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Abstract

The availability of several methods to unambiguously mark individual cells has strongly fos-
tered the understanding of clonal developments in hematopoiesis and other stem cell
driven regenerative tissues. While cellular barcoding is the method of choice for experimen-
tal studies, patients that underwent gene therapy carry a unique insertional mark within the
transplanted cells originating from the integration of the retroviral vector. Close monitoring
of such patients allows accessing their clonal dynamics, however, the early detection of
events that predict monoclonal conversion and potentially the onset of leukemia are benefi-
cial for treatment. We developed a simple mathematical model of a self-stabilizing hemato-
poietic stem cell population to generate a wide range of possible clonal developments,
reproducing typical, experimentally and clinically observed scenarios. We use the resulting
model scenarios to suggest and test a set of statistical measures that should allow for an
interpretation and classification of relevant clonal dynamics. Apart from the assessment of
several established diversity indices we suggest a measure that quantifies the extension to
which the increase in the size of one clone is attributed to the total loss in the size of all
other clones. By evaluating the change in relative clone sizes between consecutive mea-
surements, the suggested measure, referred to as maximum relative clonal expansion
(mRCE), proves to be highly sensitive in the detection of rapidly expanding cell clones prior
to their dominant manifestation. This predictive potential places the mRCE as a suitable
means for the early recognition of leukemogenesis especially in gene therapy patients that
are closely monitored. Our model based approach illustrates how simulation studies can
actively support the design and evaluation of preclinical strategies for the analysis and risk
evaluation of clonal developments.

Introduction

The life-long supply of functional blood cells is realized by a rather small population of
hematopoietic stem cells (HSCs). These cells reside in the bone marrow and proliferate with a
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relatively low frequency [1-3]. It was shown in different experiments that individual HSCs are
able to fully regenerate adult hematopoiesis after stem cell depletion, thus documenting that
individual HSCs can expand and reestablish their own population [4, 5]. In addition to this
self-renewal potential the HSC pool in human generates a vast amount of functional blood
cells every day in a tightly regulated sequence of amplification steps [6, 7].

In a simple approximation, the descendants of each HSC constitute a particular clone,
which can both expand within the HSC pool and contribute to the pool of more differentiated
progeny and therefore to the peripheral blood [8]. Although the terminology clone is com-
monly used in stem cell research we advocate the view that it should be handled with care and
provided with defining criteria. Originally the term derives from the Greek word kAw “v (twig)
and refers to the process of deriving new plants by implanting twigs. In this meaning of the
word, it is the common ancestor that uniquely defines a clone by the set of its descendants. In
cell biology this definition has been adapted to the cellular offspring of an ancestral cell [9].
Whether this initial cell is defined a priori (e.g. as a fertilized egg), by a marking event (e.g. inte-
gration of a unique vector) or simply by the initiation of recording (e.g. in single cell tracking)
depends on the particular experimental view and the raised question.

HSCs contribute to the blood in cases of demand and otherwise only infrequently [10]. In
any case, the development of one individual clone can never be seen as an independent process
as it is ultimately linked to the development and the expansion of other, possibly competing
clones. This process is usually referred to as clonal competition or clonal dynamics [9, 11].

Clonal competition occurs due to HSC clones that have slightly different properties while
competing for similar resources, often interpreted as a competition for niche spaces [12].
Assuming an intrinsic heterogeneity of all HSCs, clonal competition appears as a continuous
process that defines the clonal repertoire in the long run [13]. Blood cancers, like myeloid leu-
kemia, disturb this natural, mild heterogeneity by the (possibly sequential) generation of clones
with a distinct growth advantage and impaired differentiation potential [14-17]. This leads to
an increased and unregulated expansion of predominantly immature myeloid cells, the out-
competition of healthy cells and finally, if untreated, to the patient’s death. The question arises,
whether it is possible to identify the dominant growth of a cancer clone already at an early
stage in which the pathological potential is not fully developed and additional mutation acqui-
sition is still limited. Since clonal fluctuations are observable even in healthy tissues the identifi-
cation of a maligned/leukemic clone based on fluctuation patterns remains challenging.

The analysis of clonal developments in hematopoiesis has evolved into a key method in
both experimental and clinical research. Established methods are based on cell intrinsic infor-
mation, which can be used to conclude divisional history of the corresponding cells, e.g. gene
mutation profiles, without alternating the cell during the experiment or therapy [11]. The avail-
ability of sophisticated methods to uniquely label individual HSCs and their clonal progeny
offers an exciting experimental access to such data. Mainly the use of barcode equipped viral
vectors in combination with next generation sequencing significantly foster the experimental
progress. Although the use of such viral vectors in clinical studies is limited by ethical and
safety constrains, clonal tracking using integration site analysis is the method of choice for the
close monitoring of gene therapy patients [18-20]. Particularly in this settings, it is of highest
relevance to utilize the temporal clonal development in individual patients to potentially iden-
tify malignant transformations at a very early point in time and to reliably and prospectively
predict the potential outgrowth of leukemia [19]. This would allow for the early adaptation of
treatment strategies; such as stem cell transplantations.

We developed a simplified, albeit rigorously defined mathematical model to study how
changes in the clonal properties influence the dynamics of clonal evolution. We use the model
to simulate clonal behavior in the hematopoietic stem cell compartments in order to illustrate
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how certain aspects of the experimental setup (such as number and size of initially transplanted
cell, inter-cellular variability, sampling and measurement errors) influence the resulting clonal
patterns of hematopoiesis. Furthermore, we study how the rapid outgrowth of a leukemic clone
influences the clonal competition process.

