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Carnelian uncovers hidden functional
patterns across diverse study populations
from whole metagenome sequencing reads
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Abstract

Microbial populations exhibit functional changes in response to different ambient environments. Although whole
metagenome sequencing promises enough raw data to study those changes, existing tools are limited in their ability
to directly compare microbial metabolic function across samples and studies. We introduce Carnelian, an end-to-end
pipeline for metabolic functional profiling uniquely suited to finding functional trends across diverse datasets.
Carnelian is able to find shared metabolic pathways, concordant functional dysbioses, and distinguish Enzyme
Commission (EC) terms missed by existing methodologies. We demonstrate Carnelian’s effectiveness on type 2
diabetes, Crohn’s disease, Parkinson’s disease, and industrialized and non-industrialized gut microbiome cohorts.
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Background
Recent advances in next-generation sequencing (NGS)
technologies and large-scale national and international
efforts [1, 2] have generated unprecedented amounts of
microbial genomic data; the NIH’s National Center for
Biotechnology Information (NCBI), the European Bioin-
formatics Institute (EBI), and the Joint Genome Institute
(JGI) currently host an order of magnitude more shotgun
metagenomic data than they did 10 years ago [3]. Many
methods have been developed for the initial analyses of
this data—assembly, taxonomic binning, and functional
profiling of metagenomic reads [3–5] to enable quanti-
tative comparison of microbial communities. Here, we
turn our attention to the discovery of trends in microbial
metabolic function across diverse populations (different
nations or geographical boundaries) with respect to health
and disease.
Hundreds of recent studies have implicated the micro-

biome—which plays a crucial role in the human immune
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system and metabolism—in complex human diseases.
Examples of such diseases include Crohn’s disease [6],
obesity [7], type 2 diabetes (T2D) [8, 9], colorectal can-
cer [10], Parkinson’s disease (PD) [11], and even autism
spectrum disorder (ASD)—which has been found to have
an innate immunity component [12, 13]. Many efforts
have sought to uncover shared taxonomic dysbiosis (i.e.,
microbial imbalance) between study populations for a
given disease; however, these attempts have generally not
found shared taxonomic dysbiosis, probably because the
background healthy microbiomes differ significantly in
taxonomic composition, to begin with [14–17]. Because
different species may fill the same ecological niche, the
traditional focus on taxonomy can lose sight of the func-
tional relatedness of themicrobiomes of two individuals—
i.e., commonalities and differences in the functional capa-
bilities of microbial populations [18]. For example, while
most strains of lactobacilli exhibit galactosidase activity,
that particular functionality can also be partially sub-
stituted for by many taxonomically distinct strains of
bifidobacteria and bacteriodes [19]. In the large meta-
analyses cited above [14–17], there was some attempt to
perform functional profiling (in addition to taxonomic
profiling), but due to limitations in the study design and
methods available, they were unable to find concordant
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pathways, which one would expect from the same disease.
Thus, better functional profiling is important to uncov-
ering trends in functional relatedness when comparing
study cohorts; this remains an unsolved challenge due
to inconsistencies and incompleteness of annotations of
microbial genes across reference databases and the lack
of comparability of existing relative abundance statistics
across samples and studies [3, 20].
To uncover functional trends in microbiomes, an essen-

tial first building block is functional profiling of metage-
nomic reads, the task of assigning reads to known bio-
logical function (catalytic action, functional domain cat-
egories, genes, etc.) and estimating abundances of those
functional terms. Traditional whole metagenome func-
tional annotation approaches assemble reads into large
contigs and annotate them using sequence homology,
often using existing alignment tools such as BLAST [21],
profile Hidden Markov Models (HMMs), or position-
specific weight matrices (PWMs). Such methods include
RAST [22], Megan4 [23], MEDUSA [24], Tentacle [25],
MOCat2 [26], IMG4 [27], and gene catalogue-based
methods [2, 28]. Since assembly is a slow, resource-
heavy, and lossy process, annotating reads directly via
sequence homology or read mapping is used by another
class of tools, including MG-RAST [29], HUMAnN
[30], ShotMap [31], Fun4Me [32], mi-faser [33], and
HUMAnN2 [34]. However, alignment-based read map-
ping remains time consuming when comparing hundreds
of samples from different disease conditions [35, 36].
HUMAnN2 and mi-faser significantly speed up the align-
ment step by using a fast protein aligner, DIAMOND
[37], and thus are able to accurately and quickly cap-
ture function from sequences corresponding to known
proteins. However, because they are based on alignment,
they are challenged in capturing shared features of func-
tionally similar proteins that are not-so-sequence-similar,
multi-domain proteins, and remote homologs.
Naturally, predicting function without having experi-

mentally characterized a protein is difficult and runs the
risk of false positives. For well-studied populations, there
is little need to do so.Many traditional methods for resolv-
ing novel protein function depend implicitly on structure,
but we currently do not have much structural informa-
tion available for prokaryotic proteins; thus, we instead
approach the problem using sequence correlations. How-
ever, when analyzing data from less studied populations—
so often the case in metagenomic analysis, a large fraction
of reads sequenced do not directly correspond to pro-
teins of known species [18, 38]; thus, sequence-based
methods that depend on alignment do not perform as
well. We observe this problem when studying the non-
industrialized Baka population (“Results” section). Tech-
niques from the field of remote homology detection can
be used to explicitly guess at shared functions between an

unknown protein and an existing one, but they operate at
the level of entire protein sequences, rather than Whole
Metagenome Shotgun (WMS) sequencing reads.
Alternately, (gapped) k-mer-based taxonomic binning

methods have shown great utility compared to read-
alignment approaches in assigning reads to taxonomic
units [39–42]. Importantly, they can be trained to directly
classify WMS reads by function, even when the read itself
comes from a protein that is not in existing databases.
Using these techniques, we pursue the intuition that we
can, for example, predict that reads correspond to a par-
ticular enzymatic function (e.g., galactosidase activity)
even when the training set does not include the protein
from which those reads were taken, but only for distantly
related proteins (Additional file 1: Note S1). In this man-
ner, we have the advantage over prior work of being able
to predict function without needing explicit alignments.
Importantly, the design of these classification tools

allows us to easily construct negative examples during
training time to control the false positive rate while still
allowing labeling of reads for which alignment is insuf-
ficient. Our work thus newly repurposes gapped k-mer
binning techniques to directly perform efficient and accu-
rate functional binning, which performs much better than
existing functional profilers based on either alignment
or assembly for analyzing functional relatedness across
diverse microbiomes.
To this end, we introduce Carnelian, a composi-

tional tool for metabolic functional profiling of whole
metagenome sequencing reads, and an end-to-end
pipeline that is uniquely suited to finding common func-
tional trends across metagenomic datasets from different
study populations. The pipeline we present is better suited
for “comparative functional metagenomics” for three rea-
sons. First, Carnelian makes use of a gapped k-mer clas-
sifier [42, 43], which is better able to detect the ECs
(Enzyme Commission terms that classify proteins by their
enzymatic action) present in non-annotated species, while
simultaneously avoiding forced spurious labels through
training on a negative set. Second, we build a comprehen-
sive database focused on comparing metabolic function-
ality, as opposed to using typical protein databases that
contain non-prokaryotic and non-metabolic annotations.
Third, we present a principled statistical significance anal-
ysis for finding shared metabolic pathways using the
results of EC detection.
Here, we demonstrate Carnelian’s effectiveness through

