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Abstract

Motivation: The three-dimensional structure of genomes makes it possible for genomic regions

not adjacent in the primary sequence to be spatially proximal. These DNA contacts have been

found to be related to various molecular activities. Previous methods for analyzing DNA contact

maps obtained from Hi-C experiments have largely focused on studying individual interactions,

forming spatial clusters composed of contiguous blocks of genomic locations, or classifying these

clusters into general categories based on some global properties of the contact maps.

Results: Here, we describe a novel computational method that can flexibly identify small clusters

of spatially proximal genomic regions based on their local contact patterns. Using simulated data

that highly resemble Hi-C data obtained from real genome structures, we demonstrate that our

method identifies spatial clusters that are more compact than methods previously used for cluster-

ing genomic regions based on DNA contact maps. The clusters identified by our method enable us

to confirm functionally related genomic regions previously reported to be spatially proximal in dif-

ferent species. We further show that each genomic region can be assigned a numeric affinity value

that indicates its degree of participation in each local cluster, and these affinity values correlate

quantitatively with DNase I hypersensitivity, gene expression, super enhancer activities and repli-

cation timing in a cell type specific manner. We also show that these cluster affinity values can pre-

cisely define boundaries of reported topologically associating domains, and further define local

sub-domains within each domain.

Availability and implementation: The source code of BNMF and tutorials on how to use the software

to extract local clusters from contact maps are available at http://yiplab.cse.cuhk.edu.hk/bnmf/.

Contact: kevinyip@cse.cuhk.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Although genomes are commonly depicted as a linear sequence of

base pairs, they actually contain complex three-dimensional (3D)

structures. There has long been an interest in identifying biologically

meaningful territories from these structures (Cremer and Cremer,

2010). Fluorescence in situ hybridization (FISH) has provided in-

sights into genome organization by visualizing individual pairs of

spatially interacting genomic regions (Cremer and Cremer, 2001),

but it has limited resolution and cannot be scaled up to study a large

number of interacting regions at the same time. These limitations

have been overcome by high-throughput experimental methods that

can probe interacting regions genome-wide by means of cross-

linking and deep sequencing, such as ChIA-PET, Hi-C and TCC

(Fullwood et al., 2009; Kalhor et al., 2012; Lieberman-Aiden et al.,

2009). Each sequencing read produced provides information about

two interacting regions. The whole set of reads is summarized by a

contact map in the form of a square matrix, where the whole gen-

ome is binned into contiguous genomic locations with each bin
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corresponding to a row and a column of the matrix, and each matrix

element represents the number of supporting reads linking up re-

gions from the two respective bins, which we refer to as the ‘contact

counts’ (Supplementary Fig. S1). Two bins that are closer to each

other in the 3D genome structures in a cell population receive a

larger contact count in general, subject to various types of bias to be

discussed below.

The appropriate size of each bin depends on the amount of data

produced. If a small bin size is used but there are not enough

sequencing reads, many values in the matrix would be small or even

zero, and would thus be heavily affected by background noise and

random sampling effects. Therefore, in order to produce contact

maps at high resolution, the amount of data produced in each ex-

periment has been increasing rapidly (Ay et al., 2014; Dixon et al.,

2012; Jin et al., 2013; Kalhor et al., 2012; Lieberman-Aiden et al.,

2009). A recent in situ Hi-C dataset contains billions of pairwise

interactions obtained from a human cell line, which allows for a

high resolution of 1 kb bin size while the average contact count is

still sufficiently large for proper analyses (Rao et al., 2014). These

massive datasets have created computational challenges in extract-

ing useful information about the underlying 3D genome structures.

Various methods have been applied to analyze DNA contact

maps with different goals. Statistical methods have been used to test

whether a set of genomic locations of interest are co-localized in the

3D genome structure (Duan et al., 2010). Their reliability depend on

the normalization procedure (Cournac et al., 2012) and the suitabil-

ity of the null model (Paulsen et al., 2013). Conversely, methods

have been proposed for discovering groups of interacting genomic

regions without a predefined set of candidates. One way is to create

a global model for the whole 3D genome structure using the contact

map to define model constraints. Existing methods differ from each

other by their assumptions about global genome structures, their op-

timization procedures, and whether a single structure or a popula-

tion of structures is used to explain the observed contact map (Duan

et al., 2010; Kalhor et al., 2012; Lieberman-Aiden et al., 2009;

Nagano et al., 2013; Sexton et al., 2012). Another way to identify

groups of interacting regions is to cluster genomic regions according

to their contact counts with other regions. One previous study used

principle component analysis (PCA) to identify a low-dimensional

representation of the contact map based on which genomic regions

were clustered. The clustering results revealed general open and

close compartments of the genome at 1 Mb resolution (Lieberman-

Aiden et al., 2009). More refined topologically associating domains

(TADs) (Dixon et al., 2012; Nora et al., 2012) at 100 kb resolution

were later identified by using hidden Markov models. Recently,

chromatin loops at even higher resolutions were identified using dy-

namic programming. Clustering of the inter-chromosomal inter-

actions revealed six general groups using a Gaussian hidden Markov

model clustering algorithm (Rao et al., 2014).

