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Abstract

We  are  here  to  present  a  new  method  for  the  classification  of  epileptic  seizures  from  electroencephalogram
(EEG) signals. It consists of applying empirical mode decomposition (EMD) to extract the most relevant intrinsic
mode  functions  (IMFs)  and  subsequent  computation  of  the  Teager  and  instantaneous  energy,  Higuchi  and
Petrosian  fractal  dimension,  and  detrended  fluctuation  analysis  (DFA)  for  each  IMF.  We  validated  the  method
using a public dataset of 24 subjects with EEG signals from 22 channels and showed that it is possible to classify
the epileptic seizures, even with segments of six seconds and a smaller number of channels (e.g., an accuracy of
0.93  using  five  channels).  We  were  able  to  create  a  general  machine-learning-based  model  to  detect  epileptic
seizures of new subjects using epileptic-seizure data from various subjects, after reducing the number of instances,
based on the k-means algorithm.
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Introduction

Humans of all ages and both sexes may experience
sudden seizures, presenting as electrical discharges of
a  set  of  neurons  inside  the  brain.  Such  unprovoked
seizures  represent  a  widespread  disorder,  known  as
epilepsy, and affect people around the world[1].

Epileptic  seizures  are  generally  manually  detected
by neurophysiologists  through continuous  monitoring
of  electroencephalogram  (EEG)  signals.  The
epileptiform  can  be  categorized  into  ictal,  interictal,
and postictal periods, which are often time-consuming
to identify by visual inspection. This may result in an
incorrect  interpretation  of  the  EEG  signals  and
inappropriate  management  of  patients  (caused  by

under/over  medication)[2].  Proper  detection  can
facilitate  the  treatment  of  patients  and  improve  the
diagnosis of epilepsy. Epileptic events are attributed to
localized  disturbances  in  various  areas  of  the  brain[3].
The  epileptogenic  focus  in  approximately  33% of
epilepsy patients is located in the temporal lobe[4] and
their condition is referred to as temporal-lobe epilepsy
(TLE)[5].

Studies on automatic classification and detection of
epileptic  seizures  based  on  EEG,  using  supervised,
semi-supervised,  and  deep-learning  techniques,  have
increased  during  the  last  few  years.  However,
comparisons  between  experiments,  even  using  the
same  datasets,  have  provided  conflicting  results.  In
one  study,  the  authors  used  intracranial  EEG  (iEEG)
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signals from only five subjects with only 20 epileptic
seizures  for  each[6].  Thus,  they  had  data  for  only  100
epileptic  seizures  and  EEG  signals  from  the
epileptogenic zone during free intervals as seizure-free
periods.  They  reported  an  accuracy  of  99.6% from
only  one  channel,  using  a  neural  network.  However,
this  approach  is  known  to  work  better  using  a  large
amount of data during the training process, as it learns
only  by  weight  adjustment  and  requires  all  the
possibilities  to  be  trained.  In  another  study,  the
authors  used  the  same  dataset  and  performed  five
levels  of  discrete  wavelet  transform  (DWT)
decomposition  and  fuzzy  approximate  entropy  for
feature extraction[7].

The  use  of  frequency  and  amplitude  features  has
also been reported for the characterization of epileptic
seizures based on EEG analysis[8]. However, this is not
a  robust  approach  to  extract  features  and  more
complex analysis is necessary to increase classification
accuracy.  Methods  based  on  DWT  for  feature
extraction  have  been  reported  in  the  literature[9],  but
this approach generally requires a pre-processing stage
and  pre-definition  of  the  best  mother  wavelet,  which
can vary depending on the subject and the task.

Literature  review  suggests  that  there  are  still
improvements  to  be  done  in  the  feature  extraction
stage  for  representing  the  seizure  and  seizure-free
periods correctly, thus creating robust machine-learning
models  for  automatic  detection  of  epilepsy.  Some  of
the state-of-the-art methods have been tested in small
datasets,  showing  good  accuracy  for  classification  of
epileptic seizures from the same subject, but for a real-
life  implementation,  the  models  must  be  sometimes
created using EEG data from other subjects.

Here,  we  tested  a  general  machine-learning-based
model  for  classifying  epileptic  seizures  and  for
detecting  new  subjects  after  reducing  the  number  of
channels.  We  also  set  up  a  subject-specific  approach
and compared it with other state-of-the-art approaches
using the same dataset.