It is the central aim of our study to systematically analyze how a range of statistical measures
is suited to quantify clone size distribution and abundance over time. We are particularly inter-
ested in the performance evaluation of such measures especially for the case of a leukemic
clone and whether they can be used to reliably and prospectively detect the occurrence of such
malignancies. We discuss potential applications in the context of gene therapies.

Material and Methods
Simplified Model of Hematopoiesis

We apply an agent-based model, in which cells are represented by individual agents and are
updated at discrete time steps (daily). Every cell has several characteristic attributes (clonal
identity i, proliferation rate p;, differentiation rate d;, replicative age J,_; see below) that are
inherited to their progeny.

The population growth is limited by a logistic growth function with carrying capacity K.
Proliferation thereby only depends on the absolute cell number and is modeled as a stochastic
update procedure, in which the probability of a proliferation event €/ for a single cell c at time

P(Q, t)=p,- (1 - %)

tis given as

Herein p; is the maximum proliferation rate for the scenario of an empty model system. For
simplicity we assume that the proliferation rate is identical for all healthy clones (p; = p)
whereas this value is increased for malignant clones (see blow). Due to the implementation of

proliferation as a stochastic process the inverse of the average probability (1/P(€2;,t)) corre-

sponds to an effective cell turnover time. {N|,N,, ..., N;, .. .N,} defines a set of n different
clones, in which the cells share and inherit common clonal properties (namely differentiation
and proliferation rates). Every cell ¢ is assigned to a certain clone i, which is inherited to their

clonal offspring. N(t) = Z; |N;| refers to the total number of cells at time point t within all

clones.
Besides proliferation, a cell ¢ can also undergo differentiation €2 at time point ¢ with the
probability

P, t)=d,-(1+a-9.(t))

with d, ~ N(d, o) being a clone specific differentiation rate of clone i. Initially, values of d;
are drawn from a normal distribution with mean d and standard deviation o, thereby mimick-
ing a degree of clonal heterogeneity.

We represent aging as the cumulative adverse effect resulting from multiple replications.
Technically, the replicative age §, counts the sum of all prior divisions of a certain cell ¢, and
therefore increasing the differentiation probability by a factor termed aging factor a. For the
limiting case a = 0 the aging effect is neglected, and therefore only the differentiation rate d;
makes up for the clonal differences.

Furthermore, we incorporate cancer in the model as a “one hit model”, in which we make
the simplifying assumption that a single mutation event alters the proliferation rate of one ran-
domly chosen cell. Technically, a new clone N, is derived from this randomly chosen cell,
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thereby constituting an independent subclone of the initially marked clone to which the
affected cell belongs. All offspring cells of the new clone N,,,; are characterized by an increased
proliferation rate p,,,; > p; with i € {1, .. ., n}. Since we are using a logistic growth limitation
to describe the population maintenance, the mutated cell clone can eventually outcompete the
non-mutated, “healthy” clones.

Uncertainty of the measurement process is incorporated within our model by adding a
white noise A/ (1 = 0, 7) to the absolute clone size measurements. The standard deviation
refers to the noise amplitude. The case 77 = 0 corresponds to a scenario without any measure-
ment noise.

Clone size analysis is performed directly within the population of proliferative and differen-
tiating (stem) cells, thereby neglecting alterations due to differential amplification of certain
cell clones. However, without any further assumptions, down-stream compartments of the
stem cell pool will only reflect the clonal composition with a moderate time delay.

The simulation framework is implemented as a single-cell based model in R (version 3.3.1).
Further details of the simulation sequence are outlined in S1 Code.

Choice of parameters

We have adapted our model to resemble plausible homeostatic and leukemic developments
within appropriate mouse models. In the following, we use the outlined standard
configuration:

o We set the carrying capacity to K = 2000 stem cells, thereby estimating the size of a mouse
HSC compartment [21]. Upscaling to higher cell numbers does not qualitatively change the
presented results.

o We report our results for the case of n = 20 clones. This value was chosen for illustrative rea-
sons, although we are aware that we are underestimating the true number of marked HSC
clones within a mouse. Again, upscaling to higher clone numbers does not qualitatively alter
our results.

o We assume that cell division occurs randomly. The effective proliferation rate is calculated as
the product of an maximum proliferation rate of (10 days)~" for healthy cells and (6.6 days) ™"
for malignant cells and a logistic growth limitation. The maximum proliferation rate corre-
sponds to earlier estimates for the turnover of activated HSCs [1, 3]. Compared to a small
fraction of deeply quiescent (label-retaining) HSCs this is a rather high frequency, however,
we argue that precisely this population of activated cells contributes to peripheral blood while
still retaining self-maintenance potential [1, 2].

Cell differentiation (i.e. loss of stem cell potential) occurs randomly with a clone specific rate
d; ~ N (d, 6%). The value for the expected differentiation rate is chosen as d = 0.03 repre-
senting a typical outflux of short term HSCs [2].

In order to consider an additional aging influence, we increase the differentiation probability
with every division of a cell's predecessors. We tuned the magnitude of the aging effect to

o = 0.01 such that oligoclonality occurs after about ten years (compare earlier estimates
[22]).

