c4 a41 ¼ c1 a14.

Hence setting c1 ¼ 1 we get c4 ¼ b ð1�e mÞ fS*þt3 S
*
cþð1�eÞ S*vg I*s

d2 s2 E
*
2 N**

dþ(5) ¼ 1 implies c5 a51 ¼ c1 a15.

Hence setting c1 ¼ 1 we get c5 ¼ b ð1�e mÞ fS*þt3 S
*
cþð1�eÞ S*vg t1 I

*
ac

d3 s2 E
*
2 N**

dþ(6) ¼ 1 implies c6 a61 ¼ c1 a16.

Hence setting c1 ¼ 1 we get c6 ¼ b ð1�e mÞ fS*þt3 S
*
cþð1�eÞ S*vg t2 I

*
sc

ð1�dÞ s2 E
*
2 N**

.

Therefore with the functions L i, constants ci given above and X ¼ b ð1�e mÞ fS*þt3 S
*
cþð1�eÞ S*vg

N** ,

L ¼ L 1 þ X he E
*
2

s1 E
*
1
L 2 þ X ha I

*
a

d1 s2 E
*
2
L 3 þ X I*s

d2 s2 E
*
2
L 4 þ X t1 I

*
ac

d3 s2 E
*
2
L 5 þ X t2 I

*
sc

ð1�dÞ s2 E
*
2
L 6 is a Lyapunov function for (2). One

can easily verify that for system (2) with this Lyapunov function and with L 0 ¼ 0 the largest invariant set will be the set E 1.
Hence, using LaSalle's invariance principle (LaSalle, 1976), we can say that E 1 is globally asymptotically stable in the interior
of D . ,

5. Optimal control

In this section, to control the spread of Covid-19, we reconsider the model (1) and formulate an optimal control problem
with four control variables u1(t), u2(t), u3(t) and u4(t). The control u1(t) aims the efforts to increase awareness towards pre-
venting COVID-19 infections by susceptible individuals (S), co-morbid susceptible humans (Sc), vaccination individuals (Sv)
and recovered individuals (R) through various awareness program. Control u2(t) ensures the implementation of continuous
vaccination, increase of vaccination rate and spread of vaccination program nationwide. u3(t) is COVID-19 detection control
that represents the fraction of symptomatic individuals (Is and Isc) that are identified and quarantined for prevention of
contacts with susceptible individuals. u4(t) represents the control that ensures better treatment and better care for the
hospitalized individuals. Thus the revised model becomes:

_S ¼ L� ð1� u1Þ l S� U S� xs ð1þ u2Þ S� m S;
_Sc ¼ U S� ð1� u1ÞT 3 l Sc � q1 xsð1þ u2Þ Sc � m Sc;
_Sv ¼ xs ð1þ u2Þ Sþ q1 xs ð1þ u2Þ Sc þ q2 xs ð1þ u2ÞR� ð1� u1Þ ð1� eÞ l Sv � k3 Sv;
_E1 ¼ ð1� u1Þ l ðSþT 3 Sc þ ð1� eÞ Sv þ aRÞ � k4 E1;
_E2 ¼ s1 E1 � k5 E2;
_Ia ¼ d1 s2 E2 � k6 Ia;
_Is ¼ d2 s2 E2 � ss ð1þ u3Þ Is � ðjs þ 4s þ ds þ mÞ Is;
_Iac ¼ d3 s2 E2 � k8 Iac;
_Isc ¼ ð1� dÞ s2 E2 � ssc ð1þ u3Þ Isc � ðjsc þ 4sc þ dsc þ mÞ Isc;
_Q ¼ ss ð1þ u3Þ Is þ ssc ð1þ u3Þ Isc � k10 Q ;
_H ¼ 4s Is þ 4sc Isc þ 4q Q � jhð1þ u4ÞH � ðdh þ mÞH;
_R ¼ ja Ia þ js Is þ jac Iac þ jsc Isc þ jq Q þ jhð1þ u4ÞH � ð1� u1Þa lR� q2 xs ð1þ u2ÞR� mR:

(16)
The objective of optimal control system is to find the controls that minimize the total infected individuals and the cost of
implementing the controls, that is, to find the minimal values of u1, u2, u3 and u4 subject to the state system (16). In this paper,
we consider a quadratic objective functional which includes pre-symptomatic individuals, asymptomatic infected individuals
having no co-morbidity, symptomatic infected individuals having no co-morbidity, asymptomatic infected individuals having
co-morbidity and symptomatic infected individuals having co-morbidity along with the four controls u1, u2, u3 and u4.
673



A.K. Saha, S. Saha and C.N. Podder Infectious Disease Modelling 7 (2022) 660e689
Quadratic objective functional is considered due to the fact that intervention is non-linear in its nature (Ndii and Adi, 2021). In
fact, quadratic control is a common form of an objective functional in an optimal control problem and is frequently used in the
literature (Ndii and Adi, 2021, Alemneh and Alemu, 2021, Kim et al., 2018, Shen et al., 2021, Majumder et al., 2022, Zamir et al.,
2021, Omame et al., 2020, Li and Guo, 2022). Thus we have the following objective functional

Jðu1; u2; u3; u4Þ ¼
ZT

0

�
D1 E2 þ D2 Ia þ D3 Is þ D4 Iac þ D5 Isc þ

1
2



F1 u

2
1 þ F2 u

2
2 þ F3 u

2
3 þ F4 u

2
4

��
dt (17)
The positive coefficients D1, D2, D3, D4, F1, F2, F3 and F4 are balancing weight parameters, while the controls u1, u2, u3 and u4
are bounded, Lebesgue integrable functions.

