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Abstract 

Background:  Diabetic nephropathy (DN) affects about 40% of diabetes mellitus (DM) patients and is the leading 
cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD) all over the world, especially in high- and 
middle-income countries. Most DN has been present for years before it is diagnosed. Currently, the treatment of 
DN is mainly to prevent or delay disease progression. Although many important molecules have been discovered 
in hypothesis-driven research over the past two decades, advances in DN management and new drug develop-
ment have been very limited. Moreover, current animal/cell models could not replicate all the features of human DN, 
while the development of Epigenetics further demonstrates the complexity of the mechanism of DN progression. To 
capture the key pathways and molecules that actually affect DN progression from numerous published studies, we 
collected and analyzed human DN prognostic markers (independent risk factors for DN progression).

Methods:  One hundred and fifty-one DN prognostic markers were collected manually by reading 2365 papers 
published between 01/01/2002 and 12/15/2018. One hundred and fifteen prognostic markers of other four common 
CKDs were also collected. GO and KEGG enrichment analysis was done using g:Profiler, and a relationship network 
was built based on the KEGG database. Tissue origin distribution was derived mainly from The Human Protein Atlas 
(HPA), and a database of these prognostic markers was constructed using PHP Version 5.5.15 and HTML5.

Results:  Several pathways were significantly enriched corresponding to different end point events. It is shown that 
the TNF signaling pathway plays a role through the process of DN progression and adipocytokine signaling pathway 
is uniquely enriched in ESRD. Molecules, such as TNF, IL6, SOD2, etc. are very important for DN progression, among 
which, it seems that “AGER” plays a pivotal role in the mechanism. A database, dbPKD, was constructed containing all 
the collected prognostic markers.

Conclusions:  This study developed a database for all prognostic markers of five common CKDs, offering some bioin-
formatics analyses of DN prognostic markers, and providing useful insights towards understanding the fundamental 
mechanism of human DN progression and for identifying new therapeutic targets.
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Background
DN, also known as “diabetic kidney disease (DKD)”, is one 
of the most important diabetic microvascular complica-
tions, affecting 30–45% patients with either type 1 DM 
(T1DM) or type 2 DM (T2DM), with a peak incidence 
in the 10–20  years duration of DM [1–3]. DN, patho-
logically, is often characterized by glomerular basement 
membrane (GBM) thickening, glomerular mesangial 
matrix expansion, and formation of glomerular nodular 
sclerosis in its advanced stages [4], and clinically, is usu-
ally defined by proteinuria occurrence or declined renal 
function, e.g. reduced glomerular filtration rate (GFR) [1, 
5]. DN patients exhibiting modest or no albuminuria may 
progress to ESRD [6, 7]. DN is the leading cause of CKD 
and ESRD in high-income countries and likely worldwide 
[8–11], and also a single strong predictor of mortality in 
patients with DM [12]. Even worse, the absolute number 
of DN patients continues to increase and the incidence of 
ESRD from DN keeps expanding [13], consistent with the 
global DM pandemic [9, 14].

Currently, tight glucose control and strict blood pres-
sure control (especially with medications that inhibit the 
renin-angiotensin system) remain the mainstay of man-
agement for DN. Although some progress has been made 
in reducing diabetes-related mortality and delaying the 
development of kidney disease from DM, the percent-
age of DN patients who progress to ESRD has not sub-
stantially declined [5]. Disappointingly, there has been an 
impasse in the development of new drugs for DN, with 
no success in Phase 3 clinical trials [15]. One reason is 
the lack of accurate understanding of the underlying 
pathophysiological mechanisms of human DN develop-
ment and progression. Targeting single molecules and/
or pathways that were important in DN development 
and progression based on hypothesis-driven research has 
not yielded significant advances in DN treatment in the 
past two decades. On one hand, mechanisms underlying 
DN development and progression are complicated with 
many interacting molecules and a number of crosstalk 
pathways. On the other hand, current animal and cell 
culture models mainly replicate the early stage of and/
or recapitulate certain features of human DN, failing to 
reproduce the whole process of DN development and 
progression [16]. In addition, patients who strictly com-
plied with treatment recommendations can still develop 
overt DN whereas patients with similar or poor compli-
ance may not. Likewise, not all DM patients with micro-
albuminuria progress to macroalbuminuria or ESRD 
(some patients even revert and the microalbuminuria 
disappears). Therefore, more broad-based approaches 
including systems biology and multiple omics are being 
applied to understanding DN pathological mechanisms 
today [17–19].

