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Abstract

Vernalization is a key process for premature bolting. Although many studies on vernalization

have been reported, the molecular mechanism of vernalization is still largely unknown in

radish. In this study, we sequenced the transcriptomes of radish seedlings at three different

time points during vernalization. More than 36 million clean reads were generated for

each sample and the portions mapped to the reference genome were all above 67.0%. Our

results show that the differentially expressed genes (DEGs) between room temperature

and the early stage of vernalization (4,845) are the most in all treatments pairs. A series of

vernalization related genes, including two FLOWERING LOCUS C (FLC) genes, were

screened according to the annotations. A total of 775 genes were also filtered as the vernali-

zation related candidates based on their expression profiles. Cold stress responsive genes

were also analyzed to further confirm the sequencing result. Several key genes in vernaliza-

tion or cold stress response were validated by quantitative RT-PCR (RT-qPCR). This study

identified a number of genes that may be involved in vernalization, which are useful for other

functional genomics research in radish.

Introduction

Radish (Raphanus sativus L.) is an economically important root vegetable crop grown world-

wide, particularly in China, Japan, Korea, and Southeast Asia [1]. For the nutrient-rich tuber-

ous root, many breeding efforts on radish have been devoted to developing varieties with

different size [2–4], color [5–9], cultivation season [5, 10, 11] and other characteristics [12–

14]. Although all-season radish is available in many areas now, there are still a lot of practical

problems in production, among which premature bolting is one of the most prominent. Before

bolting, the plant needs a period of low temperature to accomplish vernalization. A better

understanding of the molecular mechanism of vernalization will be helpful to solve these prac-

tical problems such as premature bolting.

In the past several decades, many efforts were made to illustrate the molecular mechanisms

of vernalization in various plants, among which Arabidopsis thaliana has been studied
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extensively. In Arabidopsis thaliana, the vernalization requirement is mainly due to the expres-

sion level of the FLC gene [15]. Low temperature can reduce the level of the DNA methylation

and affect the FLC expression [16]. FLC is a MADS-box transcription factor and functions as a

flowering suppressor during vegetative growth, by directly binding to the floral integrators

downstream, such as FLOWERING LOCUST (FT), FLOWERINGLOCUSD (FD) and SUP-
PRESSOROF OVEREXPRESSIONOF CONSTANS 1 (SOC1) [17–19]. Additionally, in the

upstream of FLC, the vernalization pathway includes other genes, such as VERNALIZATION1
(VRN1),VERNALIZATION2 (VRN2),VERNALIZATION INSENSITIVE 3 (VIN3) and VIN3-
LIKE1 (VIL1)/VERNALIZATION5 (VRN5) [20]. Study on a vin3mutant showed that the

expression level of FLC was not repressed even when the plant underwent a long period of low

temperature [21]. In the plants with the vrn1 and vrn2mutants, though cold stress can reduce

the FLC expression, the repression is reversed when the temperature rises again [22, 23]. These

results indicate that VIN3 participates in the suppression of FLC at the beginning of vernaliza-

tion, while VRN1 and VRN2 function to maintain the low level of FLC expression. In addition

to Arabidopsis, other crops with different gene regulatory circuitries of vernalization have also

been investigated in recent years [24–28]. For radish, several genes related to vernalization

have been found [29–31]. However, the molecular mechanism of vernalization is still largely

unknown.

The emergence of the next generation sequencing (NGS) technology has improved the

throughput and shortened the cycle time of sequencing, which facilitates molecular studies at

the transcriptome and genome levels. The application of the NGS technology to transcriptome

analysis, namely RNA-Seq, offers an efficient and inexpensive way for transcriptome studies.

Transcriptome sequencing on radish has led to the discovery of many critical genes related to

certain characteristics, and the development of numerous molecular markers [32–34]. How-

ever, the majority of the transcriptome sequencing analyses were analyzed by de novo assembly

because the reference genome was unavailable when these studies were constructed. The

recently released genome sequence [35, 36] provides us a new strategy for radish transcriptome

sequencing with better coverage and accuracy.

In this study, we analyzed the radish transcriptome during vernalization with RNA-Seq,

using the radish genome as a reference [36]. The vernalization-related genes and the gene

expression patterns were studied by three treatments with different cold exposure schemes.

Our study provides an important opportunity to advance our understanding of the molecular

mechanism of vernalization in radish and other plants.