In general, the accuracy of these methods depends on how the

contact map is processed to remove biases. Some genomic regions

tend to have more contact counts than others, caused by factors

such as GC content and uniqueness of sequence (Yaffe and Tanay,

2011). These factors lead to a non-uniform distribution of contact

read counts, which could confuse the analysis and should be prop-

erly corrected. In an early correction method, the observed contact

counts are normalized by the expected counts based on a back-

ground model (Lieberman-Aiden et al., 2009). An iterative correc-

tion approach was later proposed to enforce equal sums for all rows

in the contact map after normalization, assuming that after remov-

ing the biases, every bin should have approximately the same num-

ber of interactions with other bins. This normalization method was

proved to be more effective and have a better convergence property

(Imakaev et al., 2012). Using the same framework, another effective

normalization method adopts a new updating rule by dividing row

sums with their Euclidean norms (Cournac et al., 2012). Yaffe and

Tanay’s work followed a different direction by explicitly modeling

three types of biases observed in Hi-C data (Yaffe and Tanay,

2011). This method was further sped up by relaxing the objective

function (Hu et al., 2012). In the recent high resolution study, a

faster iterative approach based on matrix balancing was used to

achieve the assumption of equal row sums (Knight and Ruiz, 2013;

Rao et al., 2014).

Together, these data correction and analysis methods have led to

many interesting findings about genome structures. On the other

hand, so far most analyses have focused on either individual inter-

actions, domains composed of a contiguous segment on the primary

sequence, or grouping of these domains into general domain catego-

ries based on some global properties of the contact map. Given the

complexity of genome structures, it would be useful to have a way

to flexibly identify local clusters of genomic regions that are spa-

tially close in the 3D structure but not necessarily adjacent in the pri-

mary sequence, such as multiple non-adjacent TADs that form a

higher-level spatial cluster. As to be shown in the Results section,

many of these local clusters are related to particular molecular activ-

ities such as transcription and DNA replication. Compared to the

domains identified in previous studies, these local clusters could pro-

vide information about local organizations of the genome structure

involving small subsets of genomic regions that are particularly

related to each other within larger domains, thereby supplementing

the previous methods.

In this study, our main goal is to identify these local clusters

from contact maps obtained from Hi-C experiments using matrix

factorization. In general, matrix factorization aims at decomposing

a matrix into two or more matrices with a certain objective. One of

the most well-known methods is eigenvalue decomposition, which

decomposes a diagonalizable square matrix X into QKQ�1, where

Q contains the orthogonal eigenvectors and K is a diagonal matrix

containing the eigenvalues. A popular application of it is principal

component analysis, which uses eigenvalue decomposition to factor-

ize the covariance matrix of a dataset. Each eigenvector (i.e. a prin-

cipal component, PC) represents the direction with the largest data

variance after subtracting out the projections on the previous PCs

with larger eigenvalues. PCA has been used to identify key contribu-

ting factors of Hi-C contact maps (Lieberman-Aiden et al., 2009).

Since each bin could have a negative coordinate along a PC, the bio-

logical meanings of the PCs are sometimes difficult to interpret. In

one of the studies, permutation tests have also indicated that only

the first few PCs were statistically significant (Imakaev et al., 2012).

Conceptually, a perfect DNA contact map can be considered as

the superposition of contact counts from different local clusters and

a small number of counts linking different clusters. For example, the

contact map submatrix shown in Supplementary Figure S1 can be

well approximated by read counts within the first local cluster (con-

sisting of bins a, b and c) and read counts within the second local

cluster (consisting of bins d and e). Each bin can have an affinity

value indicating its participation in each local cluster, and bins at

the interface of multiple clusters (bins c and d) can have partial affin-

ities to these clusters. When only the contact counts between differ-

ent bins are available but not the 3D coordinates of each bin in the

genome structure, these local clusters can be identified by non-

negative matrix factorization (NMF), which decomposes the data

matrix into matrices containing only non-negative values

(Devarajan, 2008). For a DNA contact map, after considering some
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global effects due to general open and close domains or chromosome

structures, the remaining factors could correspond well to the local

clusters. Comparing with analyzing DNA contact maps with PCA,

NMF enjoys the advantages of (i) having clear biological interpret-

ations for many factors, (ii) allowing only positive coefficients (i.e.

the affinity values) and (iii) focusing more on local sub-structures. In

fact, NMF was popularized by Lee and Seung’s work on image pro-

cessing (Lee and Seung, 1999), which clearly demonstrated that

each image of human face can be automatically factorized by NMF

into distinct facial features, such as the nose, the mouth and so on.

NMF has also been shown effective in many biological applications

such as analyzing protein-protein interactions (Greene et al., 2008).

As discussed, DNA contact maps contain various types of bias

that should be properly corrected before applying NMF. Here, we

propose a novel method called balanced non-negative matrix fac-

torization (BNMF), which was specially designed for DNA contact

maps to handle data biases and relationships between data bins in

the primary sequence when performing NMF. We show that

BNMF can identify compact spatial clusters of genomic regions ac-

cording to simulated data that highly resemble real Hi-C data. The

clusters were identified without making any assumptions about the

whole genome structure. They are found to contain genomic re-

gions closer to each other than those identified by some other clus-

tering methods previously used to analyze Hi-C data. We further

describe how statistical tests can be performed to check whether a

group of genomic regions of interest are spatially close to each

other in the 3D genome structure based on the clusters identified

by BNMF. We use this testing procedure to confirm that various

functionally related groups of genomic regions are spatially close

to each other. We then show that the BNMF clusters are not only

good indicators of particular groups of functionally related gen-

omic regions, but their affinity values are actually quantitatively

correlated with various molecular activities. Finally, we show that

BNMF cluster affinities can precisely define boundaries of TAD,

and provide more fine-grained information about sub-domains

within these large domains.