Theorem 1. Let the set of controls for problem (16) be Lebesgue integrable functions (instead of just piecewise continuous
functions) on 0 � t � T with values in R. Then there exists an optimal control u* ¼ ðu*1; u*2; u*3; u*4 2U Þ such that Jðu*1; u*2; u*3;
u*4Þ ¼ min fJðu1; u2; u3; u4Þ : u1ðtÞ; u2ðtÞ; u3ðtÞ; u4ðtÞ2U g,

whereU ¼ fðu1; u2; u3; u4Þ : uiðtÞ is measurable on ½0; T�; 0 � uiðtÞ � 1; i ¼ 1; 2; 3; 4g is the closed set subject to the
control system if the following conditions are satisfied (Fleming and Rishel, 2012).

1. The set of state variables and controls is non-empty.
2. The control and state variables are non-negative values.
3. The control set U is convex and closed.
4. The integrand of the objective functional is convex on U .
5. Successful responses on [0, T] satisfy an a priori bound:

jxðt; x0;uð:ÞÞj � a; for all uð:Þ 2 U ðTÞ; 0 < t � T
where a ¼ a(T) is a constant depending only on T. This condition is implied by the followings:

(a) |g(t, x1, u)| � C1 (1 þ |x| þ |u|)
(b) |g(t, x1, u) � g(t, x, u)| � C2 |x1 � x| (1 þ |u|)

6. There exists constants C3, C4 > 0 and C5 such that L(t; u1; u2; u3; u4) satisfies

Lðt; u1; u2; u3; u4Þ � C3 þ C4

���u1j2 þ ju2j2 þ ju3j2 þ ju4j2

�C5
2

Proof. Let us consider the following basic optimal control problem in the form of ordinary differential equation.
_x ¼ gðt; xðtÞ; uðtÞÞ; xð0Þ ¼ x0; uð:Þ2U m with associated cost C½uð:Þ� ¼ R T

0 f ðt;xðtÞ;uðtÞÞdt,
where x(t) represents state variable andU represents control and f, g are given continuous functions with values inRn and

R.

1. Let U be the class of all admissible controls in time t, 0 < t � T. Obviously for some T, U ðTÞ is non-empty, U ðTÞs∅, since
we can't have an optimal control without at least one successful control. To prove that the set of controls is nonempty, we
will use a simplified version of an existence theorem (Theorem 7.1.1) from Boyce and DiPrima (2020). Consider S ¼ x1, Sc ¼
x2, Sv ¼ x3, E1 ¼ x4, E2 ¼ x5, Ia ¼ x6, Is ¼ x7, Iac ¼ x8, Isc ¼ x9, Q ¼ x10, H ¼ x11, and R ¼ x12, and thus in vector notation system
(16) becomes dX

dt ¼ F ðt; XÞ, where X ¼ ðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12ÞT and F ¼
ðf1; f2; f3; f4; f5; f6; f7; f8; f9; f10; f11; f12ÞT . Let u1, u2, u3, and u4 are some constants. Since all parameters are constants and
all xi's are continuous, then all fi's are also continuous (i ¼ 1, 2, ….., 12). Additionally, the partial derivatives vfi

vxi
; i ¼ 1; 2;…

::; 12 are also continuous. Therefore, there exists a unique solution (S, Sc, Sv, E1, E2, Ia, Is, Iac, Isc,Q,H, R) that satisfies the initial
conditions. Thus, the set of controls and the corresponding state variables is nonempty and hence condition 1 is satisfied.

2. It is obvious that the set of state variables and controls are non-negative.
3. Let u; v2U and r2 ½0; 1�, then obviously r u þ (1 � r) v � 0. Again r u � r and (1 � r) v � (1 � r)

Thus, r u þ (1 � r) v � r þ (1 � r) ¼ 1. Hence we have 0 � r u þ (1 � r) v � 1.
Thus the control space

U ¼ 
�
u1; u2; u3; u4Þ : ðu1; u2; u3; u4Þ is measurable and 0 � u1min

� u1 ðtÞ � u1max
� 1;

0 � u2min
� u2 ðtÞ � u2max

� 1; 0 � u3min
� u3 ðtÞ � u3max

� 1; 0 � u4min
� u4 ðtÞ � u4max

� 1
�

is convex:
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4. The integrand of the objective functional is given by

L ðt; u1; u2; u3; u4Þ ¼ D1 E2 þ D2 Ia þ D3 Is þ D4 Iac þ D5 Isc þ 1
2 ðF1 u21 þ F2 u22 þ F3 u23 þ F4 u24Þ

Here L is a twice differentiable function of many variables on the convex set U and letH denotes the Hessian of L. We can
determine the (strict) convexity of L by determining whether the Hessian is positive (definite) semi-definite. The second
partial derivatives of L are.
Lu1u1 ¼ F1; Lu1u2 ¼ 0; Lu1u3 ¼ 0; Lu1u4 ¼ 0;
Lu2u1 ¼ 0; Lu2u2 ¼ F2; Lu2u3 ¼ 0; Lu2u4 ¼ 0;
Lu3u1 ¼ 0; Lu3u2 ¼ 0; Lu3u3 ¼ F3; Lu3u4 ¼ 0;
Lu4u1 ¼ 0; Lu4u2 ¼ 0; Lu4u3 ¼ 0; Lu4u4 ¼ F4;
So its Hessian is.
H ¼

0
BB@

F1 0 0 0
0 F2 0 0
0 0 F3 0
0 0 0 F4

1
CCA;
The Hessian is positive definite and hence L is strictly convex.

5. Consider g(t, x, u)¼ a(t, x)þ u b(t, x) and assume that g(t, x, u) is of class C1 and |g(t, 0, 0)|� C, |gx(t, x, u)|� C(1þ |u|), |gu(t, x,
u)| � C for some constant C.