Materials and methods

Dataset

The  use  of  free  and  public  EEG-signal  datasets  of
epileptic  seizures  is  important  for  the  comparison  of
any  proposed  method  and  its  performance.  Several
appropriate  datasets  are  available,  of  which  the  most
used  are  from  the  PhysioNet[10] and  EPILEPSIAE[11]

projects.  However,  most  datasets  now  consist  of
private  repositories  or  access  is  limited  by  specific
software,  making future  comparisons  difficult.  Public
low-density EEG datasets of epileptic seizures are also
available,  but  since  the  approach  followed  in  this
paper  consists  of  testing  the  minimum  number  of

channels necessary to detect epileptic seizures, a high-
density EEG dataset is necessary.

The  public  dataset  used  in  this  paper  comes  from
the  PhysioNet  project[10] and  is  partially  described[12].
It  consists  of  bipolar  EEG signals  of  24  patients  that
were recorded from 22 channels (FP1-F7, F7-T7, T7-
P7,  P7-O1,  FP1-F3,  F3-C3,  C3-P3,  P3-O1,  FP2-F4,
F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, P8-O2, FZ-CZ,
CZ-PZ, P7-T7, T7-FT9, FT9-FT10, FT10-T8, and T8-
P8),  with  a  sampling  frequency  of  256  Hz  using  the
10-20  international  system,  and  collected  at  the
Children's  Hospital  Boston.  The  EEG  recordings  are
from  pediatric  subjects  with  intractable  seizures  who
were  monitored  for  several  days  following  the
withdrawal  of  anti-seizure  medication  to  characterize
their  seizures  and  assess  their  candidacy  for  surgical
intervention.  Several  important  details  for  this  work
are  shown  in Table  1,  including  the  duration  (in

Table 1   Details of the epileptic-seizure data[12]

Patient Gender
Age

(years)
Seizures

Length in seconds

Average Max Min
Segments of

6 seconds
1 F 11 7 63.1 101 27 74

2 M 11 3 57.3 82 9 29

3 F 14 7 57.4 69 47 67

4 M 22 4 94.5 116 49 63

5 F 7 5 111.6 120 96 93

6 F 1.5 7 15.6 20 12 18

7 F 14.5 3 108.3 143 86 54

8 M 3.5 5 183.8 264 134 153

9 F 10 4 69.0 79 62 46

10 M 3 7 63.9 89 35 74

11 F 12 3 268.7 752 22 134

12 F 2 38 36.9 97 13 234

13 F 3 12 44.6 70 17 89

14 F 9 8 21.1 41 14 28

15 M 16 20 99.6 205 31 332

16 F 7 6 8.8 14 6 9

17 F 12 3 97.7 115 88 49

18 F 18 6 52.8 68 30 53

19 F 19 3 78.7 81 77 39

20 F 6 8 36.8 49 29 49

21 F 13 4 49.8 81 12 33

22 F 9 3 68.0 74 58 34

23 F 6 10 60.6 113 20 101

24 – – 13 31.9 70 16 69

Sum 189 1 925

Mean 7.9 74.2 121.4 41.3

Max 752
Min 6
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seconds)  of  the  EEG  signal  for  each  epileptic  event.
However,  we also considered six-second segments  of
the epileptic seizures to compare the seizures between
subjects with similar components.

Empirical mode decomposition (EMD)

The  EMD  method  has  been  successfully  used  to
decompose  non-linear  and  non-stationary  data  into  a
finite set of oscillatory components, known as intrinsic
mode  functions  (IMFs),  by  applying  the  sifting
process[13].  The  pseudocode  of  EMD  is  presented  in
Algorithm  1.  There  are  two  basic  conditions  that  an
IMF must satisfy: (1) The number of extrema and zero
crossings must be either equal or different at most by
one; (2) At any point, the mean value of the envelope
defined  by  the  local  maxima and the  envelope  of  the
local minima is zero.

In  the  sifting  process,  some  IMFs  with  limited
information  may  appear  because  the  numerical
process is susceptible to errors. Thus, a second step to
select  the  most  relevant  IMFs  is  necessary.  An
accepted  metric  to  select  such  IMFs  is  based  on  the
Minkowski  distance.  This  is  possible  because

redundant IMFs have a shape and frequency contents
differ  from those  of  the  original  signal,  which  means
that inappropriate IMFs present maximum Minkowski
distances[14].

For  a  signal xi,  the  Minkowski  distance  to  an  IMF
(yi) is computed as follows:

d =
(∑n

i=1
|xi− yi|2

)1/2
(1)

Once the IMFs are selected, it is possible to use this
information  to  characterize  the  EEG  data.  It  is  also
possible  to  obtain  certain  features  to  represent  the
behavior  of  the  signal  and  reduce  the  dimensionality
of  the  data.  Next,  the  features  used  to  represent  the
selected IMFs, are described.