Results

Illumina sequencing and mapping against radish reference genomes

For each of the three treatments, three replicates were prepared and each replicate included

ten individuals. The samples were labeled as RT1, RT2, and RT3 for the room temperature

treatment (RT), VE1, VE2, and VE3 for the early stage of vernalization (VE), and VL1, VL2,

and VL3 for the late stage of vernalization (VL), respectively. A total of nine cDNA libraries

were constructed and sequenced by paired-end sequencing on an Illumina HiSeq 2500 plat-

form. More than 36 million raw reads were generated for each library, and the portions of

clean reads were all above 99.60% (Table 1). Two reported radish genomes, “RSA_r1.0” [35]

and “rsgv1” [36], were used for mapping analysis. For RSA_r1.0, the clean reads for VE1, VE2,

VE3, VL1, VL2, VL3, RT1, RT2 and RT3 were 66.93%, 67.28%, 67.02%, 66.69%, 65.34%,

66.70%, 67.42%, 67.88% and 68.01%, respectively. The portions of clean reads were higher

when rsgv1 was used as the reference genome, which ranged from 67.85% to 69.91% (Table 1).

Hence, the rsgv1 genome was used as the reference for subsequent analysis. For the reference
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genome, more than 67% of the clean reads in each library were uniquely mapped, while less

than 1.5% was mapped to multiple positions. A total of 558 new genes were identified after fil-

tering out the sequences that contain only one exon or encode a peptide less than 50 amino

acids (S1 Table).

Identification of differentially expressed genes during vernalization

The transcripts were classified into five categories according to the fragments per kilobase of

transcript per million fragments mapped (FPKM) [37] (Fig 1). The genes with FPKM between

10 and 100 belonged to the largest group, followed those with FPKM between 3 and 10.

According to the FPKM value, the correlations of the gene expression of the nine samples,

especially the three biological replicates, were assessed, and the correlation coefficients (R2)
[38] were all above 0.91 among the replicates (Fig 2). Genes expressed in different treatments

were screened. A total of 29,535, 29,416 and 29,540 genes were expressed in all three replicates

in VE, VL and RT, respectively (S2 Table). More than 92% (27,304) were expressed in all three

treatments, while only a small portion (40, 35 and 129 for VE, VL and RT, respectively) was

expressed specifically in one treatment.

DEGs was identified by the DEGseq package [39], and a total of 1,575 (706 up- and 869

down-regulated), 4,845 (2,675 up- and 2,170 down-regulated), and 3,239 (1,653 up- and 1,586

down-regulated) genes were differentially expressed in the treatment pairs, VE vs. VL, RT vs.

VE, and RT vs. VL, respectively. All DEGs were divided into seven groups according to the

expression profiles, among which the expression of 122 genes was significant different in all

three treatment pairs, and the genes only differentially expressed between RT and VE belonged

to the largest group (Fig 3).

Gene Ontology (GO) enrichment of DEGs during vernalization

GO enrichment of the DEGs was conducted using the GO database. A total of 1,419, 4,363 and

2,925 DEGs from the three corresponding treatment pairs were annotated, respectively. All

the GO terms were ranked based on the Kolmogorov-Smirnov (KS) value [40], and only the

top three GO terms of the three main groups (cellular component, molecular function and bio-

logical process) of each treatment pair were picked for comparison (S3 Table). In the biological

process category, “pyrimidine ribonucleotide biosynthetic process” was shared between RT vs.

Table 1. Summary of Illumina transcriptome sequencing from radish seedlings.

Type Raw reads Clean reads Mapped Readsa

Total number Total number Percent of raw reads Total number Percent of clean reads

VE1 51,257,924 51,140,846 99.77% 35,309,896 69.04%

VE2 45,305,236 45,187,684 99.74% 30,661,120 67.85%

VE3 41,966,002 41,846,074 99.71% 28,729,949 68.66%

VL1 41,286,054 41,179,192 99.74% 28,418,114 69.01%

VL2 37,777,842 37,643,682 99.64% 25,769,729 68.46%

VL3 36,974,214 36,858,198 99.69% 25,330,052 68.72%

RT1 40,208,132 40,099,820 99.73% 27,841,148 69.43%

RT2 47,534,910 47,408,220 99.73% 32,604,257 68.77%

RT3 45,867,076 45,741,058 99.73% 31,978,882 69.91%

athe mapped reads of the reference genome rsgvl.

FPKM: the fragments per kilobase of transcript per million fragments mapped; RT: room temperature treatment; VE: the early stage of vernalization; VL: the

late stage of vernalization.

https://doi.org/10.1371/journal.pone.0177594.t001
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Fig 1. Global analysis of transcriptome datasets of the nine samples. The y-axis indicates the percentage of expressed transcripts

after filtering.

https://doi.org/10.1371/journal.pone.0177594.g001

Fig 2. The correlation coefficients (R2) among the samples.

https://doi.org/10.1371/journal.pone.0177594.g002
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VE and VE vs. VL, while “single-organism process” and “single-organism cellular process”

were shared between RT vs. VL and VE vs. VL. “Protein binding” and “ATP binding” from the

molecular function category were found in all treatment pairs. The term “sequence-specific

DNA binding transcription factor activity” was shared between RT vs. VL and VE vs. VL. No

term in the cellular component category was shared.