Regarding this situation, we collected all DN prog-
nostic markers (risk factors for DN progression) from 
both routine and high-throughput research based on 
human samples in the past two decades and performed 
additional bioinformatics analyses, hoping to offer some 
insights into the mechanism of DN progression, which 
might help DN research and the discovery of new thera-
peutic targets for DN.

We constructed a database dbPKD [20], for prognos-
tic markers of DN, as well as other CKDs including IgA 
nephropathy (IgAN), idiopathic membranous nephropa-
thy (IMN), primary focal segmental glomerulosclerosis 
(pFSGS) and Lupus nephritis (LN). There have been no 
previously focused databases for risk factors of kidney 
diseases. dbPKD may provide a resource for searching 
reported prognostic factors for common CKDs.

Methods
Data collection
All DN prognostic markers (risk factors for DN pro-
gression) were collected by screening through related 
literature. We searched the PubMed database using 32 
keywords, e.g. “DN”, “DKD”, “diabetic kidney disease”, 
“diabetic nephropathy”, “ESRD”, “marker”, etc. (Additional 
file 1: Table S1). Totally, 2365 papers published between 
01/01/2002 and 12/15/2018 were collected, including 
both routine research and high-throughput research. 
Reviews and non-English literature were excluded first. 
Initial screening of literature was based on title and 
abstract. Four hundred and three papers were retained 
for further filtration. Their contents were checked for 
information in detail. Filtrations were carried out accord-
ing to rules: (1) the research subjects must be human, that 
is, samples used for the prognosis study must be derived 
from humans; (2) the disease studied must be DN, or a 
synonym of its definition, such as DKD; (3) markers must 
be potentially prognostic, which means that these mark-
ers should be potential risk/protective factors of GFR 
decline, doubling of serum creatinine, CKD progression, 
ESRD or even death closely related to kidney damage. 
In addition, markers used to predict significant albumi-
nuria/proteinuria progression in DN patients were also 
included; (4) only markers that were rigorously verified to 
be independent risk factors for DN progression in multi-
variate analysis were finally collected, and several markers 
with only univariate analysis results in current prognostic 
studies were also collected; (5) markers of multiple omic-
levels were collected, including genes (involving mRNA, 
SNP, CNV, etc.), proteins, microRNAs, and mixed clini-
cal indicators (referring to all the prognostic markers that 
are not genes, proteins, or microRNAs).

Besides DN prognostic markers, we also collected 
prognostic markers of other four CKDs (IgAN, IMN, 
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pFSGS and LN). The collection guidelines were basically 
the same as that for DN data. However, there were several 
different points as follows: (1) the key words are shown in 
Additional file 1: Table S2; (2) papers published between 
01/01/2002 and 01/01/2018 were filtered for IgAN, IMN, 
pFSGS and LN; (3) markers must be prognostic for GFR 
decline, doubling of serum creatinine, CKD progression, 
ESRD or even death closely related to kidney damage, but 
not necessarily prognostic for albuminuria/proteinuria 
progression. The workflow for data processing is shown 
in Additional file 1: Figure S1.

Functional enrichment analysis of DN prognostic 
molecules
We performed GO and KEGG enrichment analysis 
for DN prognostic molecules using a test based on the 
hypergeometric distribution, with false discovery rate 
(FDR) < 0.05 being considered significant. All this work 
was done using the g:Profiler platform [21].