Energy distribution features

The features to represent the energy distribution can
be  computed  to  reduce  the  computational  cost  and
obtain a better representation of the obtained IMFs.

Lets,  as  below, IMF(r)  denote  the  IMF  coefficient
of one of the IMFs at position r, and N is the length of
the IMF. The Instantaneous energy feature reflects the
amplitude  of  the  signal[15] and  can  be  computed  as
follows:

f = log10

{
1
N

∑N

r=1
[IMF (r)]2

}
(2)

In  addition  to  the  amplitude  analysis,  the  Teager
energy  reflects  variations  in  frequency.  The  Teager
energy is a robust parameter, as it  attenuates auditory
noise[15], and it is computed as follows:

f = log10

[
1
N

∑N−1

r=1

∣∣∣IMF(r)2− IMF (r−1)∗ IMF (r+1)
∣∣∣]

(3)

Fractal dimension features

There  are  several  self-similarity  features  from
fractal  geometry  that  are  useful  to  describe  the
complexity  of  a  signal.  Some  have  been  used  to
directly  characterize  EEG  signals  from  raw  data  or
using  various  methods  to  extract  the  information.  In
particular,  Higuchi  and  Petrosian  fractal  dimensions
have  been  used  to  characterize  non-linear  and  non-
stationary  data.  These  fractal  features  are  described
below.

X (1) ,X(2),X(3) . . . ,X(N)

The  Higuchi  fractal  dimension  algorithm
approximates  the  mean  length  of  the  curve  using
segments of k samples and estimates the dimension of
a  time-varying  signal  directly  in  the  time  domain[16].
Consider  a  finite  set  of  observations  taken  at  regular
intervals: .  Taking  this  time
series  as  a  starting  point,  a  new  series Xkm can  be

Algorithm 1　Pseudo-code of the sifting process for a signal x(t)

Input: x(t)=EEG_signal

Output: IMFs_array

Sifting=True;

While sifting=True do

1. 　　Identify all upper extrema in x(t)

2. 　　Interpolate the local maxima to form an upper envelope u(x)

3. 　　Identify all lower extrema of x(t)

4. 　　Interpolate the local minima to form a lower envelope l(x)

5. 　　Calculate the mean envelope:

m (t) =
u (x)+ l (x)

2
6. Extract the mean from the signal:

h (t) = x (t)−m (t)

If h(t) satisfies the two IMF conditions then:

　　　　h(t) is an IMF

　　　　　　　sifting=False 　　　　　　　　　<Stop sifting

Else

x (t) = h (t)

　　　　　　　sifting=True　　　　　　　　　  <Keep sifting

If x(t) is not monotonic then:

Continue

Else
Break
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constructed as follows:

Xm
k ; X (m) ,X (m+ k) ,X (m+2k) , ...,X

[
m+

(N −m
k

)
k
]
(4)

where m=1,  2,  3,  …,  k  indicates  the  initial  time,
k=1,  …, kmax the  interval  time  and kmax is  a  free
parameter which in this work was set at 10. Then, the
length  of  the  curve  associated  with  each  time  series
Xkm can be computed as:

Lm (k)=
1
k

{∑ N−m
k

i=1
|X (m+ik)−X [m+(i−1)k]|

} N−1(N−m
k

)
k


(5)

Lm (k) m = 1,2,3, ..,k

The  Higuchi  fractal  dimension  takes  the  mean
length of the curve for each k as the average value of

 for  and which is calculated as:

L (k) =
1
k

∑k

m−1
Lm (k) (6)

L(k)

ln[L(k)]

ln
(

1
k

)
With  the  obtained  array  of  mean  values ,  the

Higuchi fractal dimension is estimated as the slope of
the  method  of  least-squares  from  the  plot  of 

against .

H =
ln [L (k)]

ln
(

1
k

) (7)

Some  studies  have  used kmax values  between  6  to
16. The choice of kmax has a crucial role in the Higuchi
fractal  dimension  estimation[17].  In  this  work,  the
optimal  value  of kmax has  not  been  considered  but  in
the future work we will take into account improvements
in this respect.

The  Petrosian  fractal  dimension  provides  a  rapid
computation of the fractal dimension of a given signal
by translating the series into a binary sequence[18]. The
binary sequence is formed by assigning a '1' for every
difference  between  consecutive  samples  in  the  time
series  that  exceeds  a  standard  deviation  magnitude,
otherwise is assigned a '0'. Then, the fractal dimension
is computed as follows:

P =
log10 (n)

log10 (n)+ log10

(
n

n+0.4N∆

) (8)

where n is  the  length  of  the  sequence  and NΔ the
number of sign changes in the binary sequence.