Measures

Clonal contribution is characterized by the number of contributing clones and their abundancy
within certain cell compartments. In order to quantify and characterize the temporal change of

PLOS ONE | DOI:10.1371/journal.pone.0165129 October 20, 2016 4/17



@° PLOS | ONE

Model Based Analysis of Clonal Developments

these contributions, we apply a range of diversity measures that have been used successfully in
various research fields to describe population inherent heterogeneities.

o Species richness (SR) describes the diversity of species in a defined environment. In particular,
it counts the number of different clones and does not take their abundances into account.
Here, we use a normalized version of this measure, in which the maximum number of differ-
ent clones 7 is considered [23]:

n
Zi:l, IN*1>0 1

SR(t) =1-— ”

Simpson index (SI) describes the probability that two randomly chosen individuals do not
belong to the same species within the population. In our application this translates to the
probability that two cells from the population do not belong to the same clone. If this index
reaches 1 there is no diversity, meaning the population consists of just one clone [24, 25].

NN - 1)
SO =1= 2 NN -1

Shannon index (SH) describes, similar to the Simpson index, the diversity using both the
number of different clones as well as the relative abundance of each clone. In information
theory it corresponds to the entropy of a discrete memoryless source:

SH(t) = fi r,In(r,)

withr; = |Nlt\ /N(t) being the percentage of the corresponding clone relative to the whole
population [24, 26].

Classical diversity indices outlined above are instantaneous measures being defined for a sin-
gle point in time. Motivated by the intention to detect changes in relative clone size, we pro-
pose a more sophisticated measure, which uses consecutive data points.

o Maximum relative clonal expansion (mRCE) is based on the change of the clone abundances
considering two (successive) points in time.

Ai(t) = th - NiFl

We define a proportion of newly generated cells s,(t) by comparing the change in clone size
of clone i to the sum of this difference for all diminishing, i.e. suppressed, clones:

A(t)

5(t) = e
D SOV G]

We normalize this measure by the individual clone size | N|
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and define the relative expansion of a clone (RCE) as follows
5,(t)
Z]n §(1)>0 s;(t)

5.(t)
> §(1)<0 |s;(2)]

) lfsz(t) > 0
RCE(t) =

, else

Values close to RCI; = 1 indicate that the expansion of a particular clone i was only possible
at the expense of all other clones, thus indicating a strong clonal dominance. For any given

point in time, we therefore characterize a population by the largest value of the (Rmp"g((t)).
n(RCE,

Results
Time courses of clonal behavior

First, we study the clonal behavior within our model under the minimal set of assumptions.
Therefore, we initialized the model with a set of identical clones (i.e. no differences in prolifera-
tion and differentiation rates). As depicted in Fig 1A, we observe a rather stable coexistence of
clones with small fluctuations in the clone size. However, observing the clonal developments
beyond a usual mouse’ lifespan, we encounter a well-known phenomenon termed neutral com-
petition and characterized by a slow convergence towards monoclonality (Fig 1B). Even for the
case of completely identical clones the stochasticity of division and differentiation events lead
to increasing but also decreasing clone sizes. Consequently, smaller clones can vanish over
time, finally resulting in a monoclonal situation.

In a second step, we were interested in how inter-clonal varijability influences the clonal pat-
tern over time. Therefore, we introduce a heterogeneity in the clone specific differentiation
rates d;. As a result we observe only mild changes in the time courses during a normal murine
life span (Fig 1C). However, the time to monoclonal conversion (which is usually beyond a
normal murine lifespan) decreases for an increasing level of inter-clonal heterogeneity
(described by diversity parameter o of the distribution of differentiation rates d;) (Fig 1D).

Third, we investigated the influence of the divisional aging effect defined by the parameter
o. Heterogeneity in this setting does not only occur between clones (interclonal heterogeneity),
but also within clones (intraclonal heterogeneity) due to the differential divisional history of
individual cells. The time course in Fig 1E suggests that a high level of interclonal heterogeneity
is similar to the above case. As we assume that the cumulative aging effect leads to increased
differentiation of the effected cells, it is also plausible that cell clones can become extinct more
easily if the differentiation rate decreases the effective rate of self-renewal. The resulting effect
on the time to monoclonality is shown in Fig 1F, documenting an even further acceleration.

As a fourth case we considered a cancer scenario in which the proliferation rate for one ran-
domly chosen cell is substantial increased. If this cell persists and proliferates in the stem cell
compartment, its clonal progeny inherits the same proliferation rate and will finally outcom-
pete all remaining, unaltered cells (Fig 2A).

Although the initialization time of the cancer cell is arbitrary, the proliferative advantage p,,
is chosen such that clonal dominance (i.e. 95% of the population derives from the mutated cell
type) is achieved on average 23 months after the initiating event. Fig 2B shows a distribution of
the time until clonal dominance is reached. The plot documents a substantial variability even
for the case that the proliferative advantage is identical for all mutated clones. Similar stochastic
fluctuations might occur in leukemia patients, in which the configuration of the healthy cells
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Fig 1. Temporal clonal developments. (A) & (B) Simulation without heterogeneity between the clones (o = 0) for 2 years and till monoclonality is
reached (~8 years), respectively. (C) Simulation with no aging effect (a = 0) and a simulated heterogeneity of the differentiation rate d; (g > 0). (D)
Average time to reach monoclonality on a logarithmic scale in years vs. the clonal heterogeneity defined by o. (E) Simulation of an aging effect

(a > 0) and no difference in the differentiation rates d;between the clones (o= 0). (F) Shows the change in the average time to reach monoclonality
depending on the aging effect a.

doi:10.1371/journal.pone.0165129.9001
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Fig 2. Clonal developments within cancer scenarios. (A) Simulation with one malignant cell (increased proliferation rate p) initiated in the third month.
The clone in which the mutation occurs is depicted in grey. (B) The average time until clonal dominance beginning at the time point of cancer initiation.

doi:10.1371/journal.pone.0165129.9002

might also vary and the proliferative advantage of the patient specific leukemic clone will not
be identical.