Network analysis
In order to analyze the connectivity and co-regulation 
among the DN prognostic molecules, we constructed a 
network according to the main enriched pathways in DN 
progression based on KEGG [22] using Edraw Version 
9.3.0.0 [23]. We also manually constructed a signal-trans-
duction diagram by extracting the regulatory relationship 
from the enriched signal transduction pathways to illus-
trate the speculated role of prognostic molecules in DN 
progression more clearly.

Tissue origin distribution
To establish the expression and location of prognos-
tic molecules in normal kidney tissues, we searched all 
prognostic genes and proteins in the HPA [24]. First, we 
downloaded the mRNA and protein data for all genes in 
different human systems/tissues from the HPA, and then 
screened out kidney tissue (e.g. glomeruli, tubules, etc.) 
related data. Finally, we obtained the expression levels 
and location data of prognostic genes and proteins in kid-
ney tissues by molecule ID mapping.

Database construction
To avoid duplication and to unify the naming of mark-
ers across different studies, genes were mapped to 
Entrez Gene IDs, and proteins were mapped to Uni-
Prot IDs. Mixed clinical indicators were given unified 
names if these are widely used. Sample sources were 
categorized into renal tissue, urine and blood (includ-
ing serum and plasma), and the prognostic effects were 
mainly divided into “better” and “worse”. All the collected 
data were incorporated into the database after collation 
and normalization, and each entry included five types 

of information: reference, research parameters, marker 
annotation, prognostic effect(s) and the supportive public 
data.

The web interface for dbPKD was developed using PHP 
Version 5.5.15 and HTML5. JavaScript and jQuery were 
also used to enable dynamic web services. The database 
was implemented in MySQL Server 5.5.48 and deployed 
in Apache web server running on the CentOS 6.5 system. 
Data analyses were mainly developed using R script.

The web interface mainly provides four types of appli-
cation service: Browse, Search, Analysis and Download.

Results
Data statistics
In total, for DN progression, without distinguishing 
specimen sources, 46 genes, 42 proteins, 3 microRNAs, 
and 60 mixed clinical indicators were manually col-
lected from 115 qualified papers published between 
01/01/2002 and 12/15/2018. Most DN prognosis studies 
were multi-centered, and were mainly located in Europe, 
North America and East Asia. According to the primary 
DM subtypes, the DN study population could be divided 
into three subgroups: T1DN, T2DN and undefined DN. 
Specially, the undefined DN subgroup indicates that the 
study population did not include an independent, well-
defined T1DN (secondary to T1DM) cohort or T2DN 
(secondary to T2DM) cohort. The prognostic mark-
ers could also be divided into three groups based on the 
DN population (Additional file  1: Figure S2). Only one 
gene (ACE) and six proteins (ADIPOQ, CST3, TNNT2, 
TNFRSF1A, FABP1, HBB) were verified as potentially 
prognostic in both T1DN and T2DN (Table 1).

Without distinguishing amongst DN subtypes, almost 
all prognostic genes were verified using human blood 
specimens, while prognostic proteins were verified 
mainly based on blood and urine specimens (Additional 
file 1: Figure S3). Specifically in these DN prognosis stud-
ies, two proteins, FGF23 and ADIPOQ, were increased 
in both blood and urine to predict “worse” prognosis of 
DN, while one other protein, MCAM, was observed to be 
“positive” in kidney tissue and “level-increased” in blood 
(Fig.  1). Additionally, four molecules, ADIPOQ, CCL2, 
CTGF and HP, were verified as potentially prognostic for 
DN progression in both gene and protein levels (Addi-
tional file 1: Figure S4).

Molecules involved in DN progression and the functional 
analyses
Based on the DN classification [25] in 2014 and a pre-
liminary analysis of all defined end point events in the 
collected papers (Fig. 2a), the prognostic genes and pro-
teins could be divided into several groups. Among them, 
two groups were of particular interest: the ESRD group, 
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and the overt DN group (referring to a group of mol-
ecules that were prognostic for GFR decline not reach-
ing ESRD). Specially, molecules prognostic for only 
albuminuria/proteinuria progression were clustered as 
MacroAlb/PP group (macroalbuminuria/persistent pro-
teinuria as the end point event). Interestingly, prognos-
tic molecules in the MacroAlb/PP group were basically 
included in the overt DN group (Fig. 2b).