2 Results

2.1 BNMF identifies local spatial clusters from DNA

contact maps
BNMF takes a contact map X as input, and finds an approximation

Y of it that can be decomposed into the product of several matrices:

X � Y ¼ BHSHTB;

where B is a diagonal matrix that captures the position-specific con-

tact count biases, S is a diagonal matrix that defines the clusters, and

H contains the cluster membership values (Fig. 1). B, S and H all

contain only non-negative values. To understand this formula, first

we define a new matrix R as follow:

R :¼ B�1YB�1 ¼ HSHT

R is a balanced contact map required to have equal sums for all

rows and equal sums for all columns except for those bins with no

contact counts in the original contact map X. BNMF then looks for

non-negative matrices H and S such that R ¼ HSHT . This decom-

position does not have a unique solution. For instance, if every elem-

ent in H is multiplied by a positive value and each element in S is

divided by the square of that value, HSHT would stay unchanged.

To make the decomposition result easy to interpret, we require each

column of H to sum to a given constant, and correspondingly each

column of W ¼ SHT to sum to another constant (Fig. 1). With this

constraint, each column of H contains the memberships of different

bins to a cluster when each cluster has a fixed membership quota for

all the bins, and each column of W contains the affinity of a bin to

join the different clusters when each bin has a fixed affinity budget

for all the clusters.

To illustrate the decomposition procedure, consider the follow-

ing raw contact map:

X ¼

8 4 0

4 2 0

0 0 9

0
BB@

1
CCA

In this idealized example, we can find Y that is identical to X.

The position-specific biases can be removed by the bias matrix B:

R ¼ B�1YB�1 ¼ B�1XB�1

¼

4 0 0

0 2 0

0 0 3

0
BB@

1
CCA
�1

8 4 0

4 2 0

0 0 9

0
BB@

1
CCA

4 0 0

0 2 0

0 0 3

0
BB@

1
CCA
�1

¼

0:5 0:5 0

0:5 0:5 0

0 0 1

0
BB@

1
CCA

R is in turn decomposed into HSHT, where each column in H

and W sums to 1:

R ¼ HSHT ¼

0:5 0

0:5 0

0 1

0
BB@

1
CCA 2 0

0 1

 !
0:5 0:5 0

0 0 1

 !

W ¼ SHT ¼
2 0

0 1

 !
0:5 0:5 0

0 0 1

 !
¼

1 1 0

0 0 1

 !

From matrix S, the two diagonal entries state that there are

two clusters, with two members belonging to the first and one

member to the second. From matrix H, the first cluster assigns 0.5

membership to bin 1 and 0.5 membership to bin 2, and the second

cluster assigns 1 membership to bin 3. From matrix W, bins 1 and

2 both have full affinity to cluster 1 and bin 3 has full affinity to

cluster 2.

We developed an algorithm that searches for B, S and H at the

same time given an input contact map X. This algorithm also uses

the location of the bins in the primary sequence to define a manifold

component in the objective function, such that the resulting affinity

values are smooth (Section 4, Supplementary Fig. S2).

When applying BNMF to a published yeast Hi-C contact map

(Duan et al., 2010), the identified clusters contain adjacent bins in

the primary sequence, as evidenced by blocks of large values in each

row of W (Fig. 1); On the other hand, there are also clusters with

member bins not adjacent in the primary sequence but have high

contact counts between them, seen as off-diagonal blocks. Overall,

when all clusters are considered, the approximated contact map Y is

highly similar to the raw contact map X.

An important parameter of BNMF is the number of clusters to

form, which is equal to the number of rows in matrix S. We have de-

veloped an automatic procedure to search for an appropriate num-

ber of clusters such that each cluster is sufficiently homogeneous but

not too fragmented (Section 4).
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2.2 BNMF produces spatial clusters more compact than

other clustering methods
We used two methods to test whether BNMF produces clusters that

contain spatially proximal genomic regions. In the first method, we

used a space-filling Hilbert curve to draw an artificial 2D chromo-

some in a 16�16 area. Each of the 256 points mimics a bin of con-

secutive genomic locations. We then generated an idealized

synthetic contact map by assigning dmax

ð1þdÞ2 contact counts between

any two points at a Euclidean distance of d in the 2D structure not

necessarily adjacent in the 1D sequence, where dmax is the maximum

Euclidean distance between any two points on the curve. The reason

for having contact counts inversely proportional to d2 in this 2D

chromosome is based on previous work of the 3D case in which con-

tact counts are inversely proportional to d3 due to the volume in 3D

space (Varoquaux et al., 2014). We next decomposed the matrix

using eigenvalue decomposition (EIG) and BNMF, respectively. For

EIG, we formed four clusters of points that have coefficients larger

than the corresponding means along the first four eigenvectors. For

BNMF, we formed four clusters comprising points with an affinity

value larger than the mean.

Figure 2 shows the resulting clusters produced by the two meth-

ods. For EIG, the first cluster separates the interior and exterior of

the structure. The second and third clusters separate points at differ-

ent sides of the whole area. In order to be orthogonal to the first

Fig. 1. Summary of the BNMF method. The Hi-C contact map based on HindIII interactions at 1% FDR from Duan et al. (2010) is used as the input contact map X.

The goal of BNMF is to find a matrix Y that can be decomposed into the product of several matrices and is close to X. Y contains similar position-specific biases

as X, as shown by the column sums below the heat maps. These biases can be captured by a bias matrix B. When these biases are removed from Y, we get a bal-

anced contact map R. R is in turn decomposed into HSHT, where S defines the local spatial clusters and H contains the membership values that associate the bins

to the clusters

i114 X.Hu et al.



three eigenvectors, the fourth eigenvector results in a cluster that in-

volves two isolated parts of the structure. The four clusters overlap

each other substantially and are all based on some global data prop-

erties. In contrast, the clusters formed by BNMF clearly correspond

to spatial clusters at the four corners. These clusters include points

that are spatially close in the structure but not adjacent in the pri-

mary sequence. For example, points 22 and 235 are far away in the

primary sequence, but due to their spatial locality, they have a high

contact count, and are grouped into the same cluster. Similar results

could also be obtained from a 3D Hilbert curve. While BNMF is not

intended for identifying global compartments as was done in some

previous studies (Lieberman-Aiden et al., 2009), this example clearly

illustrates how BNMF identifies spatial clusters.