Quantifying clonality

Instantanous measures. Diversity measures are designed to quantify differences in abun-
dances at one particular point in time. Typical examples are species richness, Shannon index or
Simpson index [23-26]. Time courses of such classical measures document changes in these
abundances over time. Fig 3 shows a typical time courses for a selection of classical indices
measuring the diversity of the clonal contribution based on the examples shown in Figs 1E and
2A, respectively.

Fig 3A depicts a physiological situation which includes intrinsic interclonal heterogeneity
and aging. The slight drift in clone sizes (indicated as dotted line, representing the size of the
largest clone) is reflected by an increase of both Simpson and Shannon index. Species richness
does not show substantial changes as the overall number of detectable clones remains almost
unaltered. The picture changes for the pathological situation (Fig 3B). Both Simpson and Shan-
non index closely follow the increase in size of the malignant clone. The decrease in number of
clones is only detected after a certain time delay by a decreasing species richness. However, nei-
ther of the measures appear “early responsive” to the sudden increase in size of one particular
clone. For these reason, we conclude that these measures are not suited to estimate the risk of
clonal dominance or to reliably predict such behaviour.

Quantifying changes in the clonal abundances. Clonal dominance is characterized by the
increased expansion of a particular clone at the expense of the remaining, non-mutated ones.
In order to reliably detect such behavior, we propose a measure that explicitly address clone
size differences between consecutive measurements, designated as relative clonal expansion
(RCE). This measure quantifies to which extend the increase in size of one clone is attributed to
the total loss of all other clones. RCE values close to 1 indicate that one clone expands while all
others are suppressed. Given that the pathological clones yield the highest growth rates we only
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Fig 3. Clonal developments described by classical indices. (A) Time courses of the Simpson and Shannon index as well as species Richness for a
non-mutated scenario (clonal pattern in inset). For reference, the size of the largest clone is given by the dotted line. (B) Similar time courses based on a
mutation scenario (as provided in the inset). The mutation event occurs after ~3 months.

doi:10.1371/journal.pone.0165129.9003

consider the maximum value of this measure over all clones at any given point in time referred
as maximum relative clonal expansion (mRCE). As such, low levels of the mRCE measure indi-
cate that multiple clones increase at the expense of multiple competitors, thus representing a
physiological competition scenario.

Fig 4 illustrates the responsiveness of the mRCE measure for both a physiological and a
pathological scenario. Most pronounced, in the pathological case, the mRCE measure

A B
1.00 — mRCE ......-
® LargestClone o

0.75 ¢

0.50 °

0.25

e o " o 0o © ® 0o 0 o 0 0 ° e g0 - MmRCE
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Fig 4. Clonal developments described by mRCE. Subfigures show time courses of the mRCE (solid line) and the largest clones size (dotted line) for a
scenario without (A) and with a mutated clone (B). Both scenarios are initialized with identical initial conditions. In subfigure (B) the mutation is initialized
at month 3 after simulation start.

doi:10.1371/journal.pone.0165129.g004
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immediately escapes from the physiological region (mRCE < 0.5) as soon as the exponential
outgrowth of the malignant clone becomes observable. Note that at this stage none of the
suppressed clones are extinct. Considering the potential use as a predictive measure thisis a
clear advantage compared to the classical measures of clonal diversity that lack this early
response.

Sensitivity analysis of the mRCE with respect to the variation of further model parameters
showed no distinct influence of the absolute population size and the total number of clones (S1
Fig). It is only the proliferation rate of the malignant cells that shows a strong impact. Intui-
tively, a more aggressive cancer clone becomes dominant more quickly and can also be
detected earlier.

Predictions

In the previous section we illustrated that the specifically designed mRCE measure qualifies as
a sensitive predictor for clonal dominance. In the following we evaluate the sensitivity and
specificity of the mRCE by applying it as a real time measure to approximate future develop-
ments and investigate its dependencies on measurement frequency and system intrinsic
heterogeneity.

Based on 5000 individual runs for healthy and pathological progression scenarios (Fig
5A), we used the observed mRCE values at any given point in time to fit a binomial general-
ized linear model (glm). Cancer initialization times are set to day 0, in order to provide a
common starting point. In rare cases, mutated clones are lost early after initialization due to
random fluctuations and are excluded from the analysis. Fig 5B shows a representation of the
resulting glm, based on the retrospective mRCE measure. The circles indicate the abundance
of pathological (shown at response = 1) and non-pathological (shown at response = 0) in-sil-
ico patients that were identified based on the measured mRCE values. For the pathological
scenario, mRCE values close to 1 are more frequent, whereas most non-pathological mRCE
values are distributed around 0.2. The glm provides an estimate of the probability that for
any measured value of the mRCE the corresponding scenario belongs to a pathologic case
with fast monoclonal conversion (black curve) or to a physiological scenario without a domi-
nant clone (blue curve). Both probabilities are equal for mRCE ~ 0.33 (point of intersection,
Fig 5B), while the probability for facing a pathological case is already 4 times higher for a
mRCE =~ 0.5 compared to the physiological scenario. Typically, levels of mRCE at 0.5 are
already reached even if the dominant, potentially malignant clone takes up only about 12%
of the total cell population. These findings strongly support the high sensitivity of the
introduced mRCE measure and mark it as a classification predictor for fast monoclonal
conversion.