We performed GO and KEGG enrichment analy-
sis. In total, six “Signal transduction” pathways, three 
“Endocrine and metabolic diseases” pathways, one 
“Immune system” pathway, one “Endocrine system” 
pathway, and also one “Cardiovascular diseases” path-
way were significantly enriched (p < 0.05) (Fig. 3, Addi-
tional file 1: Figure S5). Interestingly, as shown in Fig. 3, 
TNF signaling pathway was enriched in MacroAlb/

PP group, overt DN group and ESRD group, which 
suggested that it play an important role through DN 
progression from the occurrence of microalbuminu-
ria to ESRD. Similarly, NF-kappa B signaling pathway 
enriched in MacroAlb/PP group and overt DN group 
but not ESRD group might be primarily involved in the 
early stages of DN progression. Moreover, almost all 
of the pathways enriched in MacroAlb/PP group were 
enriched in ESRD group, implying that there should be 
a close relationship between the mechanism of protein-
uria progression and that of ESRD development, which 
also, from the perspective of bioinformatics, confirmed 
that proteinuria was a risk factor for adverse renal out-
come [26, 27]. Furthermore, prognostic genes and pro-
teins of all the GFR-decline related end point events 
(including GFR decline, serum creatinine rise, ESRD, 
start of replacement therapy, and a more serious CKD 
stage/DN stage) were significantly enriched in HIF-1 
signaling pathway, MAPK signaling pathway, TNF 
signaling pathway, AGE-RAGE signaling pathway in 
diabetic complications and “Fluid shear stress and ath-
erosclerosis” pathway (not shown), indicating that the 
Cardiovascular diseases pathway “Fluid shear stress and 
atherosclerosis” might be activated in DN progression, 
this, to a certain extent, explained the risk of cardiovas-
cular death in DN patients [28]. In addition, referring to 
the adipocytokine signaling pathway enriched in ESRD 
group, there have been several adipocytokines reported 
to participate in DN development and progression in 
recent years. One of them was adiponectin (ADIPOQ), 
besides being verified as a prognostic molecule in DN 
prognosis studies [29–31], it was observed increased 
in the serum of DN patients, protected the kidney by 
reducing inflammatory response and ameliorating 
glomerular hypertrophy and albuminuria, as an anti-
inflammatory adipokine and insulin sensitizer mainly 
secreted by adipocytes [32]. There were also some other 
adipocytokines reported, such as visfatin and apelin. 
Visfatin, or pre-B cell colony-enhancing factor, is syn-
thesized in adipocytes, had an important paracrine 

Table 1  Genes, proteins and microRNAs verified in T1DN and T2DN, respectively

T1DN Common T2DN

Gene AGER, ATP5MC3, BDKRB2, CASP3, CAT, CCR5, CNDP1, 
COX5A, CTGF, CYP11B2, ENPP1, FLT4, GPX1, HPSE, 
LIPC, NPHS1, NPPA, PARP1, SLC2A1, SOD1, SOD2, 
TGFBR2, TRPC6, UQCRC1, CDH13, CYBA

ACE ADIPOQ, AKR1B1, APOE, CCL2, CETP, GSTT1, IL10, ITGA2, 
LTA, NOS3, PON1, PON2, PRKCB, SLC12A3, TKT, FN3K, 
EP300, HP

microRNA miR-126, miR-196a, miR-9

Protein CRP, CTGF, MBL2, TNFRSF11B, UMOD ADIPOQ, CST3, TNNT2, 
TNFRSF1A, FABP1, 
HBB

CLU, COL18A1, CP, FGF21, HP, ICAM1, IL6, TNFRSF1B, 
CD59, CFHR2, C4A, MCAM, LGALS3, AVP, NPPB, RBP4, 
SAA1, TNF, VCAM1, VWF, C8A, AOC3, FGF23, SERPINF1, 
VEGFA, ALB, CCL2