Metabolic pathway analysis of DEGs

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs, based on

the KEGG database, was performed to identify significantly altered pathways involved in ver-

nalization. In total, 377, 1,309 and 773 DEGs from the VE vs. VL, RT vs.VE, and RT vs. VL

treatment pairs were annotated, respectively. Only 3 pathways were significantly enriched with

Q value� 0.01. For VE vs. VL, “ribosome biogenesis in eukaryotes” and “purine metabolism”

were enriched. “Ribosome” and “ribosome biogenesis in eukaryotes” were enriched in RT vs.

VE. No pathway was significantly enriched in RT vs. VL. In addition, pathways with the most

Fig 3. Venn diagram of numbers of DEGs between different treatments.

https://doi.org/10.1371/journal.pone.0177594.g003
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DEGs in both RT vs. VE and RT vs. VL were “Ribosome”, followed by “Biosynthesis of amino

acids” and “Carbon metabolism”. The corresponding pathways in VE vs. VL were “Ribosome

biogenesis in eukaryotes”, “Protein processing in endoplasmic reticulum”, “Purine metabo-

lism” and “Ribosome” (S1–S3 Figs).

Screen vernalization related candidates according to the expression

profile

Vernalization is a mechanism for plants to avoid flowering in an improper season. Plants have

to undergo a period of cold, which is long enough to ensure the winter has passed. Hence,

genes with expression changes that only occur after a long period of cold are more likely to

function in the regulation of vernalization. In this study, these genes belong to two groups of

the DEGs, which show expression difference in VE vs. VL and not in RT vs. VE (Fig 3). A total

of 775 (459 up- and 316 down-regulated) vernalization related candidate genes were screened

(Fig 4). The screened genes accounted for a small portion (11.57%) of the DEGs and the up-

regulated candidates were more than the down-regulated. Except for infinite and infinitesimal

log2Ratio values, the maximum absolute values of log2Ratio for up- and down-regulated genes

were 8.95 and 8.91 in all DEGs, while the corresponding values were 7.55 and 5.62 in the

screened candidates.

Validation of DEGs by quantitative RT-PCR

To verify the DEGs, five and four genes related to vernalization [15] and cold stress response

[41] were selected for quantitative RT-PCR, respectively. The result showed that all genes

exhibited the same expression tendency as in the RNA-Seq result, indicating that our RNA-Seq

results are reliable (Fig 5).

Discussion

The molecular mechanism of vernalization is still largely unknown in radish. One high

throughput sequencing analysis aiming at radish vernalization has been reported, which was

de novo assembled and mainly focused on the FLC genes [31]. In this study, we analyzed the

radish transcriptome before and after vernalization with a reference genome and identified a

series of vernalization-related genes. Our experiment includes three treatments in which, the

plants were exposed to low temperature for 0, 3 and 20 days, respectively. A total of 39,118

transcripts were detected. Among the three treatments, the experiment for the pair RT vs.VE

discovered more DEGs than the other two experiments, with the least number of DEGs in the

experiment for VE vs. VL. The large amount of DEGs in RT vs.VE may be partly because of

the cold stress responsive genes which had expression changes immediately after exposure to

low temperature.

Vernalization is one of the four major flowering regulation pathways in plants. Before flow-

ering, a period of low temperature is needed for winter plant to accomplish vernalization, dur-

ing which a series of related genes are regulated. To date, Arabidopsis is the model plant used

for the investigation of the vernalization mechanism. According to the regulatory network of

Arabidopsis [15], several key genes, including FLC, VRN1,VRN2,VIN3,VIL1/VRN5, FT, FD
and SOC1, were analyzed in our result. Three FLC genes were reported in a previous study

[31], but only two were annotated in the reference genome. Two FLC genes (RSG13912 and

RSG31600) were detected in our study, and both were down-regulated (S4 Table). RSG13912

was down-regulated in the whole process and RSG31600 was down-regulated only in RT vs.