Applying Mean Value Theorem we get.

gðt; x1; uÞ � gðt; x; uÞ
x1 � x

¼ gxðt; x; uÞ 0 gðt; x1; uÞ � gðt; x; uÞ ¼ ðx1 � xÞ gxðt; x; uÞ

jgðt; x1; uÞ � gðt; x; uÞj ¼ jx1 � xj jgxðt; x; uÞj � jx1 � xjC ð1þ jujÞ

Therefore, |g(t, x1, u) � g(t, x, u)| � C |x1 � x| (1 þ |u|)

gðt; x; 0Þ � gðt; 0; 0Þ
x

¼ gxðt; x; 0Þ 0 gðt; x; 0Þ � gðt; 0; 0Þ ¼ x gxðt; x; 0Þ
jgðt; x; 0Þ � gðt; 0; 0Þj ¼ jx gxðt; x; 0Þj
jgðt; x; 0Þj � jgðt; 0; 0Þj � jxkgxðt; x; 0Þj as jgðt; x; 0Þj � jgðt; 0; 0Þj � jgðt; x; 0Þ � gðt; 0; 0Þj
jgðt; x; 0Þj � C � C jxj 0 jgðt; x; 0Þj � C jxj þ C 0 jgðt; x; 0Þj � C ð1þ jxjÞ
Now.

gðt; x; uÞ � gðt; x; 0Þ
u

¼ guðt; x; uÞ 0 gðt; x; uÞ � gðt; x; 0Þ ¼ u guðt; x; uÞ
jgðt; x; uÞ � gðt; x; 0Þj ¼ ju gxðt; x; uÞj 0 jgðt; x; uÞj � jgðt; x; 0Þj � juj jgxðt; x; uÞj
jgðt; x; uÞj � C ð1þ jxjÞ � C juj 0 jgðt; x; uÞj � C juj þ C ð1þ jxjÞ

Therefore, |g(t, x, u)| � C (1 þ |x| þ |u|).

6. The state variables being bounded,

let C3 ¼ min ðD1 E2 þ D2 Ia þ D3 Is þ D4 Iac þ D5 IscÞ; C4 ¼ min


F1
2 þ F2

2 þ F3
2 þ F4

2

�
; and C5 ¼ 2. Then it follows that L(t;

u1; u2; u3; u4) satisfies.

Lðt; u1; u2; u3; u4Þ � C3 þ C4

���u1j2 þ ju2j2 þ ju3j2 þ ju4j2

�C5
2 for all t with 0 � t � T, x, x1, u in R. ,

After establishing the existence of an optimal control, to obtain the necessary conditions for the optimal solution, we
applied Pontryagin's maximum principle (Pontryagin, 1987) to the Hamiltonian H defined by
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H ¼ D1 E2 þ D2 Ia þ D3 Is þ D4 Iac þ D5 Isc þ
1
2
ðF1 u21 þ F2 u

2
2 þ F3 u

2
3 þ F4 u

2
4Þ

þg1 ½L� ð1� u1Þ l S� U S� xs ð1þ u2Þ S� m S�
þg2

�
U S� ð1� u1ÞT 3 l Sc � q1 xs ð1þ u2Þ Sc � m Sc

�
þg3 ½xs ð1þ u2Þ Sþ q1 xs ð1þ u2Þ Sc þ q2 xs ð1þ u2ÞR� ð1� u1Þ ð1� eÞ l Sv � m Sv�
þg4 ½ð1� u1Þ l ðSþT 3 Sc þ ð1� eÞ Sv þ aRÞ � k4 E1�
þg5 ½s1 E1 � k5 E2�
þg6 ½d1 s2 E2 � k6 Ia�
þg7 ½d2 s2 E2 � ss ð1þ u3Þ Is � ðjs þ 4s þ ds þ mÞ Is�
þg8 ½d3 s2 E2 � k8 Iac�
þg9 ½ð1� dÞs2 E2 � ssc ð1þ u3Þ Isc � ðjsc þ 4sc þ dsc þ mÞ Isc�
þg10 ½ss ð1þ u3Þ Is þ ssc ð1þ u3Þ Isc � k10 Q �
þg11

�
4s Is þ 4sc Isc þ 4q Q � jhð1þ u4ÞH � ðdh þ mÞH�

þg12
�
ja Ia þ js Is þ jac Iac þ jsc Isc þ jq Q þ jhð1þ u4ÞH � ð1� u1Þa lR� q2 xs ð1þ u2ÞR� mR

�
;

(18)
where gi, i ¼ 1, 2, … …, 12 are the adjoint variables.