analyses of several real published and unpublished
datasets. First, we compare geographically separated study
cohorts of type 2 diabetes (T2D) and Crohn’s disease
(CD). Several of today’s state-of-the-art functional anno-
tation tools, including mi-faser, HUMANn2 (translated
search), and Kraken2 (protein search), were unable to
find concordant functional dysbioses between healthy and
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diseased microbiomes, which one would expect given that
the same disease should have similar effects on different
study populations. Importantly, Carnelian is able to find
those expected concordant functional dysbioses. Next,
we find that Carnelian-identified EC terms can classify
patients vs. controls consistently, with higher accuracy
than existing tools across T2D, CD, and Parkinson’s dis-
ease (PD); this finding suggests that the additional ECs
identified by Carnelian are not spurious. Next, using
a combination of published and unpublished datasets,
we further demonstrate Carnelian’s effectiveness on geo-
graphically and dietarily diverse healthy microbiomes of
industrialized individuals from the USA (Boston) [44] and
non-industrialized communities from Cameroon (Baka
ethnicity), Ethiopia (Gimbichu region) [38], and Mada-
gascar (Betsimisaraka and Tsimihety ethnicities) [38].
Unlike existing methods, Carnelian was able to uncover
the expected pathway-level similarities in core metabolic
function between healthy individuals from each of those
communities. Lastly, on a Parkinson’s disease case-control
metagenomic dataset, we show that Carnelian uniquely
finds several hallmarks of Parkinson’s disease in the
patient microbiomes. As new data is collected from all
over the world (e.g., our Cameroon data), we expect Car-
nelian to be an essential tool in analyzing functional
similarities and differences across diverse populations.

Results
We present Carnelian, a novel gapped k-mer-based func-
tional profiler, and an end-to-end pipeline for comparative
functional metagenomic studies using WMS reads from
diverse study populations. Our pipeline enables the com-
parison of functional summaries of WMS data by design-
ing more consistently annotated reference databases of
microbial proteins, building a functional annotation tool
better suited for assigning functions to reads that are not
readily alignable to known proteins, and generating com-
parable abundance statistics across samples and studies
(Fig. 1).
WMS data comes from a mixture of organisms, and

can encode 100x more unique genes than those present
in just the human genome [28]. Only a fraction of these
genes have known functional annotations in existing
databases. Even of those genes with annotations, many
of the annotations are computationally predicted and
therefore less reliable. We are also primarily interested
in microbial functions that can influence host health,
such as production of metabolites, extracellular enzymes,
or immunostimulatory surface structures [45]. Thus, we
constructed our gold standard reference database with
curated prokaryotic proteins that have verified unique
and complete EC labels which provide a direct map-
ping to KEGG metabolic pathways for our later analy-
ses. Our curated database consists of 7884 prokaryotic

proteins with 2010 unique EC labels and is provided on
our website.
Another important characteristic of metagenomic data

is that the reads sequenced often come from non-
annotated species; without a known reference, taxonomic
read classifiers are limited in their annotation ability.
Luckily, related proteins that share a function also share
compositional (gapped k-mer) features in their amino acid
sequence, even across species. Leveraging this intuition,
the Carnelian pipeline uses probabilistic ORF detection
to enable application of a compositional gapped classifier
ensemble on the full amino acid sequence; this classifier
ensemble is better able to bin proteins present in non-
annotated species. More precisely, Carnelian first detects
all possible ORFs from the input reads using FragGe-
neScan [46], which probabilistically detects the coding
part(s) of the reads. Then, Carnelian encodes the ORFs
into a low-dimensional compact feature space using Opal-
Gallager hashes [42, 43]. Once so encoded, these ORFs
are annotated by Carnelian’s classifier ensemble, a set of
one-against-all support vector machines. The classifier
ensemble is trained with functionally annotated gold stan-
dard proteins represented in the same compact feature
space, and with negative samples based off of randomly
shuffling in human sequences generated via HMMER [47].
The training is performed in an online fashion (i.e., only
one input sequence is loaded in memory at a time), mak-
ing incremental training of Carnelian’s classifier ensemble
easy when new annotations become available.
Relative abundance statistics output from standard

functional profiling tools are not directly comparable
across samples and studies; to address this problem, Car-
nelian borrows from transcriptomic normalization prac-
tices. From input WMS reads, Carnelian constructs a
functional vector containing effective read counts per EC
label (i.e., read counts normalized against effective protein
length per EC label and a per million scaling factor that
takes into account the effect of the lengths of proteins with
other EC labels on the relative abundance of a particular
EC label) (“Methods” section). This normalization step is
similar to the “transcripts per million” (TPM) counts used
for quantifying transcript abundances from RNA-seq data
[48]. The sum of Carnelian’s effective read counts thus
remains constant across all samples, unlike the raw read
counts and reads per kilobase (RPK) measures used by
existing functional annotation tools. This normalization
makes sample profiles directly comparable to each other
across experiments performed with different sequencing
depths (see Additional file 1: Note S2 for a demonstra-
tion of the lack of comparability when no normaliza-
tion or RPK normalization is done.) These EC profiles
are used to quantify KEGG metabolic pathways (“Meth-
ods” section) for comparative analysis of different study
populations.
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Fig. 1 Comparative functional metagenomics with Carnelian. Preprocessing.We build a gold standard reference database by combining reviewed
prokaryotic proteins with complete Enzyme Commission (EC) labels and evidence of existence from UniProtKB/Swiss-Prot with curated prokaryotic
catalytic residues with complete EC labels from the Catalytic Site Atlas. Carnelian first represents gold standard proteins in a compact feature space
using low-density, even-coverage locality-sensitive Opal-Gallager hashing. Then, it trains a set of one-against-all (OAA) classifiers (implemented
using the Vowpal Wabbit framework) using the compact feature representation of those proteins as well as negative samples based off of random
shuffled sequences generated by HMMER. Functional profiling. To functionally profile reads from a whole metagenomic sequencing (WMS)
experiment, Carnelian first performs probabilistic ORF prediction using FragGeneScan. Next, the ORFs are represented in a compact feature space
using the same Opal-Gallager hashing technique. The trained OAA classifier ensemble is then used to classify the ORFs into appropriate EC bins.
Abundance estimates of ECs are computed from the raw ORF counts in the EC bins by normalizing against effective protein length per EC bin and a
per million scaling factor. Pathway profiles (Orange) are computed by grouping the ECs into metabolic pathways and summing the abundance
estimates. Comparative metagenomics.We start from pathway profiles (Orange) of different populations and conditions. (Blue) Functional
relatedness of healthy microbiomes across different populations is assessed by co-abundance pathway analysis. Pathway co-abundance estimates
are quantified by Kendall’s rank correlation. Co-abundance clusters are determined by Ward-Linkage hierarchical clustering, and the PERMANOVA
test is used to determine if the centroids of those clusters differ between populations A and B. (Green) Functional trends analysis across different
case-control cohorts of a disease is performed using differential abundance analysis by Wilcoxon rank-sum test and shared significance analysis by
Fisher’s combined probability test

Carnelian is robust to sequencing technology biases
(Additional file 1: Note S3) and is equally applicable
to non-human metagenomic datasets where it can find
meaningful biological patterns (Additional file 1: Note
S4). Carnelian achieves higher sensitivity and F1-score
than current state-of-the-art alignment-based tools: mi-
faser [33] and HUMAnN2 [34] (translated search) as well
as a fast alignment-free k-mer-based tool Kraken2 [39]
(protein search)—all run on the same in-house bench-
marks (Additional file 1: Note S5). On a synthetic human
gut metagenomic dataset of 5 million reads (150 bp,
single-ended), Carnelian requires ∼ 16 min using 16
CPU cores—this is roughly 2× faster than mi-faser
(∼ 29 min) and similar to HUMAnN2’s translated search
(∼ 18 min) on the same number of CPUs on the same
machine (a 40-core machine with 320-GB RAM, each
core was Intel Xeon CPU E5-2695 v2 @ 2.40 GHz).
Although Kraken2’s protein search is the fastest among all
four methods, its performance is significantly worse than

the other methods in terms of sensitivity and F1-score
(Additional file 1: Note S5). Unless otherwise stated, all
four methods were run with Carnelian’s curated reference
database for all the experiments to ensure an unbiased
comparison.