VL. For the upstream of FLC, 2, 2, 10 and 6 genes were found in the genome annotated as

VIN3,VRN1,VRN2 and VIL1/VRN5, respectively, while the numbers of VRN2 (5) and
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VIL1/VRN5 (5) in the present study were less than the genome (S4 Table). In Arabidopsis,
VRN1,VRN2 and VIL1/VRN5 are constitutively expressed regardless of vernalization. Our

result showed that the expressions of most genes did not change noticeably during vernaliza-

tion, except 1 VIL1/VRN5. The VIN3 gene was reported to be up-regulated in the process of

vernalization in previous studies [21, 42], which was also identified in this study. The two

VIN3 genes did not have the same expression pattern; RSG35873 was up-regulated in the

whole process, and RSG11514 was up-regulated only in RT vs. VL. FT, FD and SOC1 are at

the downstream of FLC, which contains 1, 3 and 3 members in the radish transcriptome

Fig 4. Hierarchical clustering graph of genes with expression difference in VE vs. VL but not in RT vs. VE.

https://doi.org/10.1371/journal.pone.0177594.g004
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(S4 Table). Only the member of FT showed an increase of the expression. This gene involves

in the flowering process of the “circadian rhythm-plant” pathway (ko04712). The up-regula-

tion in the late stage of vernalization indicates its important role in promoting flowering

(Fig 6).

In addition to the key genes in vernalization, the members of previously reported protein

complexes that regulate the expression of FLC [15] were also studied in our result. The com-

plexes involved in the activation of FLC in Arabidopsis include the COMPASS complex [43],

the RAD6-BRE1 complex [44], the PAF1 complex [45], the FRI complex [46] and the SWR1

complex [46]. Among the FLC activators, the expression of most components of the complexes

did not change during vernalization. Only 1, 1, 2 and 2 genes in COMPASS, PAF1, FRI and

RAD6-BRE1 were down-regulated, respectively (S5 Table). Regarding the repressors of FLC,

there are mainly 2 complexes, PRC2 and PRC1 [47, 48]. Similar to the FLC activators, the

expression of most components of PRC2 and PRC1 did not change during vernalization

Fig 5. qRT-PCR verification of differentially expressed genes. Gene expression differences analyzed by qRT-PCR and RNA-seq are

both exhibited. For qRT-PCR, error bars indicate the standard deviation (STDEV) for the replicates in each experiment.

https://doi.org/10.1371/journal.pone.0177594.g005

Radish transcriptome in response to vernalization

PLOS ONE | https://doi.org/10.1371/journal.pone.0177594 May 12, 2017 8 / 15

https://doi.org/10.1371/journal.pone.0177594.g005
https://doi.org/10.1371/journal.pone.0177594


(S5 Table). Three and one genes in PRC2 and PRC1 were up-regulated, respectively. These

results indicate that the majority of the complex members are constitutively expressed.

Among the seven groups of the DEGs, two groups that showed expression difference in VE

vs. VL and not in RT vs. VE were selected as vernalization related candidates. The up-regulated

genes were more than the down-regulated genes, and the fold change of the up-regulated

genes was larger than the down-regulated genes, except the infinite and infinitesimal values.

Among the up-regulated genes with the most dramatic changes (log2Ratio� 4), the majority

encode proteins that are involved in plant growth and development, such as glycine-rich pro-

tein, beta-1, 3-glucanase, cytochrome P450, etc (S6 Table). The thioglucoside glucohydrolase

gene (TGG1) [49] was also identified, implying it may play an important role in vernalization

in addition to defenses against insects and disease. In the dramatically down-regulated genes,

one gene encodes indole-3-acetic acid (IAA) inducible 32 was filtered. Moreover, the “plant

hormone signal transduction” pathway (ko04705) also showed a down-regulation of AUX/

IAA (S4 Fig). Previous studies showed that decrease of IAA can promote the process of flower

bud differentiation [50, 51]. The down-regulated IAA32 gene in this study indicates that IAA

may also play an important role in the process of vernalization.

To further verify our sequencing result, the COR genes and CBF genes which constitute the

predominant cold signaling pathway in plant [41] were selected for expression analysis.

Among the 13 genes annotated as COR, 12 CORs were identified in this study (S7 Table).

Among the COR genes, 5 were differentially expressed in vernalization, and up-regulated

since the early stage of vernalization and did not change between VE and VL. All 8 CBF genes

were detected, among which, only 2 were up-regulated in RT vs. VE and down-regulated in

VE vs. VL. The increases in the expression of the CORs and CBFs after cold exposure are con-

sistent with the reports in other plants [52–55].