blood

urine kidney
MCAM

PRKCA

FGF23, 
ADIPOQ

CCL2,
CFHR2,CLU, 
FABP1,HP,MET,
RBP4, 
C4A,C8A,CD59, 
EGF,UMOD

AVP,CTGF,FGF21,ICAM1, 
IL6,SERPINF1,TNF, 
TNFRSF11B,TNFRSF1B,
TNFRSF1A,TNNT2,VCAM1, 
VEGFA,VWF,AOC3, 
COL18A1,CP,CRP,CST3, 
HAMP,LGALS3,MBL2,NPPB, 
SAA1
HBB,ALB

Fig. 1  Specimen sources of prognostic proteins and their observed 
increase/decrease associated with worse prognosis of DN. Blue 
arrow represents protein change in blood, green arrow is for urine 
specimen, and orange arrow for kidney tissue
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role in the development of DN through inducing tyros-
ine phosphorylation of the insulin receptor, activating 
downstream insulin signaling pathways and increas-
ing the levels of TGF beta1, PAI-1, type I collagen, and 
MCP-1 (CCL2) [33]. Apelin contributed to DN pro-
gression by inhibiting autophagy in podocytes [34].

Although there are many biological processes (BPs) 
involved in DN progression, we only focused on the top 
15 BPs significantly enriched for all the DN prognos-
tic genes and proteins (Additional file  1: Figure S5). It 
is noted that the risk molecules in MacroAlb/PP group 
were mainly enriched in 5 of the top 15 BPs: response 

Fig. 2  Grouping based on the end point events and corresponding clinical parameters. a End point events and corresponding clinical parameters. 
b Grouping of DN prognostic genes and proteins according to the end point events involved in different studies
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to stress, inflammatory response, response to oxygen-
containing compound, response to lipid, and regulation 
of cell death, which might indicate that inflammation, 
oxidative stress, hemodynamics abnormality, and lipid 
metabolism disorder had been damaging the kidney 
function since the very early DN stage with albuminuria 
occurrence.

Risk molecules for different DN stages based on different 
end point events
According to the three clusters of DN prognostic mol-
ecules, based on different end point events (Fig. 2b), we 
could observe different risk molecules for specific DN 
stages. There were very few overlapping risk molecules 
between the ESRD group and the overt DN group, which 
indicated that there might be different key molecules 
promoting DN progression at different DN stages. For 
example, CTGF was verified as a risk gene for albumi-
nuria progression [35] and a risk protein for progress-
ing to ESRD [36]. Studies using animal/cell models show 
that CTGF could be induced by high glucose through the 
mediation of TGF-β, and its upregulation could promote 
mesangial matrix accumulation, progressive glomerulo-
sclerosis and tubulointerstitial fibrosis [37, 38]. In podo-
cytes, its overexpression could damage podocytes and 
exacerbate proteinuria and mesangial expansion [39]. 
Considering all the above observations, it is speculated 

that CTGF should exert a very weak or no effect on the 
promotion of DN progression in the early albuminuria 
stage of DN, although it was a risk gene for albuminu-
ria progression, while in the middle and late DN stages, 
CTGF should act as a key molecule promoting the devel-
opment of ESRD and play an very important role in DN 
progression.