In the second method, we generated a noisy synthetic yeast Hi-C

contact map with position-specific biases, and used it to compare

different clustering methods (Section 4). A volume exclusion model

was previously proposed for generating a population of simulated

3D structures of the yeast genome, which was shown to produce a

contact map similar to one obtained from real data (Tjong et al.,

2012). We used this model to generate 3000 simulated yeast genome

structures at 3.2 kb resolution. The resulting contact map has data

patterns highly similar to a real contact map at 32 kb resolution

(Supplementary Fig. S3a,b). The average Pearson correlation be-

tween the rows in the two matrices is larger than 0.9

(Supplementary Fig. S3e). When we decomposed these two matrices

using BNMF, the cluster affinity values were highly similar

(Supplementary Fig. S3c,d), with clear correspondence between

most clusters obtained from the two maps (Supplementary Fig. S3f).

Having this highly realistic synthetic contact map, we used it to

check whether the bins grouped into the same cluster by BNMF are

spatially close, based on the known average distance between any

two bins in the 3000 simulated structures.

In addition to BNMF, we also applied four other methods to pro-

duce clusters from the noisy synthetic contact map. The first method

is PCA with a normalization step for removing position biases

(Lieberman-Aiden et al., 2009), in which case each PC was used to

define a cluster (see below). The second method is Iterative

Correction and Eigenvalue Decomposition (ICE) (Imakaev et al.,

2012), which uses an iterative procedure to remove biases in the con-

tact map before applying eigenvalue decomposition. The third

method is the standard k-means clustering method (MacQueen,

1967), in which case each row vector was used as the features of the

corresponding bin. The fourth method is standard NMF without cor-

recting for the biases. We required all methods to produce the same

number of clusters, with each bin assigned to exactly one cluster.

Figure 3a shows the synthetic contact map and Figure 3b shows

the corresponding pairwise Euclidean distances between the bins

based on the actual synthetic structures. The centromeres of the dif-

ferent chromosomes are in general close to each other as previously

reported in whole-genome models (Duan et al., 2010). For each clus-

ter, we computed the average distance between the member bins

(Fig. 3c). For most cluster numbers, the clusters identified by BNMF

were the tightest. We found that some methods tended to put only

bins from the same chromosome in the same cluster. If we focused

on only bin pairs from the same chromosome, the average distances

were again smallest for BNMF (Fig. 3d).

Since BNMF uses an iterative optimization procedure, we

checked how the objective score and the average Euclidean distance

between bins assigned to the same cluster change across the iter-

ations. Supplementary Figure S4 shows that the objective score

decreased progressively across iterations as expected.

Correspondingly, the average distance between the bins in the same

cluster also decreased, and it had a good correlation with the object-

ive score, suggesting that the objective function is a good indicator

of intra-cluster bin distances in DNA contact maps.

Taking the results of both analyses together, the clusters identi-

fied by BNMF are shown to represent compact groups of genomic

bins coming from spatially proximal regions.

2.3 BNMF confirms spatial locality of functionally

related genomic regions
As an application of BNMF, we developed statistical tests for check-

ing whether a given set of genomic regions are spatially proximal

using the clusters identified by BNMF (Section 4). The basic idea is

that if a set of genomic regions are spatially close, they would have

large affinity values to a cluster simultaneously. The affinity values

to this cluster can thus well separate bins belonging to this group of
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Fig. 3. Comparison between five different clustering methods based on the

noisy synthetic yeast Hi-C contact map. (a) The contact map obtained from

3000 simulated yeast genome structures with random biases added to each

bin. (b) The corresponding average Euclidean distances between different

bins in the 3000 structures. (c) The average distance between bins in the

same cluster. (d) The average distance between bins in the same cluster, con-

sidering only bin pairs from the same chromosome

Fig. 2. Comparison between eigenvalue decomposition and BNMF based on

a space-filling curve. A Hilbert curve is used to generate an artificial 2D

chromosome and a corresponding synthetic contact map. The contact map is

decomposed by eigenvalue decomposition (EIG) and BNMF. In both cases,

four clusters are obtained by grouping the points with the highest coefficients

along the eigenvectors or affinity values to the clusters. A region with long-

range contacts, including points 22 and 235, is highlighted in the Hilbert

curve, the heat map and cluster 4 produced by BNMF
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genomic regions from other bins. Our testing procedure performs

this analysis for every cluster, and reports a P-value corrected for

multiple hypothesis testing. One major difference between our test-

ing procedure and the ones used in previous studies is that we use

cluster affinity values to check the spatial locality of the bins of

interest while most previous methods use contact counts directly. If

a set of genomic regions of interest simultaneously have a high affin-

ity to a cluster, other genomic regions with a high affinity to this

cluster are also spatially co-localized with the regions of interest,

thus providing a simple way to discover new spatial relationships.