Theorem 2. Given an optimal control ðu*1; u*2; u*3; u*4Þ and corresponding state solutions S1¼ S, S2¼ Sc, S3¼ Sv, S4¼ E1, S5¼ E2, S6
¼ Ia, S7 ¼ Is, S8 ¼ Iac, S9 ¼ Isc, S10 ¼ Q, S11 ¼ H, S12 ¼ R of the corresponding state system (16), there exists adjoint variables, gi, i¼ 1,
2, … …, 12 satisfying

d gi
d t

¼ �vH
vSi
with transversality conditions gi(T) ¼ 0, where, i ¼ 1, 2, … …, 12 and control set ðu*1; u*2; u*3; u*4Þ characterized by

u*1 ¼ max
�
0; min

�
1;

ðg4 � g1Þ l Sþ ðg4 � g2Þ t3 l Sc þ ðg4 � g3Þ ð1� eÞ l Sv þ ðg4 � g12Þa lR
F1

	�
;

u*2 ¼ max
�
0; min

�
1;

ðg1 � g3Þ xs Sþ ðg2 � g3Þ q1 xs Sc þ ðg12 � g3Þ q2 xs R
F2

	�
;

u*3 ¼ max
�
0; min

�
1;

ðg7 � g10Þ ss Is þ ðg9 � g10Þ ssc Isc
F3

	�
;

u*4 ¼ max
�
0; min

�
1;

ðg11 � g12Þjh H
F4

	�
:

(19)
Proof.

d g1
d t

¼ �vH
vS

¼ g1

��
1� u1Þ lþ ðUþ xs ð1þ u2ÞÞ þ ð1� u1Þ S

�l

N*

�
� g2

�
U� ð1� u1Þ t3 Sc

�l

N*

�
;

�g3

��
xs ð1þ u2Þ � ð1� u1Þ ð1� eÞ Sv �l

N*

�
� g4

��
1� u1Þ l� ð1� u1Þ ðSþT 3 Sc þ ð1� eÞ Sv þ a RÞ �l

N*

�
;

�g12

��
1� u1ÞaR

l

N*

�
;
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d g2
d t

¼ �vH
vSc

¼ �g1

��
1� u1Þ S

�l

N*

�
þ g2

��
1� u1Þ t3 lþ q1 xs ð1þ u2Þ � ð1� u1Þ t3 Sc

l

N*

�
;

�g3

��
q1 xs ð1þ u2Þ � ð1� u1Þ ð1� eÞ Sv �l

N*

��� g4

��
1� u1Þ t3 lþ ð1� u1Þ ðSþT 3 Sc þ ð1� eÞ Sv þ a RÞ �l

N*

�
;

�g12

��
1� u1ÞaR

l

N*

�
;

d g3
d t

¼ �vH
vSv

¼ g1

��
1� u1Þ S

�l

N*

�
þ g2

��
1� u1Þ t3 Sc

�l

N*

�
þ g3

��
1� u1Þ ð1� eÞ l� ð1� u1Þ ð1� eÞ Sv l

N*

�
;

�g4

��
1� u1Þ ð1� eÞ lþ ð1� u1Þ ðSþT 3 Sc þ ð1� eÞ Sv þ aRÞ �l

N*

�
� g12

��
1� u1ÞaR

l

N*

�
;

dg4
dt

¼ �vH
vE1

¼ g1

��
1�u1ÞS

�l

N*

�
þg2

��
1�u1Þt3 Sc

�l

N*

�
;

þg3

��
1�u1Þð1� eÞSv �l

N*

�
þg4

��
1�u1ÞðSþT 3 Scþð1� eÞSvþaRÞ �l

N* �s1

�
�g5s1þg12

��
1�u1ÞaR

l

N*

�
;

dg5
dt

¼ �vH
vE2

¼ �D1þg1

��
1�u1ÞS

�ð1�emÞbhe
N* � l

N*

	�
þg2

��
1�u1Þt3 Sc

�ð1�emÞbhe
N* � l

N*

	�
;

þg3

��
1�u1Þð1� eÞSv

�ð1�emÞbhe
N*

� l

N*

	�
�g4

��
1�u1ÞðSþT 3 Scþð1� eÞSvþaRÞ

�ð1�emÞbhe
N*

� l

N*

	
;

þg5ðs2þdeÞ�g6d1s2�g7d2s2�g8d3s2�g9 ð1�dÞs2þg12

��
1�u1ÞaR

�ð1�emÞbhe
N* � l

N*

	
;

dg6
dt

¼ �vH
vIa

¼ �D2þg1

��
1�u1ÞS

�ð1�emÞbha
N* � l

N*

	�
þg2

��
1�u1Þt3 Sc

�ð1�emÞbha
N* � l

N*

	�
;

þg3

��
1�u1Þð1� eÞSv

�ð1�emÞbha
N*

� l

N*

	�
�g4

��
1�u1ÞðSþT 3 Scþð1� eÞSvþaRÞ

�ð1�emÞbha
N*

� l

N*

	
;

þg6 ðjaþdaÞþg12

�
�jaþð1�u1ÞaR

�ð1�emÞbha
N* � l

N*

	�
;

d g7
d t

¼ �vH
vIs

¼ �D3 þ g1

��
1� u1Þ S

�ð1� emÞ b
N* � l

N*

	�
þ g2

��
1� u1Þ t3 Sc

�ð1� emÞ b
N* � l

N*

	�
;

þg3

��
1� u1Þ ð1� eÞ Sv

�ð1� emÞ b
N* � l

N*

	�
� g4

��
1� u1Þ ðSþT 3 Sc þ ð1� eÞ Sv þ a RÞ

�ð1� emÞ b
N* � l

N*

	
;