Role of DN prognostic markers in the mechanism of DN 
progression
We constructed a network according to the aforemen-
tioned KEGG pathways (Fig.  3) to show the connec-
tions and regulation among DN prognostic molecules 
(Additional file 1: Figure S6). To illustrate the role of DN 
prognostic molecules in the mechanism of DN progres-
sion more clearly, we also drew a signal-transduction 
diagram by extracting the regulatory relationship from 
the enriched signal transduction pathways (Fig.  4). For 
the integrity of the regulation loop, AGE-RAGE signal-
ing pathway in diabetic complications is also included 
in the diagram. As shown in Fig. 4, it seems that AGER, 
interacting with AGEs initially produced by high blood 
glucose, is an important molecule in DN development. 
Also, AGER plays a pivotal role in the subsequent DN 
progression mechanism, just like the “switch” in the regu-
lation loop. Accumulation/activation of TNF, TNFRSF1A 
and IL6 could still promote DN progression even without 
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coagulation cascades
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Fig. 3  KEGG enrichment analysis of DN prognostic genes and proteins corresponding to different end point events. TNF signaling pathway, 
PI3K-Akt signaling pathway, NF-kappa B signaling pathway, MAPK signaling pathway, HIF-1 signaling pathway and FoxO signaling pathway all 
belong to “Signal transduction” pathways
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the existence of high blood glucose. Actually, the role of 
some of the DN prognostic molecules in the mechanism 
of DN development and progression and their regula-
tory relationship have been studied in the past two dec-
ades using animal and cell culture models (Additional 
file 1: Figure S7) [40–51]. For example, TNF could cause 
cholesterol-dependent podocyte apoptosis and albumi-
nuria, which was mediated by nuclear factor of activated 
T cells 1 (NFATc1) [52]. Blockade of macrophage-derived 
TNF could protect kidney and reduce albuminuria and 
plasma creatinine in a diabetic mouse model [53]. CRP 
could be induced by high blood glucose and significantly 
upregulate TNF, CCL2 and CTGF via CD32a/64 in vitro. 
CRP transgenic mice developed more severe DN with 
increased albuminuria and enhanced renal inflamma-
tion compared to wild-type mice [41]. In addition, PEDF 
(SERPINF1) could inhibit tubular cell injury by suppress-
ing RAGE (AGER) expression in streptozotocin-induced 
diabetic rats [45], while EGF could prevent podocyte 
apoptosis induced by high glucose [54].

Protein expression and location of DN prognostic genes 
and proteins
In order to explore the law/characteristic of the spatial 
distribution in DN prognostic molecules, we located 

all DN prognostic genes and proteins in renal tissues 
using the HPA [24] (Fig.  5). As shown in Fig.  5, most 
of the DN prognostic molecules are expressed in nor-
mal kidneys and could be found in the HPA query. 
Some of them have high protein expression in nor-
mal kidneys, for example, ICAM1 and NPHS1 are high 
expressed in normal glomeruli, while UMOD, RBP4, 
CST3, TNFRSF1B, TNFRSF11B, ACE, COX5A, ITGA2, 
PON2, TKT, UQCRC1 are high expressed in tubules. 
And several molecules are expressed in normal kidneys 
but not in other human normal tissues: NPHS1, UMOD, 
and SLC12A3. Moreover, most of the prognostic genes 
expressed in normal kidneys could be found in both glo-
meruli and tubules. Interestingly, almost all of the prog-
nostic proteins verified only through urine specimens are 
expressed in normal renal tubules, except C4A, CLU and 
HP (with C8A and EGF unknown), which suggests that 
DN progression might be closely related to the dysregula-
tion of protein expression that originally existed in nor-
mal kidneys.

dbPKD: database for prognostic markers of kidney 
diseases [20]
In total, 69 genes, 72 proteins, 4 microRNAs, and 92 
mixed clinical indicators were extracted from 243 
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qualified papers, without distinguishing specimen 
sources. And 46 genes, 42 proteins, 3 microRNAs, and 60 
mixed clinical indicators were extracted from 115 quali-
fied papers for DN progression. In addition, 30 genes, 43 
proteins, 1 microRNA, and 41 mixed clinical indicators 
were extracted from 128 qualified papers for IgAN, IMN, 
pFSGS and LN.