Carnelian reveals novel and shared functional dysbiosis
across disease studies
Comparing healthy and diseased microbiomes is key to
understanding their effect on host biology, enabling clin-
ical diagnoses and informed therapeutics [49, 50]. While
taxonomic dysbiosis (i.e., alteration of species-level com-
position of the microbiome) in patient population is often
geography-specific and not generalizable [9, 16, 51], we
instead looked at functional dysbiosis. As expected, func-
tional dysbiosis is indeed more generalizable in the type 2
diabetes and Crohn’s disease datasets we studied, but only
when we used Carnelian as opposed to other methods for
the analysis.
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We quantified the metabolic functional capacity of the
gut microbiomes of patients and controls in two large-
scale T2D datasets [8, 9] and two CD datasets [1, 52] at
enzyme and pathway levels. Our results revealed concor-
dant functional dysbioses between geographically sepa-
rated disease cohorts—13 common metabolic pathways
between Chinese and European T2D patient microbiomes
and 8 common pathways between US and Swedish CD
patient microbiomes (Table 1).
For the T2D cohorts, we generated the EC profiles

of preprocessed fecal samples from Chinese and Euro-
pean individuals using Carnelian and determined the
differentially abundant ECs between patients and controls

using a cutoff of Wilcoxon rank-sum test p value <0.05
after Benjamini-Hochberg (BH) correction and absolute
log fold change >0.33. In both Chinese and European
cohorts, Carnelian reported reduced levels of several gly-
cosyltransferases (e.g. 2.4.1.1, 2.4.1.7, 2.4.1.15) and abun-
dance of several carbon-oxygen lyases (e.g. 4.2.1.120,
4.2.1.20, 4.2.1.42) in the T2D gut (Additional file 2: Tables
S1 and S2). At the pathway level, it found 30 significantly
altered metabolic pathways in the Chinese T2D patients
(BH-corrected Wilcoxon rank-sum test p value <0.05
and absolute log fold change >0.11) and 36 pathways
altered between European T2D patients and individuals
with normal glucose tolerance (NGT) (Additional file 2:

Table 1 Shared functional dysbiosis between two type 2 diabetes (T2D) cohorts and two Crohn’s disease (CD) cohorts

ID Pathway Carnelian mi-faser HUMAnN2 Kraken2 Fisher’s p
(Carnelian)

(a) Common pathways between Chinese and European T2D cohorts

00030 Pentose phosphate pathway SB NB NB NB 6.59E−03

00040 Pentose and gluconerate interconversions SB NB NB NB 9.88E−03

00051 Fructose and mannose metabolism SB SE NB NB 4.94E−04

00052 Galactose metabolism SB NB NB NB 4.71E−03

00061 Fatty acid biosynthesis SB SC NB SC 6.56E−03

00190 Oxidative phosphorylation SB SE SC SE 4.97E−04

00250 Alanine, aspartate, and glutamate metabolism SB NB NB NB 1.48E−04

00290 Valine, leucine, and isoleucine biosynthesis SB SE NB NB 1.68E−05

00590 Arachidonic acid metabolism SB NB NB NB 2.11E−03

00600 Sphingolipid metabolism SB SE NB SC 8.86E−05

00730 Thiamine metabolism SB NB NB NB 2.62E−03

00983 Drug metabolism—other enzymes SB NB NB NB 2.62E−03

00195 Photosynthesis SB SB SC SB 2.74E−03

00254 Aflatoxin biosynthesis SC SC NB SB 1.03E−02

(b) Common pathways between US and Swedish CD cohorts

00500 Starch and sucrose metabolism SB NB SS SS 4.91E−06

00620 Pyruvate metabolism SB NB NB SS 4.05E−04

00640 Propanoate metabolism SB NB NB NB 9.04E−03

00290 Valine, leucine, and isoleucine biosynthesis SB SS NB SS 5.03E−03

00450 Selenocompound metabolism SB NB NB NB 8.95E−03

00460 Cyanoamino acid metabolism SB NB SS SS 8.33E−05

00513 Various types of N-glycan biosynthesis SB NB NB NB 5.79E−03

00710 Carbon fixation in photosynthetic organisms SB NB NB SS 1.09E−05

00410 Beta-alanine metabolism NB SS NB SB 5.79E−01

(a) Common pathways between Chinese and European T2D cohorts which have significantly altered read abundances. We found 13 shared pathways of which 12 are highly
relevant to T2D; these pathways are significant in individual cohorts (BH-corrected Wilcoxon rank-sum test p value < 0.05) as well as in Fisher’s combined test at p value
< 0.05 cutoff. On the other hand, mi-faser finds only the photosynthesis pathway and Kraken2 finds the photosynthesis and aflatoxin biosynthesis pathways to be commonly
disrupted between both the cohorts; with HUMAnN2-profiles, no overlap at the pathway level was found (Additional file 2: Tables S11–S16). (b) Common pathways between
the US and Swedish CD cohorts which have significantly altered read abundances. We identify shared dysbiosis in 8 pathways between the two study cohorts; these
pathways are significant in individual cohorts as well as in Fisher’s combined test at p value < 0.05 cutoff. On the other hand, only Kraken2 finds the beta-alanine metabolism
pathway to be commonly disrupted between both the cohorts; with mi-faser- and HUMAnN2-profiles, no overlap at the pathway level was found (Additional file 3: Tables
S23, S24, S27, S28, S31, and S32). SB significant in both the studies, NB detected but not significant in both the studies, SC significant in the Chinese cohort only, SE significant
in European cohort only, SU significant in the US cohort only, SS significant in the Swedish cohort only
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Tables S3 and S4). Notably, 13 of these pathways are sig-
nificantly shared between both patient cohorts (Fisher’s
combined p value <0.05) and highly relevant to T2D
((a) in Table 1). For example, we observed significant
depletion of reads in several carbohydrate metabolism
pathways, such as the pentose phosphate pathway, pen-
tose and glucuronate interconversions, fructose and man-
nose metabolism, galactose metabolism in patient guts
compared to controls in both cohorts (Additional file 2:
Tables S3 and S4). Across these two cohorts, we also
observed a higher rate of oxidative phosphorylation in
the patient gut—a finding that is in agreement with the
original studies [8, 9]. Additionally, in each of the patient
cohorts, we found significantly lower read abundances
in several vitamin-B metabolism pathways (e.g. thiamine
metabolism) compared to the healthy gut. Notably, EC-
and pathway-level results from mi-faser, HUMAnN2, and
Kraken2 were unable to uncover shared pathways of rel-
evance between the two cohorts (Additional file 2: Tables
S5-S16).
Carnelian-generated EC profiles of the Crohn’s dis-

ease cohorts revealed a shift in the metabolic func-
tionality of the patient gut microbiome compared to
the control gut microbiome as indicated by lower read
abundances in several essential enzymes and pathways.
The most significantly variable ECs between patients
and controls (Wilcoxon rank-sum test p value <0.05
after BH correction and absolute log fold change >0.58)
in both the US and Swedish cohorts include sev-
eral hexosyltransferases (2.4.1.-), oxidoreductases acting
on aldehyde group (1.2.7.-), glycosidases (3.2.1.-), and
hydrolyases (4.2.1.-), which are key players in different
carbohydrate metabolism pathways (Additional file 3:
Tables S17 and S18). Many of these enzymes were not
found by other methods. We also observed a decrease
in the relative abundance of several enzymes, includ-
ing aminobutyraldehyde dehydrogenase (1.2.1.19), acety-
lornithinase (3.5.1.16), lysine decarboxylase (4.1.1.18),
and 5-carboxymethyl-2-hydroxymuconic acid isomerase
(5.3.3.10). These enzymes play crucial roles in the
metabolism of several essential amino acids including
arginine, proline, lysine, tyrosine, etc. Thus, this finding
might indicate a lower rate of microbial absorption of
such amino acids from diet. Several enzymes involved
in vitamin B metabolism such as pyridoxine phosphatase
(3.1.3.74), dihydroxy-acid dehydratase (4.2.1.9), phospho-
methylpyrimidine synthase (4.1.99.17), etc. were also
found to be depleted in the CD gut; of the methods we
compared against, only Carnelian was able to uncover
these findings (Additional file 3: Tables S17 and S18).
At the pathway-level, we found 25 significantly altered