Fig 5C shows the receiver operating characteristic (ROC) curve and the corresponding area
under the curve (AUC) values of the different measures. Clearly the mRCE measure outper-
forms the established ones in terms of specificity as well as sensitivity. Whereas Shannon and
Simpson indices perform almost equal, species richness is considerably worse in terms of the
AUC. Since species richness is considering only the extinction of clones it is insensitive for the
detection of rapid expansion and thus lead to a prediction time delay (compare Fig 3B).

Fig 5D illustrates the positive likelihood ratio (defined as sensitivity/(1 — specificity) of the
outlined methods for predicting the existence of a leukemic clone as a function of the time after
leukemia initiation. Consistently, all measures correctly indicate increasing evidence for leuke-
mia manifestation. However, the mRCE measure is clearly superior to the instantaneous mea-
sures as values above LR+ = 1 (thereby associating the test result with disease) are detected
much earlier.
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Fig 5. Performance comparison of mRCE vs. classical indices. (A) Time courses of mRCE values of 10 individual runs of pathological and
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distributions are used to fit a binomial glm (lines indicate the probability for the occurrence of pathological (black) and physiological (blue) scenarios).
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doi:10.1371/journal.pone.0165129.9005

We further investigated, whether the performance of the classical diversity measures can be
increased by taking into account changes between consecutive measurement, similar to the
approach for the mRCE. Although this “retrospective view” increases the prediction accuracy,
the mRCE still performs better than the classical measures (S2 Fig). This has to be accounted to
the design of the mRCE index, which describes changes in the size of individual clones while
the classical measures only describe the population as a whole.
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Influences of different sources of heterogeneity

So far we only investigated an idealized scenario of initially almost equally sized clones without
any measurement errors. We would expect that the prediction quality decreases for more
diverse, real-world settings. To investigate those settings, we first studied the case of an
increased interclonal heterogeneity by allowing for larger differences in the clonal differentia-
tion rate, described by the variance measure 0. Fig 6A compares this setting to the idealized
case. Fitting the glm to the new, heterogeneous training data one observes that the threshold of
the mRCE level that allows for a consolidated prediction of the clonal dominance scenario is
shifted. While for the previous scenario the probability for correctly predicating a pathological
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Fig 6. Influence of different sources of heterogeneity and uncertainty on the performance of the mRCE measure. (A) The binomial gims of a
homogenous (solid line, o = 0) and a non-homogenous model (dashed line, o = 0.03) (B-D) Sensitivity and Specificity at t= 7 months after cancer
initialization for different values of the differentiation heterogeneity o (B), measurement noise n (C) and aging influence a (D).

doi:10.1371/journal.pone.0165129.9006
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versus a physiological scenario was 4 times increased for mRCE = 0.5, this level is now reached
only at about mRCE = 0.8. Similarly, Fig 6B documents the decline in the sensitivity and speci-
ficity of the mRCE prediction with increasing interclonal heterogeneity. In fact, the further we
increase this heterogeneity the closer the system approaches the leukemic case in which one
dominating clone outcompetes all others. As the scenarios become less distinguishable, sensi-
tivity and specificity monotonically decline.

In the next scenario we study, how measurement errors could influence the prediction accu-
racy. For simplicity, we assume a white noise of magnitude 7 overlying all clone size measure-
ments. Accessing sensitivity and specificity of the mRCE measure for a given time point after
cancer initiation in Fig 6C, one observes a moderate decline of these quality measures. In fact,
the sensitivity almost stays constant for the considered noise levels 7.

We also investigated to which extend the measurement accuracy depends on the size of a
randomly sampled subset of all cells. Unsurprisingly, we observe a decrease of the LR+ (Subfi-
gure A in S3 Fig) as the limited accessibility of the clonal composition makes it more difficult
to reliable detect changes in the clone size. However, this effect is compensated if, for a constant
number of labeled clones, the overall number of cells (either directly in the compartment or
even down-stream) is increased (Subfigure B in S3 Fig).

We observe a similar loss of prediction accuracy for the scenario in which we introduce an
even more pronounced aging effect a. Here we assume that the individual proliferative history
of each cell determines its tendency for differentiation and ultimately the exit from the stem
cell compartment. Although the specificity of the mRCE measure declines for a stronger aging
effect, this is not the case for the sensitivity. For all the outlines scenarios it should be pointed
out that sensitivity and specificity of the model predictions are not independent. In fact, each
new model scenario requires the fitting of an individual glm on which the predictions will be
based. Therefore, the decline of either the sensitivity or the specificity indicate a decrease of the
overall performance.

Our model simulations demonstrate that increased levels of clonal heterogeneity or mea-
surement errors lead to a loss of prediction accuracy and a less clear separation of the healthy
and pathological situation. Thereby, identification of early tumor growth is limited, although
the proposed mRCE measure shows a remarkable robustness.

Discussion

Describing the dynamics of individual clones in hematopoiesis is a prerequisite to understand
the underlying mechanisms of cellular competition and the process during leukemic transfor-
mation. We used a simple agent-based model to describe a self-renewing stem cell pool and a
corresponding pool of differentiated cells. Similar to clonal tracking experiments (e.g. using cel-
lular barcodes or integration sites), we are able to label HSCs with a unique marker which is
inherited to its daughter cells in order to establish an identifiable clone.