To check the effectiveness of our testing procedure, we applied it

to check the co-localization of previously reported groups of gen-

omic regions, including early replication sites in yeast (Imakaev

et al., 2012), VRSM genes in the parasite Plasmodium falciparum

(Ay et al., 2014) and tRNA genes in human, mouse and yeast (Duan

et al., 2010). Table 1 shows the resulting P-values. All these three

previously reported functional groups were found to contain bins

that could be well distinguished from other bins based on the cluster

affinity values of BNMF. As a control, we also applied the testing

procedure on late replication sites, which are not expected to be co-

localized. Indeed, the resulting P-value was not significant. These re-

sults demonstrate BNMF’s ability to test the spatial locality of

functionally related genomic regions, and its general applicability to

data from different species.

2.4 BNMF cluster affinities quantitatively correlate with

genomic features in a cell type specific manner
For functionally related regions, if their activities differ in different

cell types, their spatial locality may also change accordingly. To test

if such cell type specific structural information is captured by the

BNMF clusters, we collected Hi-C data from four human cell lines

and used BNMF to identify local spatial clusters from them. We also

collected cell type specific experimental data that indicate various

molecular activities, including genes with cell type specific expres-

sion, locations of super enhancers, DNase I hypersensitivity values

and replication time (Section 4). The first two types of data identify

genomic regions belonging to these categories, and we used the same

statistical procedure described in the last section to test the spatial

locality of these bins. The last two types of data provide numeric

values for each bin across the whole genome. We used a modified

testing procedure to check if these values were quantitatively corre-

lated with cluster affinity values.

Table 2 shows the analysis results. In 61 of these 64 cases, the

correlation between the cluster affinity values and the genomic fea-

tures is statistically significant, except for the three cases involving

highly expressed genes in K562 and local clusters from other cell

lines, indicating that genomic regions defined by these features are

in general close to each other regardless of their activities. On the

other hand, in many cases the highest correlations (in terms of AUC

or SPC, defined in Section 4) are observed when both the DNA con-

tact map and the genomic feature were obtained from the same cell

type. For example, the genes specifically expressed in a cell type ap-

pear to be most structurally proximal in the same cell type. The re-

sults for DNase I hypersensitivity and replication time further show

that the BNMF cluster affinity values not only can help identify the

local clusters related to particular genomic features, but also quanti-

tatively reflect the activity level of some features. These results indi-

cate that cell type specific structural changes related to differential

molecular activities are captured by the BNMF clusters.

Table 2. Correlation between genomic features and BNMF cluster affinities in human cell lines

Highly expressed genes (AUC) Super enhancers (AUC)

Hi-C GM12878 h1-hESC IMR90 K562 GM12878 H1-hESC IMR90 K562

GM12878 0.79** 0.76** 0.68** 0.68 0.82** 0.64** 0.76** 0.82**

H1-hESC 0.75** 0.80** 0.67** 0.71* 0.72** 0.67** 0.73** 0.79**

IMR90 0.71** 0.73** 0.75** 0.70* 0.73** 0.63** 0.80** 0.76**

K562 0.73** 0.77** 0.64** 0.81** 0.73** 0.63** 0.71** 0.79**

DNase I hypersensitivity (SPC) Replicating time (SPC)

Hi-C GM12878 h1-hESC IMR90 K562 GM12878 H1-hESC IMR90 K562

GM12878 0.91** 0.82** 0.84** 0.84** 0.82** 0.67** 0.66** 0.75**

H1-hESC 0.79** 0.83** 0.82** 0.78** 0.64** 0.65** 0.55** 0.68**

IMR90 0.69** 0.65** 0.72** 0.65** 0.58** 0.53** 0.74** 0.57**

K562 0.75** 0.73** 0.75** 0.77** 0.63** 0.58** 0.56** 0.70**

The four sub-tables show the correlations between BNMF cluster affinities and four types of genomic features. For the first two features (genes highly expressed

in specific cell lines and super enhancers), the correlations are quantified by the area under the receiver operator characteristics curve (AUC). For the last two fea-

tures (DNase I hypersensitivity and replication time), the correlations are quantified by the Spearman rank correlation (SPC). In each sub-table, the rows corres-

pond to the cell types from which the Hi-C data were obtained, and the columns correspond to the cell types from which the genomic features were obtained. The

highest value in each row is highlighted in bold face. Corrected P-values, *P < 0.05, **P < 1E-5.

Table 1. Spatial locality of various functional groups of genomic

regions

Genomic regions Species Corrected P-value

Early replication sites Yeast <0.001

Late replication sites (control) Yeast 0.3

VRSM genes P. falciparum <0.001

tRNA genes Human <0.001

tRNA genes Mouse <0.001

tRNA genes Yeast 0.03

Several groups of functionally related genomic regions previously reported

to be spatially proximal were re-tested for their spatial co-localization using

BNMF cluster affinity values based on the CCD method. Late replication

sites, which are not expected to be co-localized in the 3D genome structure,

were used as a control.
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2.5 Local clusters identified by BNMF are consistent

with and supplement topologically associating domains
Previous work has identified topologically associating domains

(TADs), consecutive blocks of DNA locations that define structural

domains (Dixon et al., 2012; Nora et al., 2012). We investigated

how the clusters identified by BNMF are related to TADs.

We first reasoned that if TADs mark structural domains, the

boundaries of some TADs should also be boundaries of BNMF clus-

ters. We identified BNMF cluster boundaries by checking the affin-

ity values of the bins. Bins at cluster boundaries have affinities to

multiple clusters, and thus their vectors of cluster affinities have a

higher Gini impurity index (Section 4). When plotting all these Gini

impurity values from a contact map from the human IMR90 cell

line, a clear enrichment is seen around TAD boundaries (Fig. 4a). In

general, there is substantial overlap between TAD and BNMF clus-

ter boundaries (Supplementary Fig. S5a).