The browse interface provides data exploration to 
users across several features, such as specimen sources, 
marker types and prognosis effects etc. (Fig.  6a). Users 
can also search for one marker or a group of possible 
prognostic genes in the Search interface (Fig. 6b). Analy-
sis interface provides users with three types of analysis 
service: survival analysis, enrichment analysis and Venn 
diagram analysis. In the “survival analysis” module, we 
pre-uploaded a 40-sample DN dataset obtained from 
National Clinical Research Center of Kidney Diseases 
(Nanjing) to provide a functional demonstration. Users 
can perform this analysis by 4 steps: (1) input a gene list, 
(2) select a dataset from the existing datasets or upload a 
user’s own dataset in the dataset panel, (3) choose other 
given conditions, and (4) click the “Submit”. Analysis 
results will be shown when the calculation is completed, 
including univariate and multivariate analysis tables, 
Kaplan–Meier survival curves, and prognosis models. In 
the “enrichment analysis” module, we provide GO and 
KEGG enrichment analysis as well as the protein–protein 
interaction (PPI) network analysis. Venn diagram analy-
sis focuses on screening for common or specific markers 
in PKD research. The analysis can be performed mainly 

by one of the three conditions below: “Venn Diagram 
in source”, “Venn Diagram disease” and “Venn Diagram 
marker” (Fig.  6c). Finally, users can download data in 
Download interface (Fig. 6d). And dbPKD is free for non-
commercial activities.

Discussion
Theoretically, proper genetic intervention to DM patient 
might prevent DN from happening. However, resolving 
the genetics of DN remains complex with little progress. 
In the past decades, only a few molecules were identified 
as DN genetic factors through genome-wide association 
studies (GWAS), such as ACE, AKR1B1, APOE, PPARG, 
etc. [55]. Some of them were also verified as DN prog-
nostic genes, which could be called “high-risk genes for 
DN development and progression” (Additional file 1: Fig-
ure S8). At present, in addition to strict management of 
diabetic patients, there seems to be no precautions for 
DN development. The main therapeutic strategy for DN 
patients is to inhibit or retard the disease progression. 
The prognostic markers collected here were all verified 
as risk factors for DN progression in DN prognosis stud-
ies. They were all directly related to the end point events 
of DN patients regardless of the complex interactions 
among molecules and Epigenetics. Hence, they might 
reflect the most real “key molecules” in DN progression 
and serve for finding new therapeutic targets. Analyzing 
these prognostic markers might offer some insights in 
understanding the mechanism of DN progression.

(glomerulus)

(distal tubule)

(collecting duct)

(proximal tubule)

CFHR2, 

Tubule: UMOD*, RBP4, CFHR2, 
CD59, FABP1, MET, CCL2, 
CTGF, LGALS3, CST3,
COL18A1, ALB, TNFRSF1A,
TNFRSF1B, TNFRSF11B,
VEGFA, SERPINF1, PRKCA, 

No protein expression detected: 
C4A, CLU, HP, MBL2, CRP, 
CP,  AOC3, VWF, TNNT2, IL6, 
VCAM1, FGF21, AVP, HBB, 

No information of protein 
expression in HPA: C8A, 
EGF, FGF23, SAA1, NPPB, 
TNF, HAMP, 

ADIPOQ, CTGF, MCAM, 
TNFRSF1A, VEGFA,
ICAM1,
(gene) ADIPOQ, CTGF,  
FLT4, IL10,  ITGA2, LTA,
NOS3, NPHS1*, PARP1, 
PON1, PON2, SOD1, SOD2, 
TKT, UQCRC1, CDH13, 
EP300,

(gene) ACE, APOE, CAT, CCL2, 
COX5A, CTGF, ENPP1, FLT4,
GPX1, IL10, ITGA2, LTA, 
NPHS1*, PARP1, PON1, PON2,
SLC12A3*, SOD1, SOD2, TKT,
UQCRC1, EP300,

(gene) ATP5MC3, CCR5, 
CETP, GSTT1, HPSE, LIPC, 
TGFBR2, MTHFR, 

(gene) AGER, AKR1B1, 
BDKRB2, CASP3, CNDP1, 
CYBA, CYP11B2, NPPA, 
PRKCB, SLC2A1, FN3K, 
TRPC6, HP

(loop of Henle)