We also applied different already established diversity measures, such as species richness or
Simpson index that are adapted from ecology [23-25], to quantify temporal clonal behavior.
Since these measures are defined for one particular point in time only, they are not able to sys-
tematically detect changes in clonal abundances over time. As a consequence, we suggest a mea-
sure, referred to as maximum Relative Clonal Expansion (mRCE), which is sensitive to
temporal changes. The principal idea is to evaluate changes in the relative clone sizes between
consecutive time points. The mRCE quantifies the proportion of the shrinking clones, denoted
as XA~, compared to the increase of the clone with the largest net growth (maxA™). Fig 7 illus-
trates the relationship between the two influential factors of the mRCE are depicted. For the
extreme case that all shrinking clones are suppressed due to the expansion of one single clone,
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Fig 7. Scale representation of mRCE measurement. >A™ denotes the sum of all shrinking clones and
maxA* the clone with the highest expansion between two consecutive points in time. Only the case of one
dominantly expanding clone balances the scale and indicates a high risk for rapid monoclonal conversion
(mRCE=1).

doi:10.1371/journal.pone.0165129.9007

the mRCE value approaches 1. This scenario is frequently seen if one clone possesses a substan-
tial growth advantage, such as a cancer clone. In the contrary, for competition between equally
potent cell clones, the mRCE takes values < 1. This sensitivity for the detection of one primarily
expanding clone makes the suggested measure ideally suited to prospectively distinguish physi-
ological from pathological behaviors. In fact, the information we gain by considering more
than just one point in time, lead to the necessary sensitivity to prospectively detect rapid clonal
outgrowth at very early stages which is the key for a beneficial prediction of malignant cases.
We also showed that the predictive power remains even for more realistic scenarios including
interclonal heterogeneity and measurement noise.

Within the simplified model setup, cancer outgrowth is achieved by initializing a substantial
growth advantage within one mutated cell and thereby seeding this characteristic for all derived
progeny. However, in a real world scenario, acquisition of a mutational growth advantage may
result from a sequential accumulation of various different mutations. In any case, patholog-
ically relevant situations occur once a functionally impaired clone takes over the entire system.
If this clone is trackable, the mRCE is a promising measure to detect this altered competition.
In contrast, the mRCE is not suited to identify the functional impairment of a potentially domi-
nating, healthy clone. Thereby, our model points to a dilemma in the early detection of hema-
tological tumors. Especially in older individuals, neutral or mild clonal competition inevitably
results in a clonal conversion process. However, this conversion towards monoclonality is not
necessarily linked to a pathological transformation but may result from a physiological condi-
tion. In this respect, the clonal composition itself is not a reliable marker of cancer. Instead, we
argue that the “speed” of clonal conversion is a better indicator of the fitness advantage that
commonly goes along with cancer outgrowth although the functional impairment cannot be
proven on the clonal level.

Transferring our suggested strategy into a clinical protocol the questions remains how to
correctly chose appropriate time intervals for the successive measurement. In general, larger
intervals will detect larger differences in clone size, thereby leading to more accurate predic-
tions. In contrast, for short time intervals tumor growth might be too marginal to be detected.
This results in a dilemma as an accurate detection should be available as early as possible. We
advocate the view that the velocity of the expected leukemic growth should be the reference to
schedule the measurements: while acute leukemias will rapidly chance the clonal repertoire,
shorter time intervals are warranted, while for chronic and slowly expanding tumors, longer
time intervals are sufficient.
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Ongoing efforts to closely monitor gene therapy patients [19] and recent achievements in
the robust and quantitative identification of viral integration sides [27] allow for clonal
tracking in patients with a high risk of leukemic transformation within the marked cell popu-
lation [28, 29]. Our suggested mRCE measure is uniquely suited to operate in this setting and
points towards the occurrence of clonal conversion process at a very early stage, prior to
observing other clinical markers such as altered blood counts. Our model based approach is
a first step to demonstrate the suitability of such measures in controlled setting and thereby
provides the basis for application to clinical data that should become available in the near
future.

Supporting Information

S1 Fig. Influence of model parameter for prediction quality of mRCE. We show LR+ value
(defined as sensitivity/(1 — specificity)) of the mRCE as a measure of the prediction accuracy
for changes of different model parameters. We varied the population size (1000 cells = low,

red / 4000cells = high, light red), the number of clones (10 = low, green / 40 = high, light green)
and the cancer proliferation rate ((9.9 days)’1 slow, blue/ (3.3 datys)’1 = high, light blue). While
the population size and the clone number rarely influence the quality of the read-out, the pro-
liferation rate of the malignant cells has a strong impact. Intuitively, a more aggressive cancer
clone becomes dominant more quickly, and is also earlier detectable.

(TIF)

S2 Fig. Retrospectivity improves the classical measures. Retrospectivity can be applied to
classical measures by considering the change of two consecutive time points. Clearly, mRCE
still is superior in terms of LR+ compared to the classical measures. However, compared to
Fig 5 of the main text, the prediction accuracy is increased especially at earlier time intervals
(< 9 months).

(TIF)

S3 Fig. Prediction accuracy of the mRCE for different, randomly sampled subsets. Predic-
tions based on different samples sizes (lines). Dots describe the relative abundance of the larg-
est clones averaged over all cancer time courses. Percentages refer to the sizeof a randomly
chosen subset of the original polyclonal population (A) For a system with K = 2000 cells, the
decrease of the size of the sampled subsets limits the earlier detectability of the leukemic
growth. (B) For an increase in the total number of cells (K = 20000) the adverse effect of the
sampling procedure is compensated.