Fig 6. The pathway of circadian rhythm in radish. The genes in colored rectangular box are DEGs in RT vs. VE, and that in colored

rhombic box are DEGs in VE vs. VL. The up-regulated genes are in red and the down-regulated genes are in green.

https://doi.org/10.1371/journal.pone.0177594.g006
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Materials and methods

Plant material and RNA extraction

A green radish inbred line “2#” was used for this study. The seeds were obtained from the Insti-

tute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences. Three cold expo-

sure treatments were constructed with different exposure time (0, 3 and 20 days). These

treatments stand for room temperature, early stage of vernalization and late stage of vernaliza-

tion respectively. For room temperature treatment, the seeds germinated and grew in culture

dishes with wet filter paper at room temperature. The seeds for the early stage of vernalization

treatment also germinated and grew in culture dishes at room temperature and then the cul-

ture dishes were placed in the refrigerator at 4˚C for 3 days, while the germinating seeds for

the late stage of vernalization were transferred to 4˚C for 20 days. All seedlings were cultivated

in the dark and sampled at the same time when they were of the same size and stored at -80˚C

until RNA extraction.

Total RNA was isolated using Trizol reagent (Invitrogen, USA) following the standard pro-

tocol. The concentration of the total RNA was determined by NanoDrop (Thermo Scientific,

USA), and the RNA integrity value (RIN) was checked using RNA 6000 Pico LabChip of Agi-

lent 2100 Bioanalyzer (Agilent, USA).

cDNA library construction and sequencing

Enrichment of mRNA was conducted with oligo magnetic adsorption. The enriched mRNA

was randomly fragmented by the fragmentation buffer. Severed as a template, mRNA was used

for the first-strand cDNA synthesis with random hexamers. The second-strand cDNA was

synthesized using DNA polymerase I and purified using AMPure XP beads (Agencourt, Bev-

erly, MA, USA). Sequencing adaptors were linked to the purified cDNA, and the cDNA frag-

ments of a suitable length were then selected by AMPure XP beads. Finally, nine double-

strand Illumina libraries were obtained by PCR amplification. The libraries were sequenced by

the Illumina HiSeq 2500 system (Biomarker Technologies Co., Ltd, Beijing, China). All data-

sets from the Illumina sequencing platform can be found in the Short Read Archive (SRA)

database of the National Center for Biotechnology Information (NCBI) under accession num-

ber SRP093947.

Data processing

Raw data were processed to remove primers and adaptor sequences. Low quality reads were fil-

tered out and the reads with more than 80% portion Q� 30 were obtained as clean reads.

Clean reads were aligned with the TopHat2 software [56] using two reported radish genomes

[35, 36] as references. Reads aligned to the genome sequence were named as mapped reads,

and only mapped reads were selected for subsequent analysis. The number of the mapped

reads was used for the calculation of alignment efficiency and for the selection of the optimal

reference genome. The mapped reads were assembled by the Cufflinks software [57], and com-

pared with the reference genome to uncover new genes.

Analysis of differentially expressed genes

The gene expression level was calculated using the FPKM method [37]. Correlations of the bio-

logical replicates were evaluated by calculating the Pearson’s Correlation Coefficient [38]. Dif-

ferentially expressed genes between different treatments were identified by the DEGseq

package [39]. The significant differences in the expression levels were assessed using false dis-

covery rate (FDR) and log2Ratio with a threshold “FDR < 0.01 and the absolute value of
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log2Ratio� 1”. To annotate the biological functions of the DEGs, GO enrichment analysis

was performed using the GO database (http://geneontology.org/), and KEGG enrichment

analysis was performed using the KEGG database (http://www.genome.jp/kegg/).

Quantitative RT-PCR validation

To validate the sequencing result and the DEGs, qRT-PCR was conducted. The first strand

cDNA synthesis and qRT-PCR analysis were conducted using the TransScript One-Step

gDNA Removal and cDNA Synthesis SuperMix (AT311, TransGen Biotech, Beijing, China)

and the TransStart Tip Green qPCR SuperMix (AQ141, TransGen Biotech, Beijing, China),

respectively. The ACTIN gene was chosen as a constitutive expression control in the qRT-PCR

analysis. The gene-specific primers of the validated DEGs and ACTIN are listed in S8 Table.

PCR reactions were performed on an IQ5 Real-Time PCR System (BIO-RAD, Hercules, CA,

USA) with the following cycling parameters: 95˚C for 2 min, followed by 45 cycles at 95˚C for

15 s, and 60˚C for 70 s. All reactions were performed with three replicates. Gene expression

levels were calculated using the delta—delta Ct method [58].

Conclusions

We presented a comprehensive analysis of the gene expression profiles in radish during vernal-

ization, using the latest published genome sequence as the reference. A series of vernalization

related genes were identified according to the annotations and the expression patterns. Cold

stress responsive genes were also analyzed to further confirm the sequencing result. This study

offers important insights into the molecular mechanism of vernalization in radish.
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