Detrended fluctuation analysis

Detrended  fluctuation  analysis  (DFA)  is  a  method
to  analyze  a  feature  of  a  fractal  for  which  the  pieces
are  scaled  by  different  amounts  in  the  x-  and  y-
directions of  a  signal  that  has  been used to  analyze a

non-stationary  signal[19].  The  DFA  method  is  used  to
quantify the long-range temporal correlations (LRTC)
with  less  strict  assumptions  of  the  signal  stationarity
relative to the autocorrelation function[20].

The step by step method is as follows:
1. A time series X of size k, is integrated as follows:

X (k) =
∑k

i=1
[X (i)−⟨X⟩] (9)

where X(i)  represents  the i-th element  of  the  time
series X and <X > denotes  the  mean  over  the  whole
recording.

2.  The  second  step  consists  of  dividing  the  time
series into N windows of length l, and the root-mean-
square of the integrated series is then subtracted from
the local trend in every window:

F (l) =
{

1
Nl

∑Nl

i=1
[X (i)−Xl (i)]

} 1
2

(10)

Xl(i)
The  number Nl represents  the  total  number  of

windows.  The  local  trend  is  obtained  from  a
linear regression over the time series in the window.

3. The previous step is repeated for several window
lengths  (l),  and the  relationship  between F(l)  and l is
described by a power law as follows:

F (l)αlα (11)
The scaling exponent α, which is a generalization of

the  Hurst  exponent,  is  calculated  as  the  slope  of  a
straight  line  fit  to  the  log-log  graph  of l against F(l)
using least squares.

Method  for  feature  extraction  from  the  EEG  raw
data

The  method  for  feature  extraction  from  the  raw
signal  is  shown  in Fig.  1.  The  method  used  is
described  in  detail[20],  but  in  this  study,  DFA  is  also
included  since  it  is  itself  a  good  feature  candidate  to
characterize  epileptic  seizures  with  the  quantification
of LRTC.

The  general  method  consists  of  applying  EMD  to
extract  IMFs  and  then  computed  the  Minkowski
distance to select the 2 most relevant IMFs[14]. Then, 5
values  are  computed  for  each  selected  IMF:  Teager
and  instantaneous  energy,  Higuchi  and  Petrosian
fractal  dimension  and  DFA.  This  process  is  repeated
for each channel to extract 10 features and then all the
features  are  concatenated  to  obtain  a  single  feature
vector  for  each  instance,  representing  thus  the  EEG
signal for each epileptic seizure or seizure-free period.

Depending on the number of channels used in each
experiment,  the feature vector size is  different.  As an
example, for 22 channels, the size of the feature vector
is  220.  The  purpose  and  the  process  for  channel
selection are explained later.
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The  placement  of  the  electrodes  on  the  scalp  was
based on the 10-20 international system for monopolar
EEG  channels  (Fig.  1)  but  the  dataset  used  for  the
experiments  was  based  on  bipolar  electrodes,  as
already mentioned.

Classification

It should be noted that the dataset used was created
carefully to obtain a balanced dataset. It means that for
each epileptic seizure, a seizure-free instance is added
into the dataset.

Another approach that improves/helps the real-time
response  of  machine-/deep-learning  based  brain-
computer  interface  (BCI)  systems,  in  addition  to  the
use  of  low-density  EEG  data,  is  the  classifier's
computational  cost.  In  this  context,  a  good  candidate

is  the  well-known  support  vector  machine  (SVM)
classifier,  as  it  provides  a  global  solution,  the
classification  complexity  does  not  depend  on  the
feature  dimension,  and  the  sensitivity  of  adding
features is relatively low[21].

The  obtained  vectors  were  used  as  input  to  the
SVM  algorithm  using  10-fold  cross-validation  to
obtain  the  accuracy  metric  and  thus  evaluate  the
classifier's performance.

Channel reduction criteria

We  tested  the  use  of  a  smaller  number  of  surface
electrodes for the detection of epileptic seizures. Thus,
the  greedy  algorithm  presented  in[22] and  used  in[23]

was  adapted  to  remove  channels  step-by-step
(backward-elimination).
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Fig. 1   An illustrative example using the method for feature extraction from the monopolar channel AF4.
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The goal was to test all combinations, removing one
channel at a time (k-combinations: k=1), and use them
to  extract  features  and  for  classification.  Then,  we
selected the subset of channels which gave the highest
accuracy  in  the  classification  step,  corresponding  to
the  local  maximum.  After  that,  the  procedure  was
repeated  with  the  subset  of  channels  obtained  while
the  length  of  the  subset  was  still  greater  than  one
channel.