þg7ðss ð1þ u3Þ þ js þ 4s þ dsÞ � g10 ss ð1þ u3Þ � g11 4s þ g12

�
� js þ ð1� u1Þa R

�ð1� emÞ b
N* � l

N*

	�
;

dg8
dt

¼ �vH
vIac

¼ �D4þg1

��
1�u1ÞS

�ð1�emÞbt1
N* � l

N*

	�
þg2

��
1�u1Þt3 Sc

�ð1�emÞbt1
N* � l

N*

	�
;

þg3

��
1�u1Þð1� eÞSv

�ð1�emÞbt1
N* � l

N*

	�
�g4

��
1�u1ÞðSþT 3 Scþð1� eÞSvþaRÞ

�ð1�emÞbt1
N* � l

N*

	
;

þg8 ðjacþdacÞþg12

�
�jacþð1�u1ÞaR

�ð1�emÞbt1
N* � l

N*

	�
;
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dg9
dt

¼ �vH
vIsc

¼ �D5þg1

��
1�u1ÞS

�ð1�emÞbt2
N* � l

N*

	�
þg2

��
1�u1Þt3 Sc

�ð1�emÞbt2
N* � l

N*

	�
;

þg3

��
1�u1Þð1� eÞSv

�ð1�emÞbt2
N*

� l

N*

	�
�g4

��
1�u1ÞðSþT 3 Scþð1� eÞSvþaRÞ

�ð1�emÞbt2
N*

� l

N*

	
;

þg9 ðssc ð1þu3Þþjscþ4scþdscÞ�g10ssc ð1þu3Þ�g114scþg12

�
�jscþð1�u1ÞaR

�ð1�emÞbt2
N* � l

N*

	�
;

d g10
d t

¼ �vH
vQ

¼ g10 ðjq þ 4qÞ � g11 4q � g12 jq;
d g11
d t

¼ �vH
vH

¼ g11 ðjh ð1þ u4Þ þ dhÞ � g12 jh ð1þ u4Þ;

� � � �

d g12
d t

¼ �vH
vR

¼ g1
�
1� u1Þ S

�l

N*
� g2 � ð1� u1Þ t3 Sc

�l

N*
;

�g3

�
ðq2 xs ð1þ u2Þ � ð1� u1Þ ð1� eÞ Sv �l

N*

�
� g4

��
1� u1Þ l aþ ð1� u1Þ ðSþT 3 Sc þ ð1� eÞ Sv þ aRÞ �l

N*

�
;

�g12

�
� ð1� u1ÞaR

�l

N*
� ð1� u1Þa l� q2 xs ð1þ u2Þ

�
:

Now vH
vui

¼ 0; i ¼ 1; 2; 3; 4 implies

vH
vu1

¼ F1 u1 þ l S ðg1 � g4Þ þ t3 l Sc ðg2 � g4Þ þ ð1� eÞ l Sv ðg3 � g4Þ þ a lR ðg12 � g4Þ ¼ 0;

vH
vu2

¼ F2 u2 þ xs S ðg3 � g1Þ þ q1 xs Sc ðg3 � g2Þ þ q2 xs R ðg3 � g12Þ ¼ 0;

vH
vu3

¼ F3 u3 þ ss Is ðg10 � g7Þ þ ssc Isc ðg10 � g9Þ ¼ 0;

vH
vu4

¼ F4 u4 þ jh H ðg12 � g11Þ ¼ 0:
Solving the above system we have

u*1 ¼ ðg4 � g1Þ l Sþ ðg4 � g2Þ t3 l Sc þ ðg4 � g3Þ ð1� eÞ l Sv þ ðg4 � g12Þa lR
F1

;

u*2 ¼ ðg1 � g3Þ xs Sþ ðg2 � g3Þ q1 xs Sc þ ðg12 � g3Þ q2 xs R
F2

;

u*3 ¼ ðg7 � g10Þss Is þ ðg9 � g10Þssc Isc
F3

;

u*4 ¼ ðg11 � g12Þjh H
F4

:

Hence the set of controls satisfy (19). ,
6. Numerical simulations

In this section we have used our model to carry out numerical simulations using base line parameter values as given in
Table 2.
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6.1. Data collection, data fitting and parameter estimation

Data relevant to our model has been collected from the official website (Worldometers, 2019). Some parameter values
have been obtained from already existing literature. Other parameter values have been calculated using the MATLAB fmin-
searchbnd function to fit the real data with our model. The fitting results obtained from our model are shown in Fig. 4 and
comparedwith the daily infected cases of the USA. This figure suggests that our estimated values are very close to the real data
and hence are reliable. The simulation results are presented in magenta color for b ¼ 0.60, green color for b ¼ 0.57, blue color
for b ¼ 0.62 and red color for b ¼ 0.78.

6.2. Global sensitivity and uncertainty analysis

Sensitivity and uncertainity analysis is discussed in this section to study the uncertainty of our model and to identify the
most influential parameters those can control the COVID-19 transmission (Marino et al., 2008). Parameters whose PRCC
values lie in the range jPRCCj > 0:5 and have p-values less than 0.01 are thought of as highly correlated with the response
function (Blower and Dowlatabadi, 1994, pp. 229e243, Taylor, 1990). In order to perform PRCC analysis, we start with Latin
Hyperbolic Sampling (LHS) of the model parameters. The LHS matrix containing the LHS parameters are obtained by uniform
distribution. In this paper, for PRCC analysis the model is simulated 500 times and the model is run for 510 days.