By inspecting individual TADs, we found that in some simple

cases each TAD corresponds to exactly one BNMF cluster (Fig. 4b).

In some more complex cases, one TAD contains multiple BNMF

clusters, and long-range contacts across TADs are captured by the

BNMF affinity values and appear as small distal peaks (Fig. 4c,

Arrows 1 and 2, Supplementary Fig. S5b). Alternatively, some

BNMF clusters span multiple TADs, suggesting the spatial proxim-

ity between them as indicated by the contact map (Fig. 4c, green

cluster, Supplementary Fig. S5c).

One feature of BNMF is that it can identify clusters at different

resolution by decomposing contact maps at different bin sizes and/

or setting different number of clusters. We demonstrate this feature

by extracting the balanced contact map of a segment (from 53 to 56

Mb) of chromosome 12 from the human K562 cell line at 5 kb reso-

lution (Rao et al., 2014), and using BNMF to produce local spatial

clusters. There was a recent study using a novel DNase Hi-C method

to study the 3D genome structures around long intergenic noncoding

RNAs of human cell lines (Ma et al., 2015). Two distal regions were

clearly observed to have interactions with the promoter of the

HOTAIR gene, one of which is also supported by ChIA-PET (Fig.

4d). We checked the BNMF clusters around this genomic locus, and

found a cluster with almost identical boundaries with a surrounding

TAD. The two distal interacting regions have strong enrichment in

the affinity values of this cluster as compared to other regions within

the TAD, showing that BNMF identified these two distal regions

and the HOTAIR gene to be particularly close among all the bins in

this TAD.

These results suggest that the BNMF clusters are consistent with

TADs, but also provide additional information about more detailed

interactions within a single TAD and across multiple TADs.

3 Discussion and conclusion

In this paper, we have described the BNMF method for decompos-

ing a contact map and identifying local spatial clusters from it. We

have used synthetic contact maps based on both an artificial space-

filling chromosome and simulated yeast genome structures that re-

semble real yeast genome structures to show that the clusters identi-

fied by BNMF correspond to compact clusters of genomic regions

proximal in the 3D genome structure. Genomic regions in the same

spatial clusters are usually, but not necessarily, close to each other in

the primary sequence. Comparisons with other clustering methods

showed that the clusters produced by BNMF are more compact.

This is partially attributed to the non-negative requirements for the

decomposing matrices, which naturally attempts to explain the over-

all contact map by the summation of contact counts from different

local clusters. In contrast, if the decomposing matrices allow nega-

tive values, as in eigenvalue decomposition, the resulting clusters

may not correspond to local spatial clusters and their meanings

could be difficult to interpret.

Since BNMF does not require any prior knowledge about the

overall genome structure and does not make any assumptions about

it, the identified clusters are based purely on the contact map data

and could contain novel groups of genomic regions. We have shown

that BNMF can be applied to data obtained from a variety of

species.

One could also apply BNMF to the same contact map at differ-

ent bin sizes, to identify spatial clusters at different resolution.

Currently one limitation of BNMF is that when the input contact

map is too large, the computation involved in the decomposition

could be prohibitive due to expensive matrix multiplications. One

way to deal with this problem is to extract a subset of the contact

map of interest, such as one chromosome, and apply BNMF on this

subset only. When we used this strategy to study the sub-contact

map around the HOTAIR gene at 5 kb resolution, we were able to

identify the enhancer-promoter interactions around the HOTAIR

gene within a larger TAD. Some other technical methods for speed-

ing up the calculations are discussed in the Supplementary

Materials.

4 Materials and Methods

4.1 Formulation of balanced non-negative matrix

factorization, BNMF
Given a DNA contact map X, the BNMF method looks for positive

matrix B and non-negative matrices H and S such that

X � BHSHTB. This searching process requires an objective function

to evaluate how similar the reconstructed matrix BHSHTB and the

input matrix X are, and an algorithm for finding matrices B, H and

S that result in a good objective score. Here, we provide the details

of these two components of BNMF.

Fig. 4. Relationships between BNMF clusters and TADs. (a) Bins around TAD

boundaries have increased Gini impurity scores, indicating that they are also

at the boundaries of BNMF clusters. (b) An example showing a simple case in

which each TAD corresponds to exactly one BNMF cluster. In the cluster affin-

ity panel, each color represents a different cluster. (c) A more complex ex-

ample showing that some TADs contain multiple clusters, and some long-

range DNA contacts across multiple TADs (circles 1 and 2) appear as small

peaks of cluster affinity values (marked by arrows 1 and 2). (c) An example

showing a BNMF cluster with almost the same boundaries with a TAD, but

the affinity values further show the long-range contacts between the HOTAIR

gene and two distal regions that have been independently shown by ChIA-

PET or DNase I Hi-C
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4.1.1 Defining the basic objective function

We begin with the simplified problem of decomposing X into

HSHT, assuming X is bias free. Later we will explain how the

bias matrix B can be identified to remove position-specific biases

in X.

Let W :¼ SHT be a non-negative matrix. In order to approxi-

mate X by HW, we assume that X is produced by adding Poisson

noise to HW. Maximizing the data likelihood is related to minimiz-

ing the Kullback–Leibler (KL) divergence between X and HW (Lee

and Seung, 1999) defined as follows:

dðXjjHWÞ ¼
X

i;j

Xijln
Xij

ðHWÞij
�Xij þ ðHWÞij

 !