metabolic pathways in the guts of CD patients from the
US (BH-corrected Wilcoxon rank-sum test p value <0.05
and absolute log fold change >0.11) and 35 pathways

altered between Swedish CD patients and healthy indi-
viduals (Additional file 3: Tables S19 and S20). Notably,
eight of these pathways are significantly shared between
both patient cohorts (Fisher’s combined p value <0.05)
and seven of them are highly relevant to Crohn’s dis-
ease ((b) in Table 1). For example, we observed signifi-
cant depletion of reads in three carbohydrate metabolism
pathways, namely, starch and sucrose metabolism, pyru-
vate metabolism, and propanoate metabolism in patient
guts compared to the controls in both the cohorts
(Additional file 3: Tables S19 and S20). In both datasets,
we also observed lower abundance of reads in valine,
leucine and isoleucine (essential amino acids) biosynthe-
sis and cyanoamino acid metabolism pathways in CD
patients. We further observed a lower abundance of
reads in the selenocompound metabolism and various N-
glycan biosynthesis pathways in the CD guts compared
to the normal individuals in both cohorts. Although non-
specific to CD, the reduced read abundance in carbon
fixation pathway might be indicative of the imbalance of
energy homeostasis in the patient gut. Importantly, mi-
faser and HUMAnN2 found no shared pathways of rele-
vance between the two cohorts and Kraken2 found shared
dysbiosis in only the beta-alanine metabolism pathway.
EC- and pathway-level results from mi-faser, HUMAnN2,
and Kraken2 can be found in Additional file 3:
Tables S21-S32.

Carnelian enables accurate patient vs control classification
using functional metagenomic markers
Patients and controls in case-control cohorts of type 2
diabetes (T2D), Crohn’s disease (CD), and Parkinson’s
disease (PD) can be classified with much higher accu-
racy using the differentially abundant enzyme markers
(EC terms) identified by Carnelian, implying that Car-
nelian’s additional labeling of unalignable reads is mean-
ingful. It also implies that the differentially abundant
ECs we detect serve as more useful features for the
random forest classifier in discriminating patients from
controls. To test the power of significantly variable EC
terms in discriminating patients from controls in the
disease datasets, we performed N-fold cross-validation
experiments (T2D: tenfold, CD: fivefold, and PD: five-
fold). In each trial, ECs exhibiting significant differences
in read abundance between patients and controls in
the training partition (Wilcoxon rank-sum test p value
<0.05) were selected as features input to a set of ran-
dom forest classifiers and accuracy was measured on the
test partition.
In the Chinese T2D cohort, with Carnelian-identified

differentially abundant ECs, we achieved an average area
under the curve (AUC) of 0.75 (95% CI 0.69–0.82),
whereas using the ECs identified by mi-faser, HUMAnN2,
and Kraken2, average AUCs of 0.69, 0.63, and 0.63
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were achieved, respectively (Fig. 2a). In discriminating
European T2D patients from NGT individuals, we
achieved an average AUC of 0.72 (95% CI 0.61–0.82) with
Carnelian-identified ECs which is significantly higher
than the other three methods (Fig. 2b).
In the CD cohort from the USA, we achieved an aver-

age AUC of 0.73 (95% CI 0.56–0.89) with Carnelian-

identified differentially abundant ECs, whereas using
the differentially abundant ECs identified by mi-faser,
HUMAnN2, and Kraken2, average AUCs of 0.61, 0.54,
and 0.55 were achieved, respectively (Fig. 2c). In dis-
criminating Swedish CD patients from the healthy con-
trols, we achieved an average AUC of 0.95 (95% CI
0.89–1.00) with Carnelian-identified variable ECs which is

Fig. 2 Classification of patients vs controls using Enzyme Commission (EC) markers (N-fold cross-validation experiments). a T2D vs controls in the
T2D-Qin dataset (Chinese cohort). b T2D vs normal glucose tolerance (NGT) individuals in the T2D-Karlsson dataset (European cohort). c CD patients
vs controls in the CD-HMP dataset (individuals from the US). d CD patients vs healthy individuals in the CD-Swedish dataset (Swedish twin studies).
e PD vs controls in the PD-Bedarf dataset. In each trial, one of the N subsets was selected as the test set and the rest N − 1 subsets were used as the
training set. Differentially abundant ECs were selected from the training set as features input to a set of random forest classifiers. Performance of
classification was measured on the test set. Carnelian-identified EC terms achieve a larger average area under the curve (AUC) in all the cases
compared to those identified by other methods
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significantly higher than the other threemethods (Fig. 2d).
In the PD cohort, Carnelian-identified markers achieved
an AUC of 0.85 (95% CI 0.72 to 0.98) in discriminating
between patients and healthy controls, whereas the differ-
entially abundant EC terms found by other methods did
not achieve more than 0.75 average AUC (Fig. 2e).
Note that while it is common practice in the metage-

nomic literature to select classification features from the
entire dataset, even when running cross-validation exper-
iments [8, 9], in all our cross-validation analyses, we
instead followed standard machine learning best prac-
tices and avoid information leakage in feature selec-
tion by choosing EC labels only from the training sets.
For completeness, we also performed the classification
experiments choosing EC labels from the entire dataset.
Using this experimental design, Carnelian-generated ECs
again achieved higher accuracy compared to the other
three methods in all the study cohorts (Additional file 4:
Figure S1).
To test for generalizability of Carnelian-identified ECs

in the CD and T2D cohorts, we combined the EC mark-
ers identified in the geographically separated cohorts and
redid the classification of patients vs controls. For CD,
using the unified ECs identified by Carnelian as features,
we could achieve ∼ 0.94 AUC on average, whereas the
combined ECs identified by other tools achieved average
AUCs between 0.79 and 0.88 (Additional file 4: Figure
S2). For T2D, with the unified ECs from Carnelian as
features, we were able to classify the functional profiles
of T2D patients and controls with an average AUC of
∼ 0.80, whereas using the combined ECs identified by
other methods in both cohorts as features, the average
AUCs remained between 0.73 and 0.76 (Additional file 4:
Figure S3). The lists of combined EC markers for T2D
and CD identified by Carnelian are provided in Additional
file 5: Tables S33 and S34.

Carnelian uncovers functional relatedness of diverse
industrialized and non-industrialized communities
In addition to finding trends in functional changes across
disease cohorts, Carnelian enables us to compare the
functional potential of healthy human gut microbiomes
from industrialized and non-industrialized communi-
ties. We analyzed the fecal microbiomes of 84 indi-
viduals from Boston with an urban lifestyle (industrial-
ized society; dataset from the Alm lab [44]), 35 hunter-
gatherer Baka individuals from Cameroon (unpublished
dataset from the Alm lab), 50 non-industrialized indi-
viduals from Gimbichu, Ethiopia [38], and 112 indi-
viduals of Betsimisaraka and Tsimihety ethnicities from
Madagascar [38]. The expectation is that healthy indi-
viduals across populations ought to share similar core
metabolic pathways [18, 53]. Carnelian’s analyses met
this expectation, finding pathway-level similarity in core

metabolic functionality of both the industrialized and
non-industrialized communities.
Using our curated EC database, Carnelian detects