Results

We performed  classification  experiments  using  the
characterized  EEG  signals  and  reduction  of  the
number  of  instances  based  on  clustering  and
developed and tested  a  method for  creating a  general
model to detect epileptic seizures.

EEG-based  classification  of  epileptic  seizures  and
seizure-free periods

We analyzed the difference between the application
of the method for feature extraction and classification
using the complete signal (the duration of the epileptic
seizures  and  the  seizure-free  periods  was  the  same)
and  only  six-second  segments.  For  the  six-second
segments, we also analyzed whether the sample rate of
the  EEG-based  epileptic  seizure  and  seizure-free
period  affect  classification  or  whether  similar
accuracy can be obtained using fewer  data  points,  by
subsampling at 128 Hz.

We  first  assessed  the  average  accuracy  of  the
method for 24 subjects using all 22 channels (Fig. 2).
The  accuracy  was  the  lowest  using  the  complete
signal, probably because feature extraction was based
on  the  analysis  of  segments  of  different  lengths.  The
use of six-second segments improved the accuracy to
91% for sampling rates of both 256 Hz and 128 Hz.

We  also  tested  the  use  of  fewer  channels  for  the
classification of epileptic seizures (Fig. 3). The lowest
number of channels that could be used while retaining
good accuracy was eight  for  the six-second segments
with subsampling at 128 Hz. However, the use of even

just five channels resulted in an only 1% reduction in
accuracy,  while  the  computational  cost  for  feature
extraction was 37.5% lower.

The average accuracy was affected by the results of
several subjects in whom the accuracy was low in the
classification. For example, the accuracy in subject 13
was  approximately  0.65  in  all  cases  (reducing  the
number of channels).

Only  the  results  of  experiments  using  the  six-
second segments at a sample rate of 128 Hz are further
described, as these conditions provided the best results
and the time for feature extraction was shorter.

Detection  of  epileptic  seizures  for  a  patient  using
data from 1.5 years before

In  the  description  of  the  dataset,  the  authors
mentioned that  subject  1 and subject  21 are the same
person,  but  the  EEG  signals  of  subject  21  were
recorded  1.5  years  after  those  of  subject  1.  The
problem  of  transfer  learning  is  well-known  for  some
applications.  We  thus  attempted  to  use  the  previous
knowledge  to  classify  the  epileptic  seizures  of  the
same subject.

The  problem  of  transfer  learning  and  the  accuracy
obtained  using  a  trained  model  with  new  data  of  the
subject  is  illustrated  in Fig.  4.  Data  from  subject  21
was used to create a model by SVM and then the use
of that model to classify the seizures of subject 1. The
accuracy  of  the  created  model  for  this  approach  was
0.82,  and  the  accuracy  classifying  new  data  from
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Fig. 2   Average accuracy of epileptic seizure classification for
24  subjects  by  SVM  using  the  complete  signal  and  six-second
segments (with a sample rate of 256 Hz and 128 Hz).
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Fig. 3   Average accuracy of epileptic seizure classification for
24 subjects using SVM during channel reduction.
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Fig. 4   Classification of epileptic seizures of subject 1 using the
ML-based  model  of  subject  21,  and  the  epileptic  seizures  of
subject 21 using the ML-based model of subject 1.
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subject 21 was 0.68. Data from subject 1 was used to
create  a  model  by SVM and the use of  that  model  to
classify the seizures of subject 21. The accuracy of the
model  created  for  this  approach  was  0.95,  and  the
accuracy classifying new data from subject 1 was 0.61.

Improving  the  accuracy  of  classification  for  data
from 1.5 years before

We  performed  10-fold  cross-validation  using  the
data  of  subject  1,  21,  and  those  of  both  subjects
(Fig. 5). It was possible to obtain an accuracy of 0.95
when  combining  the  data,  even  using  only  five
channels.

However, the main issue of session-session transfer
learning  concerns  the  number  of  instances  that  are
necessary  to  add  to  the  model  to  recognize  unknown
data  from  new  sessions, e.g.,  how  many  instances
from subject  21 are  necessary to  add to  the model  of
subject  1  to  recognize  epileptic  seizures  and  seizure-
free periods from 1.5 years before. We thus tested the
accuracy obtained when using all the data of subject 1
and  that  from  the  epileptic  seizures  of  subject  21
incrementally  (Fig.  6).  The  experiment  was  carried
out  using 22 channels  to  show that  the  model  can be
used  to  detect  new  epileptic  seizures  when  adding
instances  from the  new session  (1.5  years  later).  The
effect  of  adding  one  seizure  and  one  seizure-free
period was different from that of adding two seizures

and two seizure-free periods,  according to the size of
the  seizures,  because,  as  previously  mentioned,  the
models  were  created  with  segments  of  six  seconds.
These  results  suggest  the  possibility  of  creating  a
general model to detect epileptic seizures of unknown
subjects.