6.3. Effect of various parameters on the transmission dynamics of Covid-19

Now we will discuss about the top ranked parameters those can control the spread of COVID-19 nationwide. Performing
PRCC analysis for the variables Is, Isc and basic reproduction number ðR cÞ (Figs. 5e7) it is seen that effective contact rate (b) is
the most important parameter that has a impact on the dynamics of COVID-19. These figures depict that (b) is positively
correlated with the response functions Is; Isc and R c. This implies that minimizing the contact rate (increasing social dis-
tance), we can control the spread of COVID-19. Fig. 8 deals with the simulation of the model with different values of the
effective contact rate parameter (b). From this figure we can observe a significant decrease in the number of daily infected
individuals, daily hospitalization cases and cumulative deaths with a reduction in effective contact rate and hence disease
related complexity decreases.

Figs. 5e7 also show that e (mask efficacy) & m (mask coverage) are negatively correlated with the response functions Is;
Isc and R c which implies we can reduce the disease related complexity if highly efficacious facemask can be used by a greater
number of population in the community. Numerical simulations are also performed to present the combined effect of face
mask coverage and face mask efficacy on the transmission dynamics of COVID-19 (Fig. 9). This figure tells that an increase in
the value of e&m can help reduce the number of daily infected individuals, daily hospitalization cases and cumulative deaths.
As for example Fig. 9 (a) shows that when no facemask is used the peak value is 423391 but when 25% of total population uses
face mask of 25% efficacy, peak value becomes 365698 which implies a 13.6% reduction in peak value. Further a 16% reduction
is noticed when 50% of total population uses face mask of same efficacy. Again a 19% reduction is noticed when 75% of total
population uses face mask of same efficacy. Fig. 9 (b) shows a 27.5% reduction in peak value when 25% of total population uses
face mask of 50% efficacy. This figure also shows a 38% reduction in peak value when 50% of total population uses face mask of
50% efficacy. Further a 49% reduction is observed when 70% of total population uses face mask of 50% efficacy. Fig. 9 (c) shows
a 41.5% reduction in peak value when 25% of total population uses face mask of 75% efficacy. This figure also shows a 61%
0 50 100 150 200 250 300 350 400 450
0

5

10

15 105

Fig. 4. Number of daily infected individuals in the U.S starting from December 13, 2020 to 19 March 2022, are plotted with the simulation results using the model
(2).
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Fig. 5. PRCC analysis of the model (2) for the response function Is.
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Fig. 6. PRCC analysis of the model (2) for the response function Isc.
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reduction in peak value when 50% of total population uses face mask of 75% efficacy. In short, we can say that when mask
coverage and mask efficacy both increases peak value of daily infected cases decreases significantly. Similar results are
observed for daily hospitalized cases and cumulative deaths.

Again it is evident from Figs. 5e7 that xs is negatively correlated with the response functions Is; Isc and R c which suggests
that mass vaccination campaign can slow down the spread of COVID-19. This is shown graphically in Fig. 10. From this figure,
it can be seen that number of daily infected individuals, hospitalized individuals and cumulative deaths decreases remarkably
when vaccination rate is increased. For instance Fig. 10 (a) shows that when no vaccine is implemented, the peak of the daily
infected cases is 405788. But when the vaccine coverage is increased to base line value, the peak value becomes 221946which
implies a 45.5% reduction in peak value. Again when the vaccination coverage is increased 30% from its base line value the
680



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

-1

-0.5

0

0.5

1

10
-3
00
10

-2
00
10

-1
00

Fig. 7. PRCC analysis of the model (2) for the response function R c .

Fig. 8. Numerical results showing the impact of social distancing in controlling the transmission of COVID-19.
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peak is reduced by 14%. Further a 12% reduction in the peak value is observedwhen the base line vaccine coverage is increased
by 60%. Similar trends are observed for daily hospitalized case and cumulative deaths (Fig. 10 (b) and Fig. 10 (c)).

In model (2), parameter e represents the efficacy of vaccine and from Figs. 5e7, it is clear that it has a large negative PRCC
value which means that it has a negative impact on the spread of COVID-19. Thus vaccines with high efficacy can lead to the
elimination of COVID-19 from the community. Fig. 11 supports this statement. This figure depicts that the more a vaccine is
effective, the less is the number of daily infected individuals, hospitalized individuals, and cumulative death cases. For
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Fig. 9. Numerical results showing the combined effect of face mask coverage and mask efficacy in controlling the transmission of COVID-19.

Fig. 10. Simulations of the model (2) showing the effect of vaccination on the transmission dynamics of COVID-19 with various vaccine coverage.
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instance Fig. 11 (a) shows that when vaccine efficacy is 60%, the peak of the daily infected cases is 547309. But when the
vaccine efficacy is 70%, the peak value becomes 423805 which implies a 23% reduction in peak value. Againwhen the efficacy
increases to 80% the peak is reduced by 20%. Further a 18% reduction in the peak value is observed when the vaccine efficacy
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Fig. 11. Numerical results showing the effect of vaccine efficacy on the transmission dynamics of COVID-19.
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increases to 90%. In short, we can say that the peak of the daily infected cases decreases remarkably when the vaccine efficacy
increases. Similar trends are observed for daily hospitalized cases and cumulative deaths (Fig. 11 (b) and Fig. 11 (c)).