more ECs compared to other methods (Additional file 5:
Table S35) and finds slightly higher diversity of iden-
tified ECs in the non-industrialized communities com-
pared to the industrialized community indicated by the
Shannon-Wiener diversity index (Additional file 4: Figure
S4(a)). At the pathway level, the diversity of identi-
fied functionality in both communities is comparable,
as hoped (Additional file 4: Figure S4(b)). At both lev-
els, Carnelian captures significantly more diversity than
the other three methods (Additional file 4: Figure S4).
Importantly, the fecal microbiomes of Baka individuals
from Cameroon could not be characterized well even
running the full HUMAnN2 pipeline using its default
databases. Despite incorporating taxonomic information,
out-of-the-box HUMAnN2 could map on average ∼ 10%
of the reads and detect less than 30 known species and
996 ECs per sample (Shannon diversity index for ECs 5.58)
(see Additional file 1: Note S6).
Principal component analysis of the EC profiles gener-

ated by Carnelian shows a marked separation by popu-
lation (Additional file 4: Figure S5(a)). Mean EC pro-
files of industrialized and non-industrializedmicrobiomes
show a moderate degree of correlation (Kendall’s τ =
0.75). Much of this separation washes away at the path-
way level (Additional file 4: Figure S5(b)); mean pathway
profiles of industrialized and non-industrialized micro-
biomes show a high degree of correlation (Kendall’s τ =
0.93). This finding suggests a high degree of pathway-
level functional similarity between industrialized and
non-industrialized healthy microbiomes—which was not
observed by earlier studies.
In order to identify the ECs that characterize the sep-

aration for industrialized and non-industrialized popu-
lation, we looked at the weights of the ECs in the first
nine principal components, which together explain 80%
of the variability among individuals (Additional file 5:
Table S36). The majority of ECs with high weights were
involved in the carbohydrate, amino acid, nucleotide, and
energy metabolism pathways. Using the highly weighted
ECs, we performed Ward-linkage hierarchical clustering
based on Pearson correlation coefficients of the EC pro-
files of the industrialized and non-industrialized individ-
uals; we observed a clear separation of the two groups
(Fig. 3a).
We also identified the significantly variable ECs

between the two groups using a cutoff of BH-corrected
Wilcoxon rank-sum test p value < 0.05 and absolute log
fold change > 1 (Additional file 5: Table S37). The differ-
entially abundant ECs identified by Carnelian recapitulate
the findings of earlier studies; those ECs match the micro-
bial enzymatic functions related to differences in diet
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Fig. 3 Functional diversity and relatedness between industrialized and non-industrialized communities. a Heatmap showing the z-scores of read
abundances of the ECs with high weights in the top principal components. Standard Ward-linkage hierarchical clustering of the EC profiles of
industrialized and non-industrialized microbiomes was performed using Pearson correlation. The two top-level clusters found by hierarchical
clustering perfectly capture the separation of non-industrialized and industrialized microbiomes. For display purposes, we show only individuals
with read abundances falling outside one standard deviation of the mean in at least nine of the highly variable ECs. See Additional file 4: Figure S6
for the corresponding heatmap and clustering on all individuals. b Heatmap showing co-abundance association across core metabolic pathways.
Co-abundance associations between pathways wee calculated as the pairwise Kendall rank correlations between the pathway abundance profiles
(obtained using Carnelian-generated EC profiles) of microbiomes from both communities considered together. Ward-linkage hierarchical clustering
was used to partition the pathways using Euclidean distance, generating either 2, 3, 4, or 5 clusters. Although hierarchical clustering can be used to
identify clusters of co-abundance pathways between the non-industrialized vs industrialized communities, the clusters were not significantly
different from each other with respect to the industrialized/non-industrialized label (PERMANOVA test p values > 0.05). Thus, in contrast to the
top-level EC label clustering from a, the partitions are not simply recapitulating the industrialized/non-industrialized labels
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and lifestyle [38, 54, 55]. For example, fecal microbiota
from the non-industrialized communities showed over-
representation of several enzymes (exclusively identified
by Carnelian) involved in the metabolism of fructose,
mannose, starch, and sucrose. Examples include
mannosyl-3-phosphoglycerate synthase (2.4.1.217),
sucrose phosphorylase (2.4.1.7), phosphoglycerate
mutase (5.4.2.11), and phosphate propanoyltransferase
(2.3.1.222). On the other hand, fecal microbiota of indus-
trialized individuals showed overrepresentation of simple
sugar metabolizing enzymes such as ornithine amino-
transferase (2.6.1.13), lysine 2,3-aminomutase (5.4.3.2),
glycogenase (3.2.1.1), NADP-glucose-6-phosphate dehy-
drogenase (1.1.1.49), and phosphohexokinase (2.7.1.11).
Urease enzyme (3.5.1.5), which potentially plays a role
in synthesizing essential and non-essential amino acids
by releasing ammonia as well as a number of amino
acid metabolizing enzymes—including ornithine car-
bamoyltransferase (2.1.3.3; metabolizes arginine), lysine
decarboxylase (4.1.1.18; metabolizes lysine), and lysine
racemase (5.1.1.5; metabolizes lysine)—showed higher
read abundance in non-industrialized communities
(not found by other methods). In addition, Carnelian
exclusively found read enrichment in phospholipase D
(3.1.4.4; involved in lipid metabolism) and phospho-
adenylate 3′-nucleotidase (3.1.3.7; involved in sulfur
metabolism), and depletion of phenylacetyl-CoA lig-
ase (6.2.1.30; involved in phenylalanine metabolism),
pyrrolysyl-tRNA synthetase (6.1.1.26; involved in
aminoacyl-tRNA synthesis), and potassium-importing
ATPase (3.6.3.12; involved inmicrobial potassium import)
in the non-industrialized communities compared to the
industrialized one.
We then explored the co-abundance associations

between the core metabolic pathways involved in carbo-
hydrate, protein, lipid, energy, and vitamin, and co-factor
metabolism. Although hierarchical clustering can be used
to identify clusters of co-abundance pathways between
the non-industrialized vs industrialized communities, the
clusters were not significantly different from each other
with respect to the industrialized/non-industrialized label
(PERMANOVA test p values > 0.05, pseudo-F values
close to 1, and small R2 values) (Fig. 3b). This result
confirms the existence of pathway-level similarity in the
core metabolic functionality (carbohydrate, amino acid,
lipid, energy, vitamin, and co-factor metabolism) between
the healthy gut microbiomes of non-industrialized and
industrialized population.

Carnelian uncovers novel functional dysbiosis in
Parkinson’s patient microbiomes
Not only does Carnelian find consistent functional pat-
terns in healthy and disease microbiomes across dif-
ferent geographies, but it also helps us uncover novel

biology when applied to metagenomic data from a dis-
ease with poorly understood links to the gut micro-
biome. For example, although two thirds of the patients
with Parkinson’s disease (a neurodegenerative disease of
complex etiology) suffer from gastrointestinal (GI) abnor-
malities [56], it is not well understood how the gut
microbiome is associated with the disease process. We
applied Carnelian on whole metagenome sequencing data
from the gut microbiomes of early-stage L-DOPA- naive
Parkinson’s disease (PD) patients and controls [57] to
investigate the differences between the functional capacity
of healthy and Parkinson’s gut.
Our results reveal a hitherto unobserved functional shift