UMOD*,

UMOD*,

Fig. 5  Protein expression and location of DN prognostic molecules in renal tissues using the HPA [24]. The asterisk (*) denotes specific protein 
expression in kidney. Bold indicates high protein expression, and proteins expressed in both glomeruli and tubules are in red
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MicroRNAs are small non-coding RNA molecules 
that usually function in RNA silencing and post-tran-
scriptional regulation by affecting their target mRNAs. 
Here we only collected three microRNAs that were 
verified as risk factors of DN progression. Interestingly, 
their target molecules included more DN prognostic 
genes and proteins [56] (Additional file  1: Figure S9), 
indicating that microRNAs should play an important 
role in DN progression. In some other related works, 
we confirmed the clinical application value of miR-196a 
for several types of kidney diseases [57, 58]. The regu-
lation details between microRNAs and their targets 
as well as the possible associations among these three 
microRNAs need further research, which might help to 
understand the mechanism of DN progression. In addi-
tion, there were also some clinical indicators (includ-
ing metabolites, biochemical indicators, pathological 
parameters, etc.) that could be used as DN prognostic 

markers. In fact, serum creatinine has been widely 
reported and clinically used as an important parameter 
in assessing and monitoring renal functions of kidney 
diseases for decades [59, 60]. Vitamin D has been dis-
cussed to be a treatment option in DN for many years 
[61, 62]. Both of these suggest that DN prognostic 
markers have potential important applications in the 
clinical diagnosis and treatment of DN.

Although we attempted to collect all the DN prog-
nostic markers and analyze them as accurately as pos-
sible, there were still some limitations in our study. 
First, due to the limited prognosis studies, the num-
ber of DN prognostic molecules collected was small. 
Second, because of the fuzzy definitions of end point 
events, it was difficult to judge the accurate DN stages 
for which some prognostic markers were used. This 
also hindered subsequent further analysis. Lastly, 
specimen sources of risk factors for DN progression 

Fig. 6  Web interfaces of the dbPKD. a The browse interface of dbPKD for prognostic markers in blood. b The search interface for a gene symbol. c 
The analysis interface which includes three modules: survival analysis, enrichment analysis and Venn analysis. d The download page of dbPKD with 
url and description
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were variable, including urine, blood and kidney tis-
sue, which posed difficulties for further mechanistic 
studies of DN progression.

The work on prognostic markers will be continued 
and the data is scheduled to be updated every 2 years. 
In the meantime, we will keep trying to improve the 
efficiency of data extraction by adopting some machine 
learning methods and endeavor to optimize the work-
flows. In addition, other types of related data, such as 
data from single cell sequencing studies, may also be 
collected in the subsequent work for further analysis. 
We hope that more prognostic markers of kidney dis-
eases and valuable insights could be provided to clini-
cians and researchers.

Conclusions
In conclusion, we collected human DN prognostic 
markers that were verified as independent risk factors 
of DN progression mostly through multivariate analysis 
in the past two decades and constructed a database. To 
our knowledge, this is the first systematic summary of 
DN prognostic markers. Bypassing the complex epige-
netics and avoiding the shortcomings that animal/cell 
models could not replicate all the features of human 
DN, these prognostic molecules were directly related 
to human DN prognosis and were the most authen-
tic key molecules in human DN progression. Also, we 
demonstrated the connections and regulation among 
these molecules and emphasized some related GO 
terms and KEGG pathways by bioinformatics analysis. 
The in-depth study of these molecules and related path-
ways will help to further understand the mechanism 
of human DN progression, discover new therapeutic 
targets and explore new DN drugs. In addition, some 
prognostic markers (mixed clinical indicators) might 
contribute to the improvement of the managements of 
DN patients. In the future, we will expand the data con-
tent and improve the functional modules for dbPKD, 
and strive to provide some more valuable insights for 
the research and treatment of related kidney diseases 
by adopting more and better analytical methods.
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Additional file 1: Table S1. Key words for search of prognosis literature 
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processing. Figure S2. Prognostic markers in DN subtypes. Figure S3. 
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and proteins of DN (Risk genes and proteins for DN progression). Figure 
S5. GO enrichment analysis of DN prognostic genes and proteins cor-
responding to different end point events. Figure S6. The distribution of 
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