Fig. 12 (a) assesses the combined effect of face mask coverage and mask efficacy on the basic reproduction number by
drawing contour plot of the reproduction number R c as a function of mask coverage (m) and mask efficacy (e). This figure
Fig. 12. Fig. 12 (a) Contour plots of the reproduction number ðR cÞ as a function of mask coverage (m) and face mask efficacy (e). Fig. 12 (b) Contour plots of the
reproduction number ðR cÞ as a function of vaccine coverage and vaccine efficacy. Fig. 12 (c) Contour plots of the reproduction number ðR cÞ as a function of re-
infection and co-morbidity.
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(Fig.12 (a)) says that if 59% ormore of the total populationwear facemaskwith efficacy 57% ormore, COVID can be eliminated
from the community. The combined effect of vaccine coverage and vaccine efficacy on the basic reproduction is also presented
(Fig. 12 (b)) by drawing the contour plot of the reproduction number R c as a function of vaccine coverage (xs) and vaccine
efficacy (e). From this figure (Fig. 12 (b)) it is observed that if 70% or more of the total population is vaccinated with vaccine of
efficacy 65% or more, COVID can be eliminated from the community. The combined effect of re-infection and co-morbidity is
shown in Fig. 12 (c) by drawing the contour plot of R c as a function of re-infection and co-morbidity. This figure illustrates
that high re-infection rate and large number of co-morbid susceptible individuals can increase the disease related burden.
6.4. Optimal control

Now, wewill present the results obtained by numerical simulations on themodel both without control andwith control to
illustrate the importance of control means. The total optimality system is divided into two parts: state system and adjoint
system. The optimality system is solved by an efficient iterativemethodwhich is a combination of forward solving of the state
system and backward solving of the adjoint system. We design the following control schemes to explore the effect of each
control strategy:

6.4.1. Scheme- 1: single control strategies
Strategy A: Prevention of Covid-19 among susceptible (u1 s 0)
Strategy B: Implementation of continuous vaccination (u2 s 0)
Strategy C: Case detection and quarantine (u3 s 0)
Strategy D: Control in treatment (u4 s 0)

Fig. 13 depicts the effect of single control strategies considered in this paper as narrated in subsubsection 6.4.1 for all the
infected classes and hospitalized class respectively. From this figure it is clear that among the single control strategies,
strategy A is the most effective to reduce the corresponding cases in the infected classes and hospitalized class.

6.4.2. Scheme-2: double control strategies
Strategy E: Combination of u1 & u2 (u1 s 0, u2 s 0, u3 ¼ 0, u4 ¼ 0)
Fig. 13. Dynamics of all infected classes and hospitalized class showing the effect of the optimal strategies in scenario 1.
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Fig. 14. Dynamics of all infected classes and hospitalized class showing the effect of the optimal strategies in scenario 2.
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Strategy F: Combination of u1 & u3 (u1 s 0, u2 ¼ 0, u3 s 0, u4 ¼ 0)
Strategy G: Combination of u1 & u4 (u1 s 0, u2 ¼ 0, u3 ¼ 0, u4 s 0)
Strategy H: Combination of u2 & u3 (u1 ¼ 0, u2 s 0, u3 s 0, u4 ¼ 0)
Strategy I: Combination of u2 & u4 (u1 ¼ 0, u2 s 0, u3 ¼ 0, u4 s 0)
Strategy J: Combination of u3 & u4 (u1 ¼ 0, u2 ¼ 0, u3 s 0, u4 s 0)

Fig. 14 illustrates the comparison among different combination of double control strategies for all the infected classes and
hospitalized class respectively as discussed in subsubsection 6.4.2.

6.4.3. Scheme-3: triple control strategies
Strategy K: Combination of u1, u2 & u3 (u1 s 0, u2 s 0, u3 s 0, u4 ¼ 0)
Strategy L: Combination of u1, u2 & u4 (u1 s 0, u2 s 0, u3 ¼ 0, u4 s 0)
Strategy M: Combination of u1, u3 & u4 (u1 s 0, u2 ¼ 0, u3 s 0, u4 s 0)
Strategy N: Combination of u2, u3 & u4 (u1 ¼ 0, u2 s 0, u3 s 0, u4 s 0)

Fig. 15 presents the dynamic of COVID-19 in the presence of various triple control strategies as summarized in sub-
subsection 6.4.3 for all the infected classes and hospitalized class respectively. From this figure we see that strategy L Scheme
3 of has the lowest number of cases in all the classes. So, strategy L is themost important triple control strategies to reduce the
number of cases.

6.4.4. Scheme-4: quadruple control strategy
Strategy O: Combination of u1, u2, u3 & u4 (u1 s 0, u2 s 0, u3 s 0, u4 s 0)
Fig. 16 illustrates the comparison between no control and all the control variables considered at a time for all the infected

classes and hospitalized class respectively as described in subsubsection 6.4.4.
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Fig. 15. Dynamics of all infected classes and hospitalized class showing the effect of the optimal strategies in scenario 3.