in the gut microbiome of early-stage Parkinson’s disease
patients from the microbiome of healthy controls through
performing differential abundance analyses of ECs and
pathways. At the EC level, Carnelian exclusively identi-
fies significant variation in read abundance (Benjamini-
Hochberg (BH)-corrected Wilcoxon rank-sum test p
value < 0.05 and absolute log fold change > 0.58)
in ribonucleoside-diphosphate reductase (1.17.4.1; impli-
cated in glutathione metabolism), alpha-galactosidase
(3.2.1.22; implicated in lipid metabolism), kynureninase
(3.7.1.3; implicated in tryptophan metabolism), etc. (ECs
identified by all four methods are provided in Additional
file 6: Tables S38–S41). At the pathway level, we found
the PD gut to have lower read abundance in several car-
bohydrate metabolism pathways (BH-correctedWilcoxon
rank-sum test p value < 0.05 and absolute log fold
change > 0.11) (Additional file 6: Table S42). Differential
read abundances in different carbohydrate metabolism
pathways were also found by HUMAnN2, mi-faser, and
Kraken2 (Additional file 6: Tables S43–S45). Carnelian
also identified significantly lower read abundances (BH-
corrected Wilcoxon rank-sum test p value < 0.05
and absolute log fold change > 0.11) in phenylalanine,
tyrosine, and tryptophan biosynthesis (missed by both
mi-faser and HUMAnN2); alanine, aspartate, and gluta-
mate metabolism (missed by HUMAnN2); sphingolipid
metabolism (missed by HUMAnN2 and Kraken2); gly-
cosphingolipid biosynthesis; and D-alanine metabolism,
notably missed by the other three methods (Additional
file 6: Tables S42–S45). Note that the original study—
which employed an assembly-based functional annota-
tion approach using gene catalogs—found differences in
gene abundances in only the D-glucuronate and tryp-
tophan metabolism pathways [57]. We also analyzed
the same dataset with an out-of-the-box HUMAnN2
pipeline with its default databases (pathway results are
provided in Additional file 6: Table S46). Despite using
additional taxonomic information, HUMAnN2 was not
able to detect any significant shifts in pathways related
to tryptophan metabolism (a clinically established hall-
mark of PD). The differentially abundant pathways
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identified by HUMAnN2 were largely related to the
broad category of purine and pyrimidine metabolism
which is non-specific to Parkinsonism. It detected a
downward shift in some vitamin B and phospholipid
metabolism pathways which might be associated with
Parkinson’s disease.

Discussion
While the rapid advancement in sequencing technologies
has helped researchers resolve the taxonomic diversity of
microbial “dark matter” to a great extent, much of its func-
tional diversity remains uncharacterized [18, 38, 58]. Even
for the minimal bacterial genome designed by Hutchison
et al. [59], the function of one third of the genes could not
be determined. Thus, functional annotation remains a dif-
ficult task even for well-studied genomes, and it is unsur-
prising that the sensitivity of all relevant methods is low
across the board. Potential reasons why reads often cannot
be mapped to functional labels include unknown func-
tionality, non-metabolic functionality, lack of coverage in
reference databases, or a non-prokaryotic origin. It is pos-
sible to use a much larger off-the-shelf protein database
containing computationally predicted functional labels,
but doing so is not always advisable because incorporat-
ing such databases can increase the chance of erroneous
transfer of spurious annotations [31, 60].
More than simply providing an alternative func-

tional profiling tool, Carnelian is able to capture hid-
den microbial metabolic functional diversity from whole
metagenome sequencing reads through its use of a gapped
k-mer classifier. Being able to accurately label additional
ECs manifests partially as an increase in Carnelian’s sen-
sitivity. Additional sensitivity alone is suspect, due to
the possibility of spurious labels, but we believe that
our stricter criteria for database inclusion, combined
with training negative examples to reduce false posi-
tives, contributed significantly to Carnelian being able
to assign a functional label to unknown proteins while
minimizing false positives. This ability makes Carnelian
a potential tool for annotating novel microbial proteins
that are increasingly becoming available [61]. Also, it
might be partially due to this ability that, unlike exist-
ing methods, Carnelian is able to create functional pro-
files that are comparable across populations. In multiple
large-scale comparative experiments, Carnelian uncov-
ers shared and novel functional similarities and differ-
ences across diverse populations and environmental con-
ditions that would go unseen when using existing tools,
which are often implicitly designed around taxonomic
profiling.
Carnelian detected a high degree of similarity in core

metabolic pathways between healthy guts in industrial-
ized and non-industrialized communities, despite signif-
icant taxonomic differences [38, 54, 55]. This result is

notable given the differences in external pressures (e.g.,
diet, lifestyle, exposure to toxins) and may indicate the
adaptive nature of the gut microbiome. Indeed, many
of the enzyme-level variations we found did suggest an
adaptive response to industrialized vs non-industrialized
dietary differences in carbohydrates (simple sugars vs
complex monosaccharides) and proteins (protein-rich vs
protein-deficient); this finding agrees with earlier stud-
ies [38, 55]. By using different enzymes involved in core
metabolic pathways, the healthy guts in these commu-
nities can better maintain the overall balance in core
metabolic functionality.
We did observe differential read abundance in several

xenobiotics metabolism pathways between industrialized
and non-industrialized microbiomes (Additional file 5:
Table S47). For example, non-industrialized microbiomes
showed enrichment of reads in antibiotic resistance ECs
and pathways (e.g., beta lactamase, drug metabolism by
cytochrome P450). On the other hand, we observed
higher read abundance in lipoic acid metabolism, xeno-
biotics metabolism by cytochrome P450, and phenyl-
propanoid biosynthesis pathways in the industrialized
gut. These findings agree with earlier studies [38, 54,
55]. A potential line of future inquiry would be to
investigate these similarities and differences with much
larger sample sizes but such is beyond the scope of
this study.
Our results with Carnelian indicate concordant dysbio-

sis in several microbial carbohydrate metabolism path-
ways in both Chinese and European cohorts for type 2 dia-
betes. Though existing methods identified variable read
abundances in several carbohydrate metabolism path-
ways, they did not find any common pathways which were
statistically significant in both the cohorts. T2D patient
guts were found to have higher read abundance in the
oxidative phosphorylation pathway, suggesting a higher
degree of bacterial defense against oxidative stress and a
greater energy imbalance in the patient gut [8, 9]. While
the shared dysbiosis in vitamin B metabolism pathways
might not be directly related to the disease process, it
could be a side-effect of prolonged metformin use by T2D
patients in both cohorts [8, 62].
In Crohn’s disease case-control cohorts from the

USA and Sweden, Carnelian uncovered reduced
functional potential of several specific carbohydrate
metabolism and amino acid biosynthesis pathways;
other tools did not find any concordant dysbiosis. Our
results make sense given that microbial carbohydrate
metabolism, amino acid synthesis, and selenocom-
pound metabolism pathways were already known to
be associated with Crohn’s disease [63, 64]. Valine,
leucine, and isoleucine have anti-inflammatory roles
and are required for intestinal growth and main-
tenance of mucosal integrity and barrier function;
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dietary amino acids have been found to be beneficial
for inflammatory bowel disease (IBD) animal models
[65]. Additionally, dysbiosis in the microbial biosynthe-
sis of N-glycan can affect the intestinal health of CD
patients [66].
For Parkinson’s disease (PD), Carnelian’s results indi-

cate a downward shift in the gut microbial capacity
to synthesize tryptophan, which was not found by mi-
faser or HUMAnN2 (both the translated search and
the full out-of-the-box pipeline). Microbial tryptophan
metabolism has been associated with a number of dis-
eases [67], and in particular for Parkinson’s, this might
affect serotonin production in the host as tryptophan is
a known precursor of serotonin. We also found micro-
bial carbohydrate metabolism to be altered in Parkin-
son’s disease which might be a contributor to the insulin
impairment observed commonly in Parkinson’s patients
[68]; glucagon-like peptide-1 receptor agonists, which act
in the gut-brain axis pathway and regulate blood glu-
cose, have shown therapeutic potential in clinical studies
of PD [69].
Of course, though we find significant alteration in func-

tional capacity of these microbial metabolic pathways,
these diseases cannot be characterized by these shifts
alone. Integrative approaches involving metabolomics,
metagenomics, and metatranscriptomics will likely be
required to establish causal relationships between micro-
bial pathways and disease processes in the host. Since
disease-associated shifts can often be confounded by
antibiotics and other drug usage by participants in a
case-control study, the results must be interpreted care-
fully. Despite these challenges, we were able to show
that it is possible to find concordant functional trends
across geographically separated case-control cohorts. Our
study opens the door to a future where bioprospect-
ing efforts using natural microbes, genetically engi-
neered bacteria, or microbial products targeting specific
metabolic pathways in a broad therapeutic context may
become possible.