A  general  model  for  epileptic  seizure  detection
removing instances using k-means clustering

We  created  a  general  model  to  detect  epileptic
seizures  and  tested  its  feasibility  by  considering  only
subjects  for  whom  the  accuracy  of  classification
was ≥0.90  after  10-fold  cross-validation  using  22
channels:  subjects  1,  3,  4,  5,  7,  9,  10,  11,  15,  19,  22,
23, and 24.

The  first  step  was  to  select  the  best  instances  for
each subject and then this subset of instances to create
a general model. The general model was created from
the  instances  using  the  k-means  clustering  algorithm
to  obtain  the  instances  that  were  not  clearly  separate
and  selecting  only  those  from  the  clusters  that  were
unmixed  or  removing  those  that  were  not  dominant
from each cluster (Fig. 7).

We  first  used  the  elbow  method  to  automatically
select the number of clusters. The elbow method uses
the  within-cluster  sum of  errors,  which  is  the  sum of
the distance between each point  of  a  cluster  from the
cluster centroid[24].  Drawing a straight line from point
1  to N (orange  line  in Fig.  8),  where N is  the
maximum  number  of  clusters,  and  calculating  the
distance  from  each  point  (corresponding  to  the
number of clusters used) to this line, the point with the
largest  distance  is  the  optimal  k  for  the  k-means
algorithm.  As  an  example,  the  maximum  distance  is
reached using 11 clusters based on the feature vectors
from the previously mentioned subjects (Fig. 8).

The process  to  remove the  non-dominant  instances
in each cluster is illustrated by the red lines in Fig. 7.
After  removing  these  instances,  we  repeated  the
clustering  process  to  validate  the  fact  that  the
instances  were  now  unmixed.  The  following
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Fig. 5   Accuracy obtained with data from subject 1 (S1), sub-
ject 21 (S21),  and data from both subjects using SVM, during
channel reduction.
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Fig.  6   Accuracy  obtained  in  the  classification  of  epileptic
seizures and seizure-free periods of subject 1 and after adding
1, 2, and 3 instances of subject 21 using the SVM classifier.

 

 

Fig. 7   Illustration of the instance-reduction process, based on
removing  the  non-dominant  instances  in  k-means  clusters:
those indicated  by  the  red  line  will  be  removed  (S  means  epi-
leptic seizure and S-F means seizure-free).

186 Moctezuma LA et al. J Biomed Res, 2020, 34(3)



experiment  was  then  performed,  which  consisted  of
assessing the classification accuracy using SVM, with
and  without  instance  reduction,  using  22  channels
(Fig.  9).  The  accuracy  following  instance  reduction
was  0.93,  4% higher  than  the  accuracy  obtained  for
clustering without instance reduction.

Following validation of the accuracy obtained using
the EEG data of the previously mentioned subjects by
10-fold  cross-validation  using  SVM  (Fig.  9),  we
tested  the  ability  of  the  general  model  to  detect
epileptic seizures and seizure-free activity in unknown
subjects  following  the  method  for  feature  extraction
and instance reduction.

We  tested  the  accuracy  obtained  after  creating  a
model  with N subjects  minus  subject i and  the
accuracy  obtained  using  that  model  to  classify  an
unknown  subject  (subject i)  without  calibration
(Fig. 10).

In  general,  the  accuracy  of  the  created  models
was >90% but  the  accuracy  of  the  same  model  for
detecting  unknown  data  was  sometimes  lower.  For
example,  the  accuracy  for  subjects  15  and  22  was
approximately 30% lower than that of the model.

Discussion

The  average  accuracy  of  classification  of  epileptic
seizures  and  seizure-free  periods  was  up  to  94.5% in

24  subjects  using  EMD-based  energy  and  fractal
features. The accuracy obtained in some subjects was
up  to  98%,  whereas  it  was  much  lower  in  several
others.  This  is  related  to  the  number  of  instances  for
the training stage. These results are of interest for the
detection  of  epileptic  seizures  tailored  to  the  subject
and the monitoring of epileptic events.