(TIF)

S1 Code. Pseudocode of the aging based modelling process. First all cells have to be initial-
ized according to their clonal properties (proliferation rate, differentiation rate, replicative
age). Afterwards we compute an update step (1 day) for all cells using the explicit Euler
method. First, for every cell it is decided whether it proliferates according to a maximal prolif-
eration rate of the clone and the actual number of cells. Second, for every cell it is decided
whether it differentiates within this time step according to a differentiation rate, which depen-
dents on the clonal differentiation rate and the number of prior cell divisions. In case a cell is
proliferating, the cell is duplicated and all properties are transferred to the new sibling. In case
a cell is differentiating it is deleted from the proliferating compartment. After updating all cells,
the process starts over for the next time step until the time reaches the configured maximum
time.

(PDF)

PLOS ONE | DOI:10.1371/journal.pone.0165129 October 20, 2016 15/17


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165129.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165129.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165129.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165129.s004

@° PLOS | ONE

Model Based Analysis of Clonal Developments

Acknowledgments

We acknowledge the inspiration for parts of our work by Sebastian Gerdes and Leonid
Bystrykh.

Author Contributions

Conceptualization: CB IG LT.

Formal analysis: CB IG.

Funding acquisition: IG.

Methodology: CB IG.

Project administration: IG.

Software: CB.

Supervision: IG.

Validation: CB IG.

Visualization: CB IG.

Writing - original draft: CB IG.

Writing - review & editing: CB IG LT.

References

1.

10.

11.

Glauche I, Moore K, Thielecke L, Horn K, Loeffler M, Roeder |. Stem cell proliferation and quiescence
—two sides of the same coin. PLoS Comput Biol. 2009; 5(7):e1000447. doi: 10.1371/journal.pcbi.
1000447 PMID: 19629161

Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, et al. Fundamental prop-
erties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015; 518(7540):542—6. doi: 10.
1038/nature14242 PMID: 25686605

Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, et al. Hematopoietic
stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;
135(6):1118-29. doi: 10.1016/j.cell.2008.10.048 PMID: 19062086

Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y, et al. Adult mouse hematopoietic
stem cells: purification and single-cell assays. Nat Protoc. 2006; 1(6):2979-87. doi: 10.1038/nprot.
2006.447 PMID: 17406558

Abe T, Masuya M, Ogawa M. An efficient method for single hematopoietic stem cell engraftment in
mice based on cell-cycle dormancy of hematopoietic stem cells. Exp Hematol. 2010; 38(7):603-8. doi:
10.1016/j.exphem.2010.03.013 PMID: 20353809

Gordon MY, Lewis JL, Marley SB. Of mice and men. . .and elephants. Blood. 2002; 100(13):4679-80.
doi: 10.1182/blood-2002-08-2517 PMID: 12453884

Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem
cell. Am J Pathol. 2006; 169(2):338-46. doi: 10.2353/ajpath.2006.060312 PMID: 16877336

Bystrykh LV, Verovskaya E, Zwart E, Broekhuis M, de Haan G. Counting stem cells: methodological
constraints. Nat Methods. 2012; 9(6):567—74. doi: 10.1038/nmeth.2043 PMID: 22669654

Glauche |, Bystrykh L, Eaves C, Roeder |, other p. Stem cell clonality—theoretical concepts, experi-
mental techniques, and clinical challenges. Blood Cells Mol Dis. 2013; 50(4):232—-40. doi: 10.1016/j.
bcmd.2013.01.007 PMID: 23433531

Trumpp A, Essers M, Wilson A. Awakening dormant haematopoietic stem cells. Nat Rev Immunol.
2010; 10(3):201-9. doi: 10.1038/nri2726 PMID: 20182459

Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, Caushi JX, Zhao R, Hims MM, et al. Studying
clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med. 2015; 21
(5):440-8. doi: 10.1038/nm.3841 PMID: 25849130

PLOS ONE | DOI:10.1371/journal.pone.0165129 October 20, 2016 16/17


http://dx.doi.org/10.1371/journal.pcbi.1000447
http://dx.doi.org/10.1371/journal.pcbi.1000447
http://www.ncbi.nlm.nih.gov/pubmed/19629161
http://dx.doi.org/10.1038/nature14242
http://dx.doi.org/10.1038/nature14242
http://www.ncbi.nlm.nih.gov/pubmed/25686605
http://dx.doi.org/10.1016/j.cell.2008.10.048
http://www.ncbi.nlm.nih.gov/pubmed/19062086
http://dx.doi.org/10.1038/nprot.2006.447
http://dx.doi.org/10.1038/nprot.2006.447
http://www.ncbi.nlm.nih.gov/pubmed/17406558
http://dx.doi.org/10.1016/j.exphem.2010.03.013
http://www.ncbi.nlm.nih.gov/pubmed/20353809
http://dx.doi.org/10.1182/blood-2002-08-2517
http://www.ncbi.nlm.nih.gov/pubmed/12453884
http://dx.doi.org/10.2353/ajpath.2006.060312
http://www.ncbi.nlm.nih.gov/pubmed/16877336
http://dx.doi.org/10.1038/nmeth.2043
http://www.ncbi.nlm.nih.gov/pubmed/22669654
http://dx.doi.org/10.1016/j.bcmd.2013.01.007
http://dx.doi.org/10.1016/j.bcmd.2013.01.007
http://www.ncbi.nlm.nih.gov/pubmed/23433531
http://dx.doi.org/10.1038/nri2726
http://www.ncbi.nlm.nih.gov/pubmed/20182459
http://dx.doi.org/10.1038/nm.3841
http://www.ncbi.nlm.nih.gov/pubmed/25849130

@° PLOS | ONE

Model Based Analysis of Clonal Developments

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

24.

25.

26.
27.