Fig. 16. Dynamical trajectories of all infected classes and hospitalized class showing the effect of the optimal strategies in scenario 4.
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7. Conclusion

Since its emergence, COVID-19 has spread rapidly throughout the world posing challenges to the economy and global
health. In the beginning, the use of non-pharmaceutical interventions (such as wearing masks publicly, maintaining social
686



A.K. Saha, S. Saha and C.N. Podder Infectious Disease Modelling 7 (2022) 660e689
distance, contact tracing, and washing hands) was the only way to control the spread of COVID-19 and to mitigate the
disease burden. Now there are numerous vaccines that are proved to be safe and effective against some specific strains, but
the frequent appearance of new variants due to the change of virus genetic pattern makes it ineffective against the variants
of concern. In this situation, vaccines only will not be able to eliminate the COVID-19 pandemic. So, a combination of mass
vaccination program with the implementation of NPIs will be the most effective way to reduce the disease burden. To
address these situations and to assess the impact of vaccination, NPIs and other optimal control strategies on the dynamical
behavior of COVID-19, a mathematical model is developed and analyzed. We started with some theoretical analysis of the
model. We discussed about the positivity and boundedness of the model solutions and it was shown that all the solutions of
state variables are positive and bounded. After that, we calculated the basic reproduction number ðR cÞ. It was shown that
the disease free equilibrium is locally asymptotically stable whenever R c < 1. The model is shown to have backward
bifurcation where a stable DFE co-exists with a stable EEP when R c < 1. Then we performed theoretical analysis for the
case when there is no re-infection. The disease free equilibrium point (DFE) of model with no re-infection (a¼ 0) is globally
asymptotically stable whenever R c < 1. The unique endemic equilibrium point (EEP) of model with no re-infection is
globally asymptotically stable whenR c > 1. Thenwe analyzed the model numerically. We performed global sensitivity and
uncertainty analysis to determine the most influential parameters those controls the dynamics of COVID-19. PRCC analysis
suggests that mask coverage (m), mask efficacy (e), effective contact rate (b), vaccine coverage (xs), vaccine efficacy (e) and
modification parameter (t3) are the top ranked parameters. Numerical simulation of the model suggests that if strict social
distance is maintained with the isolation of detected individuals, number of daily infected cases, daily hospitalized cases
and cumulative deaths decreases. As for example, Fig. 8 shows that if mild social distancing is followed, the peak of daily
infected cases can be reduced by 48%. Further a 74% decrease in the peak of daily infected cases is observed when moderate
social distancing is continued. Again if the usage of highly efficacious masks for the maximum number of people can be
ensured, the disease burden can be reduced. Fig. 9 (a)e(b) depict that when 25% of total population uses face mask of 25%
efficacy, peak value of daily infected cases becomes 365698. But when 50% of total population uses face mask of same
efficacy a 16% reduction in the peak value is noticed. Again when 50% of total population uses face mask of 50% efficacy a
49% reduction in the peak value is observed. Numerical result also suggests that a highly effective vaccine with mass
vaccine coverage can reduce the prevalence of COVID-19 spread. From Fig. 11 (a) it is evident that when vaccine efficacy
increases from 60% to 70%, the peak of the daily infected cases decreases by 23%. Using contour plot (Fig. 12 (a)e(c)), we
have shown the combined effect of mask coverage and mask efficacy, vaccine coverage and vaccine efficacy and co-
morbidity and re-infection, respectively. Thus if we can isolate the co-morbid susceptible individuals, disease related
complexity can be reduced. It is also evident that the presence of re-infection increases the disease burden. Then numerical
simulation is carried out for the optimal control problem. In the introduction section, we have discussed the major findings
about the optimal control analysis of some related papers. In this paper, control profile of control measure u1 shows that
strategy u1 rises continuously, reaches to the peak in about 110 days and then drops to zero. Control profile of the second
control measure u2 suggests that this control measure should be maintained at the maximum level for the first 56 days and
then gradually reduced to zero. The third control measure (u3) also needs to be maintained at the maximum level for the
first 40 days and then gradually reduced to zero. Control measure u4 was initially at the maximum level for 18 days and
then started to decrease gradually. In Omame et al. (2020), authors showed that among the three control strategies used in
their study, the strategy of avoiding COVID-19 infection by co-morbid susceptibles is the most effective one. Study Das et al.
(2021) presented that a combination of non-pharmaceutical interventions and vaccination can reduce COVID-19 largely.
Again study Shen et al. (2021) suggested a combination of four control strategies (control for isolation, vaccination control,
control for rapid testing and identifying infected individuals and treatment control) to reduce COVID-19 infection. In their
work Abioye et al. (2021), using three control strategies (control for usage of NPIs, control for active screening with testing
and control against reinfection) authors recommended that multifaceted approach is required to fight against COVID-19.
Optimal control analysis in Bandekar and Ghosh (2022) reveals that if policies related to testing, contact tracing, and
mask-wearing are implemented, the spread of COVID-19 can be reduced. Implementing four control strategies and
considering all possible combinations of the strategies, authors in Asamoah et al. (2022) proposed that practicing physical
or social distancing protocols is the most cost-effective strategy. Optimal control analysis of our study shows that control
strategy considering all the four control variables at a time (Strategy-O) averts the maximum number of COVID-19 cases.
But our study suggests that control that ensures continuous vaccination (control measure u2, strategy-B) is the most cost-
effective control strategy to avert the daily infected cases which is a novel finding of this paper.In summary, this study
indicates that using an effective vaccine with NPIs, particularly reducing contact rate and increasing quarantined of
confirmed cases can eliminate COVID-19. The study also suggests that increasing awareness among general people towards
preventing COVID-19 infection is the most effective control strategy to reduce the prevalence of COVID-19. It also reveals
that in the presence of re-infection and co-morbidity COVID related complexity can increase.
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