In  addition  to  the  analysis  of  subject-tailored
models,  we  also  tested  the  feasibility  of  a  general
model.  Indeed,  our  results  show  that  it  is  possible  to
detect  the  seizures  of  new  subjects  using  the  EEG
signals  collected  during  those  of  other  subjects,  but
that it is necessary to add several instances of the new
subject  to  significantly  improve  the  accuracy.
Selecting  the  best-separated  instances  using  the  k-
means algorithm improved the accuracy by 4% using
22  channels.  However,  it  may  be  possible  to  further
improve  the  accuracy  by  selecting  only  the  best
channels.

The  classification  of  epileptic  seizures  can  be  the
first  step  towards  the  localization  of  epileptic  foci  in
medical  applications  and  determining  the  correct
medication to give the subject. Real-time detection in
itself  could  be  an  alternative  in  managing  epilepsy,
e.g.,  sending  commands  or  messages  to  external
devices  or  individuals.  However,  the  use  of  dry
electrodes  for  such  long-term  usage,  instead  of  wet
electrodes, will be necessary for these applications.

Our  results  show  the  potential  of  using  fewer
channels  to  improve  portability  and  facilitate  daily
use.  In  addition to  the use of  fewer  channels,  the use
of  a  lower  sample  rate  and  a  method  for  feature
extraction  from  the  raw  EEG  signal  will  provide
useful  information  for  classification  and  detection.
Extracting the energy distribution and fractal  features
of the IMFs has shown that it's possible to characterize
epileptic  seizures  and  seizure-free  periods  for
classification.

The problem of transfer learning can be tackled by
adding  instances  from  other  subjects  to  a  general
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Fig. 8   Selection of the optimal k for the k-means algorithm us-
ing the elbow method.
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Fig.  9   Accuracy  obtained  using  all  the  subjects  without  and
with instance reduction.
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Fig. 10   Accuracy of epileptic seizure classification using SVM
with the  model  created  for  N-i subjects  and  evaluation  of  the
model with subject i.
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model (calibration) to detect the epileptic seizures of a
new subject. Future steps will also include steps in the
presented methodology to test new data with ensemble
learning.

This method,  along with the use of the appropriate
number  of  channels/instances,  the  combined
knowledge  from  various  areas  of  science,  and
advances  in  portability,  new  types  of  electrodes,  and
new technology for EEG signal acquisition in general,
should  hasten  the  development  of  new  tools  for
medical  diagnosis  and  care,  as  well  as  real-time  and
real-life applications.

O(N log N)

O
(
N3

)
O(1)+O(N)

Decreasing  the  computational  cost  of  the  method
used  for  feature  extraction  is  important,  as  the
computational cost of the classifier will also decrease,
allowing  efficient  real-time  classification  for
monitoring epileptic seizures. The time to decompose
a  signal  of  size N by  EMD  is [25].  The
previous  complexity  is  taken  into  account  for  all
instances  used  for  training  and  testing,  and  is  also
used in the feature extraction process of new instances
in  the  real-time  implementation  of  the  method.  The
complexity  of  the  classifier  for  the  dataset  is  only
important  for  creating  the  model,  for  which  the
highest complexity is , in the case of the SVM.
In addition, the necessary time just to predict the class
of a new instance with a SVM is [26].

According  to  the  literature,  it  is  necessary  to  use
multifractal  properties  to  extract  more  information
about  non-stationary  signals.  Thus,  multifractal  DFA
(MF-DFA)[27] and  MF  detrended  moving  average
(MF-DMA)[28] will  be  tested  and  added  for  feature
extraction  using  the  method  based  on  the  IMFs  and
future improvements of epileptic seizure classification
and detection for new clinical applications.

The  effectiveness  of  the  feature  extraction  method
has been shown in the classification accuracies, which
were  achieved  using  10-fold  cross-validation.
Additionally,  the  method  used  for  channel  reduction
has been shown to have a good performance, since the
accuracies  using  22  channels  or  just  5  channels  are
quite similar (0.97 to 0.93).

The  analysis  of  epileptic  seizures  includes  several
linear and non-linear features, which are either mixed
or  based  on  the  DWT[29].  Chakrabarti et  al[30]

attempted  to  closely  compare  various  methods  using
principal component analysis to reduce the number of
channels.  However,  they  used  epileptic-seizure  data
from only  10  subjects.  They  obtained  an  accuracy  of
0.834  using  12  channels,  in  contrast  to  our  study,  in
which  we  obtained  an  accuracy  of  0.933  with  only
five channels, on average, for 24 subjects (Fig. 3).