28.

29.

Camargo FD, Chambers SM, Drew E, McNagny KM, Goodell MA. Hematopoietic stem cells do not
engraft with absolute efficiencies. Blood. 2006; 107(2):501-7. doi: 10.1182/blood-2005-02-0655
PMID: 16204316

Roeder I, Kamminga LM, Braesel K, Dontje B, de Haan G, Loeffler M. Competitive clonal hematopoiesis
in mouse chimeras explained by a stochastic model of stem cell organization. Blood. 2005; 105(2):609—
16. doi: 10.1182/blood-2004-01-0282 PMID: 15374890

Kent DG, Li J, Tanna H, Fink J, Kirschner K, Pask DC, et al. Self-renewal of single mouse hematopoi-
etic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLoS Biol.
2013; 11(6):e1001576. doi: 10.1371/journal.pbio.1001576 PMID: 23750118

Paiva B, Perez-Andres M, Vidriales MB, Almeida J, de las Heras N, Mateos MV, et al. Competition
between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associ-
ated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia. 2011; 25(4):697—
706. doi: 10.1038/leu.2010.320 PMID: 21252988

Grove CS, Vassiliou GS. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis
Model Mech. 2014; 7(8):941-51. doi: 10.1242/dmm.015974 PMID: 25056697

Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012; 481(7381):306—13. doi: 10.1038/
nature10762 PMID: 22258609

Biasco L, Pellin D, Scala S, Dionisio F, Basso-Ricci L, Leonardelli L, et al. In Vivo Tracking of Human
Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution
Phases. Cell Stem Cell. 2016.

Braun CJ, Witzel M, Paruzynski A, Boztug K, von Kalle C, Schmidt M, et al. Gene therapy for Wiskott-
Aldrich Syndrome-Long-term reconstitution and clinical benefits, but increased risk for leukemogene-
sis. Rare Dis. 2014; 2(1):€947749. doi: 10.4161/21675511.2014.947749 PMID: 26942098

Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence
and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010; 467(7313):318—
22. doi: 10.1038/nature09328 PMID: 20844535

Abkowitz JL, Catlin SN, McCallie MT, Guttorp P. Evidence that the number of hematopoietic stem cells
per animal is conserved in mammals. Blood. 2002; 100(7):2665—7. doi: 10.1182/blood-2002-03-0822
PMID: 12239184

Glauche |, Thielecke L, Roeder I. Cellular aging leads to functional heterogeneity of hematopoietic
stem cells: a modeling perspective. Aging Cell. 2011; 10(3):457-65. doi: 10.1111/j.1474-9726.2011.
00692.x PMID: 21385307

Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of
Statistics. 1984; 11(4):6.

Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, et al. Choosing and using diversity
indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol.
2014; 4(18):3514—24. doi: 10.1002/ece3.1155 PMID: 25478144

Simspon E. Measurement of diversity. Nature. 1949; 163:688.
Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948; 27:379-423.

Desfarges S, Ciuffi A. Retroviral integration site selection. Viruses. 2010; 2(1):111-30. doi: 10.3390/
v2010111 PMID: 21994603

Scala S, Leonardelli L, Biasco L. Current approaches and future perspectives for in vivo clonal tracking
of hematopoietic cells. Curr Gene Ther. 2016.

Giordano FA, Appelt JU, Link B, Gerdes S, Lehrer C, Scholz S, et al. High-throughput monitoring of
integration site clonality in preclinical and clinical gene therapy studies. Mol Ther Methods Clin Dev.
2015;2:14061. doi: 10.1038/mtm.2014.61 PMID: 26052530

PLOS ONE | DOI:10.1371/journal.pone.0165129 October 20, 2016 17/17


http://dx.doi.org/10.1182/blood-2005-02-0655
http://www.ncbi.nlm.nih.gov/pubmed/16204316
http://dx.doi.org/10.1182/blood-2004-01-0282
http://www.ncbi.nlm.nih.gov/pubmed/15374890
http://dx.doi.org/10.1371/journal.pbio.1001576
http://www.ncbi.nlm.nih.gov/pubmed/23750118
http://dx.doi.org/10.1038/leu.2010.320
http://www.ncbi.nlm.nih.gov/pubmed/21252988
http://dx.doi.org/10.1242/dmm.015974
http://www.ncbi.nlm.nih.gov/pubmed/25056697
http://dx.doi.org/10.1038/nature10762
http://dx.doi.org/10.1038/nature10762
http://www.ncbi.nlm.nih.gov/pubmed/22258609
http://dx.doi.org/10.4161/21675511.2014.947749
http://www.ncbi.nlm.nih.gov/pubmed/26942098
http://dx.doi.org/10.1038/nature09328
http://www.ncbi.nlm.nih.gov/pubmed/20844535
http://dx.doi.org/10.1182/blood-2002-03-0822
http://www.ncbi.nlm.nih.gov/pubmed/12239184
http://dx.doi.org/10.1111/j.1474-9726.2011.00692.x
http://dx.doi.org/10.1111/j.1474-9726.2011.00692.x
http://www.ncbi.nlm.nih.gov/pubmed/21385307
http://dx.doi.org/10.1002/ece3.1155
http://www.ncbi.nlm.nih.gov/pubmed/25478144
http://dx.doi.org/10.3390/v2010111
http://dx.doi.org/10.3390/v2010111
http://www.ncbi.nlm.nih.gov/pubmed/21994603
http://dx.doi.org/10.1038/mtm.2014.61
http://www.ncbi.nlm.nih.gov/pubmed/26052530