Conclusion
We have presented here a full pipeline for whole
metagenome comparative studies. By integrating together
more tailored database curation, probabilistic gene find-
ing, alignment-free functional metagenomic binning,
abundance estimation, and the appropriate statistical
tools, we show that on a variety of datasets, our tool
provides a more comprehensive picture of the functional
relatedness of healthy and disease microbiomes than can-
not be achieved using existing tools, which implicitly
rely on taxonomic binning. We note that while there
is an important role for taxonomic binning—indeed,
the authors have also developed software for that prob-
lem [42]—we believe it essential to be able to perform

comparative studies focused primarily on function, as
Carnelian does. Carnelian’s modular design enables flexi-
bly running each step of the pipeline independently—for
instance, it can be run on either raw sequencing reads
(default) or transcriptomic sequences (by bypassing the
ORF detection phase). Alternately, should a user pre-
fer to employ other functional profiling tools instead of
Carnelian, other components of our pipeline, such as the
database curation and statistical tests, may still be of use.
To demonstrate the usefulness of our pipeline, we also

analyze a variety of datasets, some publicly available and
some newly collected. For type 2 diabetes and Crohn’s
disease, earlier studies showed only a moderate degree
of taxonomic dysbiosis, which did not generalize across
different geographic cohorts. With Carnelian, we newly
identify concordant changes in the functional capacity of
13 metabolic pathways in European and Chinese type 2
diabetes cohorts and 8 metabolic pathways in US and
Swedish Crohn’s disease cohorts. Moreover, Carnelian
was able to identify several clinically established hall-
marks of Parkinson’s disease that were not found by other
state-of-the-art functional annotation tools. Carnelian-
identified EC terms can be used to classify patients and
controls with high accuracy. In healthy microbiomes from
industrialized and non-industrialized communities, Car-
nelian identified more functional diversity at both the
EC and pathway levels compared to other methods and
revealed a high degree of pathway-level similarity in core
metabolic functionality.
Carnelian’s unique ability to find functional related-

ness in diverse metagenomic datasets at the scale of
hundreds of samples opens the door to more com-
prehensive comparative functional metagenomic stud-
ies across different geographies, environmental condi-
tions, and time points. We expect Carnelian to be
an essential component of the metagenomic analysis
toolkit, especially when cross-population comparisons are
performed.

Methods
Overview of the pipeline
We present here a full pipeline for whole metagenome
comparative studies. Our pipeline combinesmore tailored
database curation, probabilistic gene finding, alignment-
free functional metagenomic binning, abundance esti-
mation, and appropriate statistical tools for performing
comparative functional metagenomics. Figure 1 depicts
the main components of our pipeline. The heart of
our pipeline is a new compositional tool for functional
metagenomic binning called Carnelian. It incorporates
probabilistic ORF finding with a compositional gapped
classifier ensemble to bin reads into different Enzyme
Commission (EC) groups according to their gene content
(if any).



Nazeen et al. Genome Biology           (2020) 21:47 Page 13 of 18

Carnelian represents gold standard proteins with com-
plete EC labels in a low-dimensional compact feature
space by leveraging Opal-Gallager hashes [42, 43]. These
features are then used to train an ensemble of one-against-
all classifiers (support vector machines). We implemented
the classifier ensemble using the Vowpal-Wabbit (v8.1.1)
framework [70, 71]. Negative examples were generated
using the “shuffle” program from the HMMER package
[47]. The classifiers are trained in an online fashion (one
example in memory at a time) using stochastic gradi-
ent descent (SGD). The online training capability makes
incremental training of Carnelian easy as new verified
EC annotations for proteins become available. For more
details of the parameters of the classifier ensemble, see
Additional file 1: Note S7.
To functionally profile WMS reads, Carnelian first uses

FragGeneScan [46] to detect the best possible ORFs
from them. FragGeneScan is a unified hidden Markov
model framework that incorporates codon usage bias
and sequencing error models to probabilistically detect
the coding part(s) of the reads. As part of our pipeline,
FragGeneScan is run with “short reads” option, because
our input is short WMS reads. Since the average substitu-
tion error rate for Illumina sequencing is ∼ 0.1%, we used
the “complete” option with FragGeneScan which assumes
0% error rate. The ORFs predicted by FragGeneScan are
encoded into the same compact feature space as in train-
ing using Opal-Gallager hashing. Carnelian employs the
trained classifier ensemble to bin the feature vectors of the
ORFs by EC labels.
All else being equal, the more abundant proteins from

an EC label in the microbial sample is, the more reads
from them are likely to be sequenced. Therefore, read
counts can be used as a proxy for EC abundance in the
sample. However, in practice “all else” are never equal.
Hence, we borrow intuition from transcriptomics and
have Carnelian construct a functional vector by normaliz-
ing the read counts as follows:

Effective protein length in EC bin b, eb = pb − rl
3

+ 1

Abundance of EC bin b, ρb =
rb
eb × 106
∑

b
rb
eb

Here, pb is the effective protein length (in amino acids)
of EC bin b and rl is the average read length (in base
pairs). This takes into account the effect of effective pro-
tein length of an EC bin as well as the lengths of the
proteins in other EC bins while calculating the relative
abundance of an EC label in a sample. This normaliza-
tion further ensures that the relative abundances of the
ECs sum up to the same amount in every microbial sam-
ple putting the abundances on the same scale. This makes
the proportions directly comparable across samples. See
Additional file 1: Note S2 for a demonstration of the lack

of comparability when no normalization or only RPK nor-
malization is performed; of course, Carnelian also makes
the raw counts available should the user desire to experi-
ment with other normalization techniques, but we use this
particular normalization for all cross-population compar-
isons in this study.

Database curation
We built our gold standard reference dataset by
first collecting reviewed prokaryotic proteins from
UniProtKB/Swiss-Prot (Feb. 2018) [72, 73] that had both
experimental evidence of existence at either the protein
or the transcriptomic level and complete EC Numbers
associated—EC numbers act as the primary identifiers
for metabolic pathway members. We excluded any pro-
tein that had computationally inferred functional labels
(e.g., by homology), an incomplete EC label, or multiple
EC annotations. Indeed, some proteins can have multi-
ple functions. However, these proteins primarily act as
enzymes and the secondary functions are mainly non-
enzymatic. Therefore, we can safely assume that a protein
will have a unique EC label in the reference database. We
also collected prokaryotic catalytic residues with complete
EC numbers for which a literature reference existed from
the Catalytic Site Atlas. We combined these two sets and
removed any redundant sequences, which gave us a ref-
erence dataset, EC-2010-DB, consisting of 7884 proteins
with 2010 unique EC numbers (both the dataset and a
pre-trained model to bin reads into EC labels are available
on the Carnelian’s website [74]). Amino acid sequences
for these proteins were downloaded from UniProt [72].
This database is designed for profiling the metabolic func-
tional capacity of the microbiome and more suited for
cross-comparing healthy and disease microbiomes. Addi-
tionally, we provide a database of 1,785,722 proteins from
3285 COG categories and a pre-trained model to clas-
sify reads into COG categories on our website, which
can be used for microbial functional profiling beyond
metabolism.