¼
X

i;j

ðHWÞij �XijlnðHWÞij
h i

þ
X

i;j

XijlnXij �Xij

� �

Since only the first term varies with HW, minimizing the KL di-

vergence is equivalent to minimizing the following objective

function:

JPoi ¼
X

i;j

ðHWÞij �XijlnðHWÞij
h i

We also add to the objective function a manifold component,

such that bins adjacent to each other in the primary sequence are

more likely to have similar cluster membership values. The details

are given in Section S1.1.1.

4.1.2 Algorithm for solving X 5 HW

For the optimization problem based on the basic objective function

JPoi with non-negative constraints on H and W, locally optimal solu-

tions can be found by the Multiplicative Update Rules (MUR) (Lee

and Seung, 1999). These rules are obtained by gradient descent.

The partial derivative of the objective function JPoi with respect

to any element Hab in H is

@JPoi

@Hab
¼
X

ij

@ðHWÞij
@Hab

�
X

ij

Xij

ðHWÞij

@ðHWÞij
@Hab

¼
X

j

Wbj 1� Xaj

ðHWÞaj

 !

¼
X

j

1� X

HW

� �
aj

Wbj

¼ 1� X

HW

� �
WT

� �
ab

;

where the divisions between two matrices are calculated

element-wise, and 1 is a matrix of all ones with the same size of X.

Similarly, the partial derivative of JPoi with respect to any element

Wab in W is

@JPoi

@Wab
¼ HT 1� X

HW

� �� �
ab

Therefore, the gradients of JPoi are

rHJPoi ¼ 1� X

HW

� �
WT

rWJPoi ¼ HT 1� X

HW

� �

By setting the step sizes in the gradient decent method to be

gH ¼
H

1WT

gW ¼
W

HT1
;

we obtain the MUR update rules:

Hab  Hab

X

HW

� �
WT

� �
ab

ð1WTÞab

Wab  Wab

HT X

HW

� �� �
ab

ðHT1Þab

The update rules for the extended objective function with mani-

fold information, the way to decompose contact map matrix X into

HSHT and the way to handle sparse contact maps are discussed in

the Sections S1.1.2, S1.1.3 and S1.1.4, respectively.

4.1.3 Removing biases in contact maps

When studying Hi-C contact maps, it is desirable to correct the data

matrix such that signals coming from different genomic locations

are equally visible (Imakaev et al., 2012; Rao et al., 2014). Suppose

R is a matrix derived from X with all position-specific biases

removed, we require each row and each column of R to sum to the

same constant. We relate R and X by X¼BRB, where B is a diag-

onal matrix with its diagonal elements indicating the biases at each

bin. BNMF applies non-negative factorization on matrix R, and

thus X ¼ BHSHTB ¼ ðBHÞSðBHÞT .

To determine B and R from X, we first initialize B to be the iden-

tity matrix and iteratively normalize W ¼ SHT and H:

b Diag

n
Xr

i¼1

ðSHTBÞi

Xr

i¼1

Xn

j¼1

ðSHTBÞij

0
BBBB@

1
CCCCA

H  b�1BH

B b

h Diag
1

n

Xn

i¼1

Hi

 !

H  Hh�1

S hSh;

where Diag(v) is the diagonal matrix with the diagonal entries taken

from vector v. This process will produce suitable B and S that make

each column of SHT to sum to a constant and each column of H to

have an average of one, leading to HSHT having equal column sums

and equal row sums. Supplementary Figure S6a shows that our

method produces bias vectors highly similar to the ones produced by

the ICE method (Imakaev et al., 2012) based on a Hi-C contact map

obtained from the human GM06990 cell line (SRR027956). The

main difference between the two methods is that our method opti-

mizes a function for X � BHSHTB while the ICE method optimizes

X � BTB, which has much more free parameters. Supplementary

Figure S6b shows that after bias removal, the correlation between

contact maps obtained from the same cell line increased more than

the correlation between contact maps from different cell lines.

4.1.4 The final BNMF algorithm

Our BNMF algorithm combines the techniques discussed in the pre-

vious sections. For a non-negative symmetric matrix X 2 R
n�n and a

given number of clusters r, our algorithm finds diagonal matrix
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B 2 R
n�n, cluster membership matrix H 2 R

n�r and cluster size ma-

trix S 2 R
r�r to approximate X by BHSHTB by solving the following

optimization problem:

MinimizeXn

i¼1

Xn

j¼1

IijððBHSHTBÞij �XijlnðBHSHTBÞijÞ þ k
Xr

k¼1

ðHTLHÞkk

subject to

Bij � 0;Hij � 0; Sij � 0 8i; j;
Xn

i¼1

Hij ¼ c1 8j;
Xr

i¼1

ðSHTÞij ¼ c2 8j;

where k is a parameter, and L ¼ D� E is a user-defined nearest-

neighbor matrix with a default to take value 1 for entries corres-

ponding to bins adjacent in the primary sequence and 0 for all other

entries. Note that since

Xn

i¼1

ðHSHTÞij ¼
Xn

i¼1

Xr

k¼1

HikðSHTÞkj ¼
Xn

i¼1

Hik

Xr

k¼1

ðSHTÞkj ¼ c1c2

for all j, the balanced contact map R ¼ HSHT should have constant

column sums.