As  it  was  mentioned  previously,  there  are  some
works  presenting  several  methods  using  different
feature extraction techniques, classification algorithms
and  experiment  setups.  In  order  to  provide  a  general
overview  of  the  current  state-of-the-art,  we  are  also
including  some  relevant  approaches  for  epileptic
seizure  classification  using  the  same  dataset.
Important  details  are  summarized  in Table  2 for
analysis and comparison purposes.

In Table  2,  the  classification  accuracy  of  our
approach  is  shown  using  the  results  from  the  first
experiment  exposed  here.  It  should  be  noted  that  our
experiments  were  not  limited  to  the  comparison  with
previous  works,  since  we  are  showing  more
experiments using transfer learning, channel reduction
and instances selection.

According  to  authors[34],  they  are  obtaining  an
accuracy of 0.99 using only 5 channels, in contrast to
our  approach  where  we  are  obtaining  an  accuracy  of

Table 2   Comparison of existing methods for epileptic seizures classification using the same dataset[12]

References: year Methods Subjects, channels Evaluation

Rafiuddin et al[31]: 2011 Energy and coefficient of variation extracted
from DWT, interquartile range, median absolute
deviation from raw signal.

23, 23 0.80 of accuracy, using ~80% for training

Khan et al[32]: 2012 Relative values of energy and a normalized
coefficients of variation from DWT.

5, (23, 24 or 26) 0.91 of accuracy, using ~80% for training

Zabihi et al[33]: 2016 Seven features from the intersection sequence
of Poincaré section with phase space.

23, 23 0.93 and 0.94 of accuracies, using 25% and
50% for training, respectively.

Bhattacharyya et al[34]:
2017

Three features extracted from different
oscillatory levels using multivariate extension
of Empirical Wavelet Transform.

23, 5 0.99 of accuracy, using 10-fold cross-validation

Solaija et al[35]: 2018 Signal curve length of the time-domain EEG
signal and the mode powers of the dynamic
mode decomposition

12, 18 0.87 of sensitivity, using ~50% for training

Proposed method Teager and instantaneous energy, Higuchi and
Petrosian fractal dimension, and DFA from 2
IMFs based on the EMD

24, 5 0.93 in average, 10-fold cross-validation
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0.93  using  also  5  channels  (not  necessarily  the  same
channels  positions).  They  are  using  an  imbalanced
dataset  applying  the  synthetic  minority  oversampling
technique  to  obtain  a  balanced  dataset.  As  it  was
mentioned  previously,  our  approach  was  evaluated
considering  a  balanced  dataset  and  the  differences
between both methods must be tested under the same
conditions.  This  future  comparison  will  be  used  to
improve  the  accuracy  in  the  case  of  the  subject-
specific model.

The  use  of  machine  or  deep  learning  to  detect  or
predict  epileptic  seizures  with  a  low number  of  EEG
channels  will  increase  portability  and  be  more  user-
friendly,  thus  allowing  long-term  monitoring  outside
of  the  hospital  setting.  However,  there  are  several
challenges  to  be  addressed  before  real-life
implementation,  as  epilepsy  can  cause  a  variety  of
neurological  disorders,  such  as  depression  and
anxiety.  If  these  types  of  additional  classes  are  not
considered,  the  classifier  will  only  be  able  to
distinguish  between  an  epileptic  seizure  and  seizure-
free,  causing  more  harm  than  good[36].  In  that
direction,  future  efforts  must  include  the  analysis  of
more disorders to classify and predict them from EEG
data.

In  conclusion,  we  present  a  method  extracting  5
features from 2 IMFs based on EMD, and it has been
successfully  used  for  epileptic  seizure  classification.
The  method  was  performed  in  several  experiments
using  a  different  number  of  channels  that  were
reduced  using  a  backward-elimination  greedy
algorithm.  We used  k-means  clustering  algorithm for
instance reduction,  increasing the accuracy from 0.89
to  0.93  and  creating  a  general  model  for  epileptic
seizure classification.

Future  work  will  focus  on  comparing  the  most
relevant methods to determine the capabilities of each.
They  will  be  compared  using  a  public  high-density
EEG  dataset,  as  most  comparisons  are  based  on
different  methods  and  different  experimental  setups
(number  of  subjects,  trials,  sessions,  channels, etc.),
even when using the same dataset, making it difficult
to validate a classifier's performance.

Further  steps  in  this  research  will  also  focus  on
testing  TLE  information  and  brain-mapping
techniques  to  reduce  the  number  and  localization  of
the  channels,  testing  the  resulting  method  on  the
dataset  used in  this  paper  and various  public  datasets
from the EPILEPSIAE project[11].
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