Constructing compact feature vectors using Opal-Gallager
hashes
Let us consider a sequence fragment of l amino acids, s ∈
�l, where � = standard amino acid alphabet (|�| = 20).
A k-mer, with k < l, is a short word of k contiguous
amino acids. Similar to the bag-of-words representation
of a document, we define a k-mer profile of a sequence
s as a vector fk(s) ∈ R

20k . We index each k-mer with an
integer i, where 0 ≤ i ≤ 20k which can be represented
by a binary string of length 5k. Each entry fk(s, i) ∈ fk(s)
stores the frequency of the ith k-mer. Thus, an amino acid
fragment of length l can be represented using k-mers in
O(20k) space instead of a vector of O(20l). Using ran-
dom locality sensitive hash (LSH) functions, we can create
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k-mer profiles that specify spaced subsequences, rather
than contiguous subsequences of fragment s. More specif-
ically, we define a random hash function, h : �k →
�r to generate a spaced (k, r)-mer such that a hashed
k-mer can be represented by a binary vector of O(20r)
dimensions with corresponding positions set to 1. Here, r
denotes the number of positions selected within a k-mer
window. With this family of LSH functions, we can ran-
domly sample a set of m LSH functions and concatenate
them together to represent a k-mer profile of a sequence
by only O(m20r) � O

(
20k

)
space. However, k-mer pro-

files built with uniformly random LSH functions often
have uneven coverage of positions in a sequence unless a
large number of such functions are used. To evenly cover
positions using a small number (m) of LSH functions,
we build upon Opal’s modified Gallager design algorithm
[42]. Figure S7 in the Additional file 4 depicts an exam-
ple of how even coverage LSH functions are generated for
an amino acid k-mer. We used a k = 8 and r = 4 for the
purpose of this paper. More details on the choice of k-mer
length can be found in Additional file 1: Note S8.

Benchmarking experiments
We benchmarked our compositional functional profiler,
Carnelian against state-of-the-art alignment-based tools,
mi-faser and HUMAnN2, and a fast alignment-free tool,
Kraken2, using our gold standard database, EC-2010-DB
on a number of synthetic metagenomes. Off-the-shelf
HUMAnN2 and Kraken2 use taxonomic information in
addition to translated searches; to ensure fair comparison,
we used only their “translated-search” or “protein-search”
mode. All comparisons were based on the EC terms iden-
tified by each method using the same gold standard refer-
ence database. That is to say, the reference databases we
used for the mi-faser and HUMAnN2 and the Kraken2
reference indexes were created with Carnelian’s gold
standard reference database for unbiased comparison.
Detailed performance benchmarks for Carnelian against
mi-faser, HUMAnN2, and Kraken2 are available in Addi-
tional file 1: Note S5. The exact commands used for
running mi-faser, HUMAnN2, and Kraken2 are given in
Additional file 1: Note S9 and scripts are available on the
Carnelian’s website [74].

Functional profiling of real datasets
We explored two large-scale type 2 diabetes (T2D) stud-
ies, two Crohn’s disease (CD) studies, and a Parkinson’s
disease (PD) study for investigating functional dysbio-
sis in disease vs healthy microbiomes. We analyzed
whole metagenome sequencing data from fecal samples
of 347 individuals from a Chinese T2D study cohort
[8]. Raw paired-end Illumina reads were downloaded
from the NCBI short read archive (SRA) (Study acces-
sion: SRP008047). We labeled this dataset T2D-Qin.

Additionally, we analyzed fecal metagenome sequencing
data from a T2D study performed on a European cohort
of 145 women with either T2D or impaired glucose toler-
ance (IGT) or normal glucose tolerance (NGT) [9]. Since
we aimed at finding the differences in microbial metabolic
function between T2D patients and healthy individuals,
we did not include the IGT individuals in our analysis.
We downloaded publicly available raw Illumina HiSeq
2000 paired-end reads from NCBI SRA (Study accession:
ERP002469); each individual metagenome contained ∼ 3
Gb on average. We labeled this dataset T2D-Karlsson.
We further analyzed two Crohn’s disease case-control
datasets: 53 US individuals from HMP pilot phase and
62 Swedish individuals from a Swedish cohort [1]. We
downloaded publicly available raw Illumina HiSeq 2000
paired-end reads for the US cohort (CD-HMP dataset)
from the IBDMDBwebsite [52]. Raw reads for the Swedish
cohort (CD-Swedish) were downloaded from NCBI SRA
(Study accession: SRP002423). We also analyzed whole
metagenome sequencing reads from the fecal samples of
20 patients and 21 healthy individuals in an early stage
L-DOPA naïve PD case-control study [57]. All the partici-
pants in the study were male and age-matched. We down-
loaded publicly available raw Illumina HiSeq 2500 paired-
end reads from NCBI SRA (Study accession: ERP019674).
We labeled this dataset PD-Bedarf. Metadata of the sam-
ples from each study are provided in Additional file 7:
Tables S48-S52.
For investigating the functional relatedness of the

healthy microbiomes in industrialized and non-
industrialized communities, we analyzed gut micro-
biomes of four cohorts (84 individuals from Boston, 35
Baka individuals from Cameroon, 50 individuals from the
Gimbichu region in Ethiopia, and 112 individuals from
Madagascar of Betsimisaraka and Tsimihety ethnicity).
The Baka dataset is unpublished data on a sensitive
indigenous population from the Eric Alm lab—see the
Carnelian website for the accession numbers once they
are available. The datasets from Boston, Ethiopia, and
Madagascar were contributed by two recent studies [38,
44] and are publicly available at NCBI’s SRA with study
accessions: SRP200548, SRP168387, and SRP156699.
Metadata of the samples from each study are given in
Additional file 7: Tables S53–S56.

Preprocessing steps for raw reads
We used Trimmomatic v0.36 [75] for adapter trimming
and quality filtering with a quality threshold of 30 and a
minimum length of 60 bp (paired-end mode for Illumina
reads and single-end mode for Roche 454 reads). Decon-
Seq v0.4.3 [76] was used to remove contaminating human
sequences with the human reference genome GRCh38 as
the database. For paired-end reads, we kept only the read-
pairs for which both sequences survived quality control.
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These steps were applied to all the datasets. In the T2D-
Qin dataset, 241 of the samples survived the preprocess-
ing step and were used for subsequent analyses.

Quantifying microbial functional variation in real datasets
Carnelian outputs the effective read counts per EC label
(i.e., normalized read counts against effective protein
length per EC bin and a per million scaling factor) as
abundance estimates. For the other three methods, we
applied the same normalization on the raw read counts
produced by them to ensure an unbiased comparison.
Pathway abundances were calculated by grouping the ECs
into KEGG metabolic pathways and summing the effec-
tive read counts. Pathway coverage was calculated as the
ratio of the number of mapped ECs identified by a method
to the total number of reference ECs present in the path-
way.
For the studies with two groups of microbiomes

(case vs control, industrialized vs non-industrialized),
we created an effective counts matrix using Carnelian
generated functional profiles and performed pairwise
Wilcoxon rank-sum test (Mann-Whitney U test). A
Benjamini-Hochberg (BH) false discovery rate (FDR)-
corrected p value threshold of 0.05 was used as a test
of significance. Additional log-fold-change thresholds
have been selected for each dataset (mentioned in the
main text).
To determine the significance of the common path-

ways between geographically separated disease cohorts,
we combined the individual p values per pathway from
different studies of the same disease using Fisher’s
combined probability test (Fig. 1: green). To investi-
gate the co-abundance of microbial metabolic pathways
between healthy microbiomes of industrialized and non-
industrialized communities, we computed Kendall’s rank
correlation of the pathway abundance profiles of the two
groups. Next, we performed Ward-linkage hierarchical
clustering using Euclidean distance on the pathway co-
abundance matrix (correlation matrix). To determine
whether the centroids and dispersion of the pathway
clusters are significantly different between the non-
industrialized and industrialized microbiomes, permuta-
tional multivariate analysis of variance (PERMANOVA)
test was performed using “adonis” function available
through the “vegan” package in R (Fig. 1: blue). For mea-
suring functional diversity in a sample, we calculated the
Shannon-Wiener diversity index of the EC and pathway
profiles of the samples using the “vegan” package avail-
able in R.

Availability of Carnelian
Carnelian is open source and freely licensed (MIT
License). Source code of Carnelian is available at our
website [74], Github [77], and Zenodo [78].
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