Our algorithm initializes the matrices by the Non-negative

Double Singular Value Decomposition (NNDSVD) method

(Boutsidis and Gallopoulos, 2008). It then iteratively updates B, H

and S using the following rules:

G BH

G G�
I � X

GSGT þ �

� �
GSþ 2kEH

IGSþ 2kDH þ �

B Diag

n
Xr

i¼1

ðSGTÞi

Xr

i¼1

Xn

j¼1

ðSGTÞij

0
BBBB@

1
CCCCA

H  B�1G

h Diagð1
n

Xn

i¼1

HiÞ

H  Hh�1

S hSh

S S�
BHTðI � X

BHSHTBþ �ÞHB

BHTIHBþ � ;

where � represents element-wise multiplication and a small constant

� ¼ 1� 10�30 is added to avoid division-by-zero errors. The param-

eter k was always set to 1 in the current study. The algorithm ter-

minates when the decrease of objective score is less than 1� 10�6 of

the score in the previous iteration, or a maximum number of iter-

ations is reached. In our analyses of the human and yeast datasets,

we observed that the objective score usually became stable after

1500 iterations. We therefore set the maximum number of iterations

to 3000, which guaranteed the convergence of the algorithm in most

cases.

BNMF contains a procedure for automatically determining the

number of clusters. The details are given in Section 9.1.5.

4.2 Statistical testing of co-localization
Using the BNMF clusters, we tested whether some genomic features

define bins that are co-localized. We considered two scenarios. In

the first, ‘binary’ scenario, genomic bins containing the feature or

have an average feature value exceeding a certain threshold will be

given a label of 1 (the positive bins), and all other regions will be

given a label of 0 (the negative bins). In other words, the feature pro-

vides a binary classification of the genomic bins. We used this setting

to test the co-localization of early replication sites, tRNA genes,

VRSM genes, genes highly expressed in specific cell lines, and super

enhancers (the data sources will be discussed in Section 4.3). In the

second, ‘continuous’ scenario, each bin is labeled by the average fea-

ture value across all genomic locations in the bin. We applied this

setting to the correlation between cluster affinity and either DNase I

hypersensitivity or replication time. For each scenario, we con-

sidered two different ways to perform the statistical tests.

For the binary scenario, we checked whether the positive bins

were spatially co-localized by using the cluster affinity values. The

first testing method was based on the area under the receiver oper-

ator characteristics (ROC), which was also used previously

(Cournac et al., 2012; Duan et al., 2010). Specifically, for each clus-

ter, we sorted all bins in descending order of their cluster affinity

values. We then used this order to make an ROC curve according to

the bin labels assigned by the feature. The statistical significance of

the AUC was evaluated by the Mann-Whitney U test. The resulting

P-values from all the clusters were then collected and the most sig-

nificant one was reported after Bonferroni correction for multiple

hypothesis testing.

The second method was inspired by the conserved consecutive

distances (CCD) method (Paulsen et al., 2013). The basic idea is to

compare a test statistic of the positive bins with a background distri-

bution of the test statistic. In our case, we used the average affinity

value to a cluster as the test statistic. The CCD method draws a large

number of random bins and computes the average affinity to the

cluster to form a corresponding background distribution of average

affinity values. In each sample, the bins are required to preserve the

same distance distribution between the positive bins in the primary

sequence. By having this requirement, the positive bins are con-

sidered significantly co-localized at a cluster only if their co-

localization is not simply due to their proximity in the primary se-

quence. The fraction of background bin samples with an average af-

finity higher than that of the positive bins is defined as the P-value.

Again, the most significant P-value after Bonferroni correction from

the different clusters was reported.

For the continuous scenario, we checked whether the cluster af-

finity values were quantitatively correlated with the feature values

of the bins. In the first testing method, we used Pearson correlation

coefficient (PCC), and in the second method, we used the Spearman

rank correlation coefficient (SPC). In either case, we used the

‘Numpy’ package in Python to calculate the P-values, and then

applied Bonferroni correction.

The key difference between our statistical tests and the ones pre-

viously used for analyzing DNA contact maps is that our tests in-

volve cluster affinity values instead of contact counts, which enables

us to test the relationship between a genomic feature and a specific

local cluster.

As a basic check of our statistical testing procedures, we exam-

ined the P-values computed from 100 randomly shuffled contact

maps. We used the yeast Hi-C contact map as a template and

shuffled each row and each column simultaneously to produce ran-

dom contact maps. In each random map, the bin labels were carried

over from the real case, but the contact counts were changed by the

shuffling. Supplementary Figure S8 shows that all four tests gave a

uniform distribution of the P-value as expected.
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4.3 Data collection and pre-processing
Hi-C and TCC data were collected from multiple sources

(Supplementary Table S1). Human Hi-C data were mapped to the

hg19 reference and pre-processed by the hiclib pipeline (Imakaev

et al., 2012). For the other Hi-C datasets, we downloaded the pro-

cessed data provided by the authors from public databases.

The synthetic yeast contact map was generated by using the vol-

ume exclusion model to produce 3000 simulated genomes and the

corresponding combined contact map, using the source codes pro-

vided by the author of a published study (Tjong et al., 2012). We

then added random position-specific biases to it to produce a noisy

contact map.

DNase I hypersensitive sites (DHS) and gene expression levels

based on RNA-seq in the four human cell lines GM12878, H1-

hESC, IMR90 and K562 were produced by the ENCODE consor-

tium (The Encode Project Consortium, 2012) and downloaded from

the UCSC Genome Browser (Kent et al., 2002). Cell-type specific

highly expressed genes in the four cell lines were defined as the genes

having an expression level of RPKM>4 in a cell line but RPKM<1

in the other three cell lines. Replication time of different regions in

the human genome was defined in a previous study (Ryba et al.,

2010) and we downloaded the data from http://www.replicationdo

main.org. Early replication sites in yeast were defined in a previous

work (Duan et al., 2010). The lists of super enhancers in the four

human cell lines were defined in a published study (Hnisz et al.,

2013).
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