
pharmaceuticals

Review

New Strategies for the Treatment of Atrial Fibrillation

Norbert Jost 1,2,3,* , Torsten Christ 4,5 and János Magyar 6,7

����������
�������

Citation: Jost, N.; Christ, T.; Magyar,

J. New Strategies for the Treatment of

Atrial Fibrillation. Pharmaceuticals

2021, 14, 926. https://doi.org/

10.3390/ph14090926

Academic Editor: Gary J. Stephens

Received: 2 June 2021

Accepted: 8 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged,
6725 Szeged, Hungary

2 Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre,
University of Szeged, 6725 Szeged, Hungary

3 ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network,
6725 Szeged, Hungary

4 Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf,
20246 Hamburg, Germany; t.christ@uke.de

5 DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck,
20246 Hamburg, Germany

6 Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
magyar.janos@med.unideb.hu

7 Department of Sport Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
* Correspondence: jost.norbert@med.u-szeged.hu

Abstract: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the clinical practice. It
significantly contributes to the morbidity and mortality of the elderly population. Over the past
25–30 years intense effort in basic research has advanced the understanding of the relationship
between the pathophysiology of AF and atrial remodelling. Nowadays it is clear that the various
forms of atrial remodelling (electrical, contractile and structural) play crucial role in initiating and
maintaining the persistent and permanent types of AF. Unlike in ventricular fibrillation, in AF
rapid ectopic firing originating from pulmonary veins and re-entry mechanism may induce and
maintain (due to atrial remodelling) this complex cardiac arrhythmia. The present review presents
and discusses in detail the latest knowledge on the role of remodelling in AF. Special attention is
paid to novel concepts and pharmacological targets presumably relevant to the drug treatment of
atrial fibrillation.

Keywords: atrial fibrillation; atrial electrical remodelling; atrial fibrosis; antifibrillatory drugs; inves-
tigational drugs

1. Introduction

Atrial fibrillation (AF) is a cardiovascular disease, with relatively high incidence
(approximately 1.5–2.2%) in the whole population [1]. It is expected to be increased in the
near future [2,3]. In principle, AF is not a lethal disease but is far from being considered
as a benign illness, since it is major contributor to the elevated risk of stroke due to
thromboembolism and of congestive heart failure [4,5]. AF is connected with the highest
rate of hospitalization, which is increased especially at advanced age [4,6].

AF occurs when an atrial ectopic beat interferes with an anatomic and/or functional
obstruction, and as a consequence will trigger the re-entry of the impulse/excitation wave-
front (Figure 1). The basic mechanisms that underlie AF are as follows: (a) increased
automaticity; (b) triggered automaticity, which are early (EAD) and delayed (DAD) after-
depolarizations.

Several studies revealed that pulmonary sleeve veins contain cardiomyocytes with
increased pacemaker activity, which thereby behave as ectopic foci and may induce single
or multiple re-entry circuits [7,8]. Nowadays there are two main theories, which may
explain the persistence of AF. The first is the so-called “leading circle” theory conceived
by Allessie, which is based on the existing single and multiple re-entry circuits [7]. The
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second theory elaborated later by Jalife and was formulated as cardiac rotor theory [9].
Persistent or permanent atrial fibrillation is maintained by the phenomenon entitled atrial
remodelling comprising the following three main elements: electrical, contractile and
structural remodelling. These alterations initiated by atrial remodelling play a major
role in the self-perpetuation/renewal of the atrial arrhythmia and resistance to sinus
rhythm conversion. The main elements that contribute to AF remodelling consist of:
(a) the functional and structural changes and injuries of cardiac atrial cells (sarcolemmal
ion channels, signalling and functioning proteins), cell-surface coupling structures (gap-
junctions), the extracellular matrix and the endocardial endothelium; (b) the dysfunction
of neurohumoral system, from which mainly the renin-angiotensin-aldosterone system
(RAAS) is affected.
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Figure 1. General scheme presenting the main factors, which are implicated in provoking and
sustaining atrial fibrillation (AF). AF is usually initiated by spontaneous ectopic beats (extrasystole)
originating from a pacemaker region (PVs, left upper pulmonary vein) and later is maintained by
mechanism of atrial remodelling. The atrial fibrillation forms (lone, persistent and permanent) are
promoted by single/mother wave and/or multiple wave/circuit re-entries. The main factors that
may promote reentry are atrial ischaemia and inflammation, while the structural/morphological
remodellings are sustained by atrial (micro)fibrosis and left atrial dilation. DAD and EAD—delayed
and early afterdepolarization; PVs—pulmonary veins.

The first part of the present review briefly discusses novel aspects in the pathophys-
iology of atrial remodelling with particulars of electrical alterations and atrial fibrosis.
The second part summarizes the currently available therapeutic options and strategies for
developing novel pharmacologic agents suitable to prevent and/treat atrial remodelling.

2. Mechanisms of Atrial Remodelling
2.1. Electrical Remodelling

Briefly, we may define the term of the remodelling in AF as the main factor responsible
for the progressive nature of the arrhythmia. Several studies described the most important
aspects of the phenomenon of AF remodelling, which were shown comprising three



Pharmaceuticals 2021, 14, 926 3 of 27

major components—electrical, contractile and structural remodelling—that synergistically
contribute to the generation of the vulnerable substrate [10,11].

Electrical remodelling is caused by AF induced changes of several inward and outward
ion channels with the subsequent abbreviation of the action potential (AP) and more
negative RMP [5]. The most important changes, which should be noted are the alterations
due to the downregulation of the plateau currents and upregulation of several repolarizing
currents (Figure 2). Accordingly, there are three major changes that underlie the AP
shortening and triangularization: (a) downregulation of the L-type inward calcium current
(ICa,L); (b) upregulation of the inward rectifier potassium current (IK1); (c) activation of the
constitutively active IK,Ach (reviewed in detail by [10,12–14]).

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 3 of 28 
 

 

2. Mechanisms of Atrial Remodelling 

2.1. Electrical Remodelling 

Briefly, we may define the term of the remodelling in AF as the main factor respon-

sible for the progressive nature of the arrhythmia. Several studies described the most im-

portant aspects of the phenomenon of AF remodelling, which were shown comprising 

three major components—electrical, contractile and structural remodelling—that syner-

gistically contribute to the generation of the vulnerable substrate [10,11]. 

Electrical remodelling is caused by AF induced changes of several inward and outward 

ion channels with the subsequent abbreviation of the action potential (AP) and more neg-

ative RMP [5]. The most important changes, which should be noted are the alterations due 

to the downregulation of the plateau currents and upregulation of several repolarizing 

currents (Figure 2). Accordingly, there are three major changes that underlie the AP short-

ening and triangularization: (a) downregulation of the L-type inward calcium current 

(ICa,L); (b) upregulation of the inward rectifier potassium current (IK1); (c) activation of the 

constitutively active IK,Ach (reviewed in detail by [10,12–14]). 

 

Figure 2. The most important transmembrane ionic inward and outward currents determining 

atrial action potential in sinus rhythm (SR, A) and in permanent atrial fibrillation (AF, B). The ion 

channel/current (functional elements) density changes are presented in bottom left column, while 

the expression level current subunit forming proteins and mRNA genes, respectively, are depicted 

in middle and right columns. The corresponding pictograms near each ion current name present 

the magnitude and time course of the current reflection of relative real sizes. —decreased current 

or downregulated protein/gene, respectively; —increased current or upregulated protein/gene, 

respectively; —unchanged current, protein or gene, respectively; n.d.—no data. 

Several reports indicate that electrical remodelling (manifested in shortened atrial 

action potential/refractoriness) is usual fully reversible after the conversion to sinus 

rhythm (SR); however, when AF becomes more stable the calcium overload (resulted from 

altered calcium homeostasis) will be the main source responsible for initiating arrhythmo-

genic re-entry circuits [14]. Indeed, high Ca2+ concentration will bind calmodulin, which 

subsequently will activate the calcineurin and trigger the signalling events responsible for 

Figure 2. The most important transmembrane ionic inward and outward currents determining
atrial action potential in sinus rhythm (SR, A) and in permanent atrial fibrillation (AF, B). The ion
channel/current (functional elements) density changes are presented in bottom left column, while
the expression level current subunit forming proteins and mRNA genes, respectively, are depicted
in middle and right columns. The corresponding pictograms near each ion current name present
the magnitude and time course of the current reflection of relative real sizes. ↓—decreased current
or downregulated protein/gene, respectively; ↑—increased current or upregulated protein/gene,
respectively; ↔—unchanged current, protein or gene, respectively; n.d.—no data.

Several reports indicate that electrical remodelling (manifested in shortened atrial ac-
tion potential/refractoriness) is usual fully reversible after the conversion to sinus rhythm
(SR); however, when AF becomes more stable the calcium overload (resulted from altered
calcium homeostasis) will be the main source responsible for initiating arrhythmogenic
re-entry circuits [14]. Indeed, high Ca2+ concentration will bind calmodulin, which sub-
sequently will activate the calcineurin and trigger the signalling events responsible for
perpetuation of the AP shortening and the AP hyperpolarization. The latter is the result of
the increase in the inward rectifier potassium current (IK1) [14].

However, there were some studies, which challenged the major role of electrical
remodelling in initiating AF. For example, Healey et al. [15] reported that they did not find
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major differences in electrophysiological parameters between patients after two years AF
and those without intermittent atrial fibrillation.

When considering the effect of ion channel alteration on atrial electrical remodelling
we must emphasize that there are many diseases induced by ion-channel genetic mutations
as Brugada syndrome (SCN5 gene mutation), Andersen–Tawil syndrome (KCNJ2 gene
mutation), catecholaminergic polymorphic ventricular tachycardia (CVPT, RYR2 gene
mutation), etc. [16,17]. The genetic predisposition for AF has not been appreciated for
a long time, nevertheless many papers reported that rarely, AF can develop in some
families at a relatively young age despite the absence of any evidence of structural heart
disease or any other apparent etiology [18]. However, nowadays there is much evidence,
which undoubtedly demonstrate that ion-channel gene mutations may also be primary
or contributing factors for inducing and/or maintaining AF. There are more and more
familial genetic investigations, which strengthen that ion channel mutations are the cause
and/or promotors for AF susceptibility. The genetic predisposition of AF can be caused
by a single clinical aspect (monogenic disease when AF is the primary disease of one or
more family members) or can be as a result of another cardiac genetic disease (multiple
rare genetical disease).

In 2003, a prospective study was performed involving more than 5000 individuals
whose parents were enrolled in the Framingham Heart Study [19]. The results confirmed
having a parent with AF approximately doubled the four-year risk of developing AF even
after adjustment for risk factors such as hypertension, diabetes mellitus, or myocardial
infarction [19]. Another recent multicenter prospective observational cohort study includ-
ing 1722 nonvalvular AF patients from February 2008 to August 2019 in Italy, showed
that family history of AF is evident in more than 20% of patients and was associated with
an increased risk for cardiovascular events and mortality [20]. The observation that AF
etiology may have also genetic origins is important since there are great promises in genetic
therapies, which can be adapted also in the treatment of genetical mutation induced forms
of AF [21].

2.2. Contractile Remodelling

Calcium overload is also the main factor of atrial cardiomyocytes in the initiation of
the Ca2+-sparks. The phenomenon is induced by increased activation of the ryanodine
receptors in the sarcoplasmic reticulum. These Ca2+-sparks most probably contribute to the
contractile remodelling observed in AF [22]. We must emphasize that in heart failure—a
disease known to influence AF—the altered level in intracellular Ca2+ handling before the
onset of AF is different from that observed after the onset of AF [23]. Furthermore, another
study revealed that a completely different dynamics for intracellular Ca2+-handling is
characteristic during AF progression or after its termination [24]. Consequently, one can
distinguish the following three steps: (a) Ca2+-overload; (b) remodelling; (c) steady state.
In the steady the recovery of calcium contraction also happens in three phases: (a) calcium
unloading; (b) reverse remodelling; (c) full recovery [24]. These observations are in good
agreement with those found in human atrial tissue [25]. These reports may serve basis for
new medication therapeutic options [26,27].

Another direct sequel of the AF-induced altered calcium handling, referred as con-
tractile remodelling, includes loss of atrial contractility, which will result in a subsequent
increase in compliance and, in the end atrial dilation. In a six-week atrial tachycardia
model, the fast downregulation of L-type Ca2+ channels was reported. The downregulation
of the channels was associated, with substantial alteration in Ca2+-transients and especially
in cell contractility [28,29]. Since ICaL is the main element for Ca2+-release from the SR
(Ca2+-induced Ca2+-release, CICR), it is concluded that the AF induced reduction of ICaL
should be the main pathogenetic factor for AF-induced contractile remodelling. Accord-
ingly, Schotten et al. came to the conclusion that the loss of atrial myocardial contractility
is a result of the ICaL reduction and impaired Ca2+-homeostasis, and consequently the
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reduced contractility leads to atrial dilation, thereby “electrical and contractile remodelling,
which go hand in hand” [30].

2.3. Structural Remodelling

Chronic atrial stretch and anatomical deformation are the main factors that cause the
signalling pathways to determine the cellular hypertrophy and interstitial, intercellular
fibrosis, jointly referred as structural remodelling [31]. The structural remodelling is a
principal factor for the progressive nature (paroxysmal/lone → persistent → permanent)
of AF. It should be noted that structural remodelling is the cachet of heart failure and
of other chronic heart diseases, which means that the occurrence of AF is significantly
supported in these diseases.

Tissue fibrosis represents the common endpoint in different heart diseases as, for
example, in heart failure from hypertensive, coronary and diabetic patients. In the majority
(at least two-thirds of cases), AF is associated to a pre-existent organic heart disease that
promotes the development of the vulnerable basis for AF, whereas lone/paroxysmal AF
occurs in one-third of patients. There is a good deal of experimental and clinical evidence
that highlights the association between atrial fibrosis and AF [30,32–34].

The AF-related atrial fibrosis is the result of a complex interaction between many
largely known profibrotic factors and/or signalling pathways as inflammation or oxidative
stress. For example, it was reported that both atrial and ventricular fibrosis may be
induced by: (a) renin angiotensin aldosterone (RAAS) system (angiotensin II acting on
AT-1 receptors and aldosterone acting on the mineralocorticoid receptor); (b) TGF-beta1
(transforming growth factor, TGF) known to stimulate collagen production via SMAD
(Mothers Against Decapentaplegic is a protein from the SMAD family) pathway. In
addition, AF has been shown to be associated with high levels of inflammatory serum
biomarkers, thus many anti-inflammatory agents exert an antifibrotic effect [35]. However,
we must emphasize that the non-steroidal anti-inflammatory drugs (NSAIDs) were shown
to increase, in a large population-based case-control study, the elevation of the relative risk
of AF or atrial flutter (AFlu) [36].

Recent intensive studies revealed the role of miRNA in AF-associated electrical and
structural remodelling. MiRNAs are a class of small, non-coding RNA (miRNA) molecules
that silence gene expression at the post-transcriptional level [37]. It was reported that the
downregulation of miRNA-26 was associated with increased density of inward rectifier
potassium current (IK1). The upregulation of miR-328 elicited inward L-type calcium
current (ICa,L) diminution in both human and animal atrial samples [38]. Shan et al. [39]
reported a profibrotic response in a dog model of AF induced by rapid pacing and nicotine
administration. The AF-induced fibrosis was associated with significant upregulation
of the expression level of TGF-beta1 and TGF-betaRII and substantial reduction (at least
60–70%) of the anti-fibrotic miR-133 and miRNA-590 levels.

In another study, it was reported that after eight weeks of experimental myocardial
infarction in rats, the knockdown of atrial miRNA-21 suppresses atrial fibrosis and the
duration of AF [37]. Another study reported that in atrial myocardium of 4 subjects with
permanent AF the expression level of miRNA-499 to be significantly upregulated, while
the expression of the small-conductance calcium-activated potassium channel 3 (SK3)
proteins to be downregulated [40]. However, it is still not clear whether this finding might
contribute to the electrical remodelling in AF. Accordingly, it has been also observed that
miRNA-29 was substantially downregulated in patients with chronic heart failure and
atrial fibrillation; moreover, the decreased miRNA-29b expression level in canine atrial
fibroblasts induced an upregulation in the collagen expression level, thereby contributing to
atrial fibrotic remodelling. Therefore, the authors concluded in this study that miRNA-29
likely plays a role in atrial fibrotic remodelling and may prove valuable as a potential
biomarker and/or therapeutic target in the future [2].
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2.4. The Connection between Electrical, Contractile, and Structural Remodelling

It was reported that electrical and contractile remodelling have two phases [31]. The
first is the rapid electrical and contractile remodelling, which occur in a short time (within
minutes to hours) after the first AF episodes. The second phase electrical and contractile
remodelling develops in a much longer time scale (from days to weeks). There are sev-
eral clinical studies, which have reported that fortunately the electrical and contractile
remodelling usually become fully reversible after conversion to SR (electrical and/or phar-
macological) in a relatively long time frame [30,32–34]. Since structural remodelling is
the result of a complex process, it develops much slower, usually within a minimum of
3–5 months. Unfortunately, these structural/morphological alterations (especially microfi-
brosis and left atrial dilation) of the atrial tissue are predominantly irreversible, therefore
the structural remodelling goes with the tough recurrent, especially permanent forms of
AF. Figure 3 presents the cascade relation between electrical, contractile and structural
remodelling [10].
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Figure 3. Three proposed positive feedback loops to present the progredient development of atrial
remodelling in AF. The electric and contractile remodelling are associated with the downregulation
of L-type Ca2+-channels which as a result will cause the alteration of the whole Ca2+-homeostasis
process. The loss of contractility and increase in compliance will induce the stretch of the atrial
myocardium, which is considered to be the main inducing factor of the structural remodelling. The
resulting intra-atrial circuits due to a reduction in wavelength and increased non-uniform tissue
anisotropy and even zig-zag conduction (anatomical basis of re-entry or rotors). Reprinted with
permission from ref [10]. Copyright year 2002, Oxford Academic.

3. Therapeutic Options to Prevent and Stop Atrial Remodelling
3.1. Back to Sinus Rhythm or Just Control Ventricular Rate

Rhythm control is a therapeutic option and an intervention to stop atrial fibrillation,
i.e., to re-establish the normal sinus rhythm (SR). Rate control aims to slow down conduc-
tion in the AV-node to reach physiological ventricular rate. Slowing of AV node conduction
can be achieved by application of various types and classes of antiarrhythmic drugs. The
drugs used most frequently are β-blockers and some Ca2+-channel blockers, like vera-
pamil [41]. It is now accepted that ectopic triggers originating from pulmonary veins can
cause atrial extrasystoles and consequently trigger AF. Eliminating the triggers coming
from such ectopic foci can terminate AF and, hence, provide rhythm control. Several
classical antiarrhythmic drugs which include especially the Na+ channel blockers or the
so-called multiple ion channel blockers (for example amiodarone) can be used to reach this
goal. The commonly accepted wavelet concept [7] predict that short effective refractory
period and/or slowed conduction will favour the likelihood of generating re-entries.
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3.2. New Approved Drugs and Investigational Compounds to Convert AF

All existing antiarrhythmic agents used for the treatment of AF are far from being ideal,
since they show not only a very limited efficacy to stop AF, but they possess a relevant safety
issue. In general, all antiarrhythmic drugs effective in terminating ventricular arrhythmias
may also successfully suppress AF by lengthening atrial effective refractory period (AERP)
and by slowing atrial tissue conduction. However, to minimize ventricular proarrhythmic
effects, an atrial selective action would be needed. Such a characteristic was referred as
the “atrial selective drug concept”, which means that these drugs are expected to block
ion currents existing in the atria but not in the ventricles (or they are at least less relevant
in ventricles). In addition, drugs used for rhythm control should lack other cardiac side
effects like negative inotropy or extra cardiac organ toxicity. Importantly, atrial selective
drugs to stop AF should be tolerable in patients having common cardiac comorbidities
such as coronary artery disease or heart failure.

There are several new promising concepts to design new antiarrhythmic drugs to
stop AF more efficiently but with fewer side effects. As Figure 4 summarizes, this goal
can be reached by: (a) further developing and improving existing antiarrhythmic agents
(specific or multiple ion channel blockers); (b) new compounds which act in an atrial-
selective manner (atrial repolarizing delayed agents—ARDA); (c) compounds that mediate
their action not via non-ion channel, but target regulating upstream processes (inhibiting
inflammation or fibrosis); (d) new compounds that act not via classic ion channels but
rather via gap-junctions (the latter approach being considered as the most recent attempt
to treat AF pharmacologically).
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We will briefly comment on the principles, mentioned above. Table 1, tries to sum up
some key characteristics of the drugs, addressed.
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Table 1. Summary of the new drugs and investigational compounds developed for treating AF presented in this review.

Name of Compounds or Drugs Major Effects Clinical Studies

Further development and improvement of
existing antiarrhythmic

drugs or compounds

Azimilide
(FDA approval)

primarily IKr and IKs blocker but additionally blocks ICaL
and INa

(multi-channel blocker)
ALIVE, A-STAR, A-COMET I and II Studies

HMR-1556 highly selective IKs blocker not performed

AZD7009
primarily IKr and INa blocker, but additionally blocks Ito,

IKur and IKs
(multi-channel blocker)

small single centre clinical trial

Dronedarone
(FDA approval)

Amiodarone-like multichannel blocker (INa, ICa, IKr
blocker)

ADONIS,
ATHENA, EURIDIS etc.

Tedisamil multichannel blocker (INa, Ito, IKr, IKs, IKATP, blocker) small single centre clinical trial

Atrial selective therapeutic agents (existing
drugs or investigational compounds)

AVE0118 primarily IKur, Ito and IK,ACh blocker not carried out
XEN-D0101 highly selective IKur blocker small single centre clinical trial

DP01 highly selective IKur blocker not carried out

Vernakalant primarily IKr and INa blocker, but additionally blocks Ito,
INa, IKr and IKs (multichannel blocker) AVRO

Ranolazine
(FDA approval)

primarily INaf and INaL, and IKr blocker, but additionally
blocks ICaL and IKs (multichannel blocker) MERLIN-TIMI

NIP-142, NIP-152 highly selective IK,ACh blockers not carried out
Tertiapin Q highly selective IK,ACh blocker not carried out

NCX modulators
KB-R7943 initially developed as selective NCX blocker, but

additionally blocks Ito, IK, IK1, INa, and ICaL
not carried out

SEA-0400 selective NCX blocker, but additionally blocks ICaL not carried out
ORM-10962 highly selective and potent NCX blocker not carried out

Gap-junction modulators

AAP10 selective gap junction enhancer peptide not carried out
Rotigaptide selective gap junction enhancer peptide ClinicalTrials.gov Identifier NCT00137332

Danegaptide (GAP-134) selective gap junction enhancer peptide ClinicalTrials.gov Identifier NCT00510029,
NCT00543946, and NCT00783341

PQ1 selective gap junction enhancer not carried out
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3.2.1. Blockers of Specific Ion Channels vs. Multiple Ion Channel Blocker to Stop AF

The principal action for these drugs is to prolong repolarization (i.e., Class III com-
pounds). During last two decades, there were several novel compounds or investigational
drugs developed. However, most of these compounds have been abandoned because
all of them bear an unacceptable risk for induction of ventricular proarrhythmic events,
especially Torsades de Pointes-type tachyarrhythmias.

Selective IKs Blockers

Azimilide (Procter & Gamble, Cincinnati, OH, USA, specific IKr and IKs blocker,
Figure 5). The development of this drug was inspired by the elegant observation that
blockers of IKr show larger prolongation of refractoriness at low rate (so-called Sanguinetti’s
hypothesis, [42]), limiting their effectiveness in AF. In contrast, it was presumed that the
block of IKs would not show such a reverse rate-dependent action. However, it became
evident that azimilide blocks not only IKs but IKr as well. Later reports demonstrated that
azimilide, like amiodarone, blocks also calcium channels and more importantly sodium
channels in a use-dependent manner [43,44]. Results from the first somewhat encouraging
studies in patients with AF [45,46], could not be confirmed by several follow-up studies
(e.g., the ALIVE trial). Now it seems clear that azimilide will never be a useful compound
to stop AF [47–49].

HMR-1556 (Hoechst-Marion-Rousell, Kansas City, MO, USA, IKs blocker, Figure 5).
Contrary to azimilide HMR-1556 is a highly selective blocker of IKs. The idea of selective
block of IKs attracted much attention by pharmaceutical companies. In fact, HMR1556, the
first powerful and selective blocker of IKs was used in many preclinical studies. Indeed,
numerous patch-clamp investigations demonstrated that HMR-1556 effectively blocks IKs.
Only at concentrations much higher needed to block IKs, the compound also inhibits Ito
and to some extent the sustained outward current Isus, and ICaL currents [50]. HMR-1556
prolonged the atrial effective refractory period (AERP) in dog atria. In a canine model of
vagal AF HMR-1556 exerted a modest effect on the duration of induced AF. However, the
compound was only effective in the presence of intact β-adrenergic stimulation [51].

AZD7009 (Astra Zeneca, Cambridge, UK, IKr and INa blocker, Figure 5). The main
pharmacological effect of AZD7009 is to block IKr and also INa (classic positive rate-
dependent INa block). The compound is effective at micromolar concentrations. Later
studies revealed that the compound also blocks several repolarizing currents such as Ito,
IKur and IKs in higher concentrations [52,53]. As expected from such a profile, AZD7009
concentration dependently reduced Vmax and increased APD in atria (dog) and the APD
prolongation by AZD7009 did not show positive frequency dependence [54]. First clin-
ical trials demonstrated AZD7009 to be able to convert persistent atrial fibrillation in
humans [55–57]. It is unclear whether the latter effect results solely from activity on
Na+ channels.
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3.2.2. Amiodarone-Like Multichannel Blockers

The undoubted success of the multichannel blocker amiodarone stimulated effort
to follow the idea that a simultaneous blockade of several specific inward and outward
currents may result in a more effective electrophysiological profile compared to single
channel blockers [58].

Dronedarone (Sanofi Aventis, Paris, France, Figure 5) has so far been the most ad-
vanced compound. The development has been based on the idea to get a new multichannel
blocker as effective as amiodarone, but devoid of its considerable extra cardiac toxicity.

The starting point for designing dronedarone was to keep the molecule of amiodarone
but without containing an iodine, since it is generally accepted that the iodine molecule of
amiodarone is responsible for many of the severe extra-cardiac (thyroid, ocular, pulmonary,
and hepatic) toxicities of the drug [59]. Electrophysiological studies in vitro showed that
dronedarone possesses quite similar acute and chronic effects as reported earlier for amio-
darone [60,61]. In dog ventricular preparations, dronedarone indeed acts as a multichannel
blocker. Dronedarone blocks ICa,L and IKr, and reduces the maximum upstroke velocity
in a frequency-dependent manner, indicating block of INa [61]. Based on these promising
preclinical investigations and the lack of iodine-associated toxicity dronedarone has been
recommended for combating atrial arrhythmias. ADONIS and EURIDIS, two large multi-
centric trials, reported the superior efficacy of dronedarone to prevent the reoccurrence
of AF. The drug did not affect significantly the QT interval, therefore its Class III type
proarrhythmic side effect (torsadogenic potency) was very low. [62,63]. Moreover, the next
trial (ATHENA) reported prolonged time (24% compared to placebo) to the first cardiac
hospitalization or cardiac death [64]. However, we must emphasise that this observation
was somewhat surprising, since other groups reported that the initial congener (“Mother”)
compound amiodarone remains net superior to dronedarone [65,66].

As a result of ATHENA trial dronedarone obtained FDA approval in the USA. The
main indication was prevention of hospitalizations due to recurrent AF (but not to convert
AF), therefore, dronedarone was never allowed to be marketed in USA as primary anti-AF
agent [66]. Later, some severe non cardiac side effects were associated with dronedarone
administration, from which we must stress reported cases of severe liver toxicity making
immediate liver transplantation necessary [67]. However, recent real-life data indicate
that dronedarone liver toxicity is not different from that of other antiarrhythmics like
amiodarone [68].

Tedisamil (Figure 5) was initially developed as anti-ischemic and bradycardic drug
(by Solvay Pharma-Kali Chemie AG, Hannover, Germany). Originally, it was presumed
to be only a selective Ito current blocker, which would be beneficial, against AF, since Ito
currents are more abundantly expressed in the atrium than in the ventricle. However,
additional studies reported that tedisamil possesses multichannel, especially complex
potassium (Ito, IKur, IKr, IKs and even IKATP) blocking properties, and also blocked fast
sodium channel with slow offset kinetics and with onset kinetics intermediate between that
of slow (quinidine) and fast (lidocaine) antiarrhythmic drugs, corresponding to Class I A/B
antiarrhythmic action [69]. In conclusion, tedisamil possesses strong Class III antiarrhyth-
mic (antifibrillatory) effect associated with increased APD, QT interval and refractoriness,
but the additional sodium channel block can also decrease the dispersion of repolariza-
tion and incidence of early afterdepolarizations, which may counterbalance the possible
inherent ‘torsadogenic’ potential of the compound due to its IKr blocking property [69–72].
Probably as a result of this “amiodarone-like” multichannel blocking properties, tedis-
amil did not show a reverse use-dependence of APD prolongation. Based on several
dog studies [73,74] and human clinical phases 2 and 3 trials [75], in 2006 Solvay Pharma
initiated unsuccessfully the FDA approval [76] for tedisamil as potential antiarrhythmic
drug for treating atrial flutter and atrial fibrillation with PulziumTM trademark name [77].
According to FDA review, the main concerns against tedisamil medication were: “The
pooled safety data for tedisamil showed a disproportionate increase in adverse events
among women, including elevated rates of Torsades de Pointes, hypotension, tachycardia
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and bradycardia.” [77]. Therefore, we may conclude that tedisamil seems unlikely to be a
beneficial new drug combating AF.

3.2.3. Can Atrial Selective Ion Channel Block Stop AF?

The most promising strategy to treat AF that avoids ventricular proarrhythmic side
effects is the development of drugs known as “atrial selective drugs”. This concept exploits
distinct differences in expression patterns of individual ion channels and their different
contribution to refractoriness between atrial and ventricular myocytes.

Accordingly, the aim of atrial specific ion channel blockers can be reached by de-
signing compounds that modify (block or activate) function of ion currents selectively
contributing to repolarization only in human atrial cardiomyocytes, i.e., which are not
or only weakly present in ventricle. Such atrial specific targets, which would be suitable
for developing novel AF combating/preventing treatment include the following three
known atrial specific ion currents: (a) the ultra-rapid delayed rectified potassium current
(IKur), (b) the acetylcholine-sensitive inward rectifier potassium current (IK,ACh), (c) the
constitutively active IK,ACh currents (i.e., which are active even in the absence of agonists
at muscarinic receptors).

In keeping with literature data, there is no doubt that the channels responsible for IKur
and IK,ACh are exclusively or near exclusively present in atria, they are known to be absent
in human ventricles. Therefore, they should be appropriate pharmacological targets for
atrial selective ion channel blocker drugs (ARDA—atrial repolarization delaying agent).

In addition, there are other ion channels that are present both in atria and ventri-
cles, but due to their differences in biophysics (kinetic properties, voltage dependence
of activation and/or inactivation) or selective modulation of channels, some appropriate
compound may evoke larger effects in atria than in ventricles. Consequently, such ion
channel modulators may also fulfil the criteria of atrial selective antiarrhythmic drugs.

IKur Blockers

The ultra-rapid component of the delayed rectifier potassium current (IKur) current
was firstly, described by Wang and co-workers [78] and now is considered to be the most
typical atrial selective transmembrane current [79]. Accordingly, many pharmaceutical
companies have invested significant efforts in developing selective IKur blockers as novel
pharmacological agents against AF. As a result, from the beginning of this century, many
new selective IKur blocker compounds were developed and tested. The most investigated
drugs or investigational compounds were: AVE0118, XEN-D101, DPO-1, vernakalant, ISQ-
1, DPO-1, AZD7009, NIP-141, NIP-142, acacetin, etc.). However, we must emphasize that
early reports, such as the one by Wettwer [80] questioned the effective APD lengthening
property of IKur blockers.

AVE0118 (Figure 5) is a biphenyl derivative compound, which was developed by
Sanofi-Aventis. The AVE0118 blocks IKur at micromolar concentrations in both native
human atrial cells and in Kv1.5 channel transgenic systems as well. In addition to the block
of IKur, the drug at similar concentration range also blocked Ito and IK,ACh currents [81,82].
In several large animal models of permanent AF (dogs and goats), AVE0118 was reported
to possess rate dependent atrial ERP lengthening and AF converting to SR potency with
only minimal effect on ventricular refractoriness and QT interval. In addition, no AVE0118-
related proarrhythmic effect was reported [83–85]. AVE0118 shortened APD and ERP in
atrial tissue originating from patients in SR, while APD/ERP was only slightly prolonged
in tissues from patients in AF [82]. This observation is in good agreement with a previous
study performed with the non-selective IKur blocker 4-aminopyridine [80]. There are no
clinical studies published with AVE0118 and it seems that its development as a possible
antiarrhythmic drug has likely ceased. However, the compound was recently suggested as
a new pharmacological tool to treat obstructive sleep apnoea [86].

XEN-D0101 (Figure 5) and XEN-D0103 (chemical structure not disclosed) are two
experimental compounds that were developed by a small R&D company (Xention Ltd.,
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Cambridge, UK). It seems that these two molecules are the only highly selective Kv1.5
channel blocker agents so far. Accordingly, in several investigations it was clearly demon-
strated that XEN-D0101 and XEN-D0103 selectively blocked IKur channels and prolonged
the atrial ERP and decreased the duration of AF in dogs [87–90]. A first clinical study with
XEN-D01013 in patients with paroxysmal AF have failed to reduce the burden of AF ([91]).

DPO-1 (Diphenylphosphine oxide, Figure 5). DPO-1 blocks IKur rate-dependently
at nanomolar concentrations in isolated human atrial myocytes. At higher micromolar
concentrations, DPO-1 blocks other currents as Ito. In human atrial tissue and not in the
ventricle, DPO-1 induced plateau elevation and shortening in SR, and prolongation of
APD in AF. In vivo investigations demonstrated that the compound successfully prevented
and suppressed AF induced in a non-human primate model and atrial flutter in a dog AF
model [92,93].

Vernakalant (RSD1235, Cardiome and Astellas, Deerfield, IL, USA, Figure 5) is the
drug in the most advanced phase of investigation. It has been approved by the European
authorities but not by the FDA for intravenous conversion of AF (for discussion see [94]).
Vernakalant blocked Kv1.5 in a positive frequency-dependent manner [95,96]. However, its
effects on transient potassium outward current in human atrial cardiomyocytes are rather
small. Vernakalant clearly suppresses upstroke velocity in human atrial preparations,
indicating relevant block of INa [95,96], so it may be regarded as a multichannel blocker
rather than a selective IKur (ARDA type) blocker. Vernakalant possesses fast offset kinetics
at sodium channels, thereby it was not expected to cause conduction disturbances and
proarrhythmia at low heart rates [97,98]. However, vernakalant slowed conduction velocity
at physiological heart rate in both atrium and ventricles of human hearts questioning atrial
selectivity of the action of the drug [99]. Several clinical studies revealed the efficacy and
safety of the vernakalant in conversion of AF. The AVRO study (phase III clinical study)
demonstrated that vernakalant when compared to amiodarone, possesses superior efficacy
for acute conversion of recent-onset AF [100,101].

In another small study, it was demonstrated that vernakalant with combination of
electrical cardioversion is safe and efficacious [102], therefore vernakalant was approved for
clinical practice in the European Union in 2010, but not in the United States of America [103].

Sodium Channel Blockers

The “modulated receptor hypothesis” revealed that fast sodium channel blocker drugs
(like Class IA antiarrhythmics) bound preferable to open (activated) or closed (inactivated)
states of the INa channel. Since INa channels are present in atrial and ventricular myocytes
as well, the atrial selectivity of INa channel blockers is not a self-explaining concept. Based
on the hypotheses, formulated by Antzelevitch and co-workers [104], we must consider the
following two mechanisms potentially lead to atrial selective Na+-channel block: (a) human
atrial tissue has a slightly less negative (depolarized) resting potential than ventricular
tissue [105]; (b) potential for half-maximum inactivation of INa is more negative in atrial vs.
ventricular cardiomyocytes.

Taking these factors into consideration, we may say that atrial tissue will recover faster
from inactivation (due to its less negative membrane potential), therefore INa blockers—
which binds preferably to inactivated channel state—will exhibit a larger blocking effect
in atria than in ventricles [104]. For additional discussion, also compare Ravens and
Christ [106].

Ranolazine (Figure 5) is a compound that initially was developed as an antianginal
drug. Soon it was reported that ranolazine reduced transmural dispersion of APD and
successfully suppressed ventricular EAD triggered arrhythmias [107]. Several patch clamp
studies revealed that ranolazine blocks primarily the late INa (INa,L) but there is no doubt
that the compound blocks also several other currents as IKr, IKs, and even possibly L-type
calcium current (ICaL) [108]. Furthermore, ranolazine at concentrations frequently used to
block INaL is an effective β-adrenoceptor antagonist [109]. Ranolazine was also shown to
reduce intracellular sodium and calcium overload during ischemia and effectively sup-
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pressed triggered activities, such as EADs. These properties were associated with block of
the late INa current by the compound. However, from the complex pharmacology men-
tioned above, interpretation is complicated. In human AF, INaL was found to be larger [110].
The exact extent of AF-associated increase in INaL is a matter of debate [111]. More im-
portantly, contribution of INaL to refractoriness is hard to judge since a selective blocker
of INaL is still missing. Several studies performed in isolated single and multicellular
wedge perfusion canine ventricular preparations also reported that ranolazine reduced the
proarrhythmic transmural dispersion of AP repolarization [104]. More importantly in the
context of AF, experiments in canine isolated perfused atrial and ventricular preparations
have suggested that ranolazine shows stronger effects on atrial than on ventricular sodium
channels [112]. Clinical studies showed only moderate efficacy of ranolazine in counteract-
ing AF [113]. Nevertheless, ranolazine was shown to possess AF-activity both alone [114]
or in combination with other drugs such as amiodarone and dronedarone (HARMONY
Trial, [115]).

We must not forget that vernakalant (RSD1235, Cardiome and Astellas, Figure 5) the
drug already presented in the previous paragraphs possesses a combined multichannel
blocking effect. As mentioned above, vernakalant blocked in a similar range of concen-
tration both IKur and INa channels [95,96], so the reported antiarrhythmic/antifibrillatory
effect of the compound is also a combined atrial selective IKur/INa blocking effect.

Atrial Acetylcholine-Sensitive Potassium Current (IK,ACh) Blockers

The acetylcholine activated inward rectifier K+ current, IK,ACh, is an another atrial-
selective current. Its blockade is expected to exert a useful effect in vagally-induced
atrial fibrillation. The IK.ACh blockers may be real atrial selective therapeutic agents, since
IK,ACh is absent in the ventricles. There are many investigations demonstrating that IK,ACh
stimulation (via vagal stimulation) by reducing atrial APD/ERP increased sodium channel
availability, and consequently creates re-entry substrate by increasing atrial repolarization
dispersion. At faster frequencies, these re-entries may even form atrial rotors and may
increase the time duration of the AF episodes [116]. As a consequence, we may state
that vagus nerve activity plays an important role in initiation of paroxysmal AF [117,118],
therefore, it was proposed that blockade of parasympathetic activity may have beneficial
effects and could help to maintain SR. Consequently, selective IK,ACh blockade may be a
promising atrial selective therapeutic strategy (ARDA) [116,119].

NIP-142 (Figure 5) and NIP-151 (chemical structures not disclosed). The NIP-142 is a
benzopyrane derivative compound, and was initially synthetized as highly selective IK,ACh

blocker. Experimental data demonstrated that accordingly with the hypothesis presented
before, NIP-142 prevented the acetylcholine-induced AP shortening [120]. NIP-151 (a
congener derivative) seems to be even more selective and more potent IK,ACh blocker
compound than NIP-142. NIP-151 significantly lengthened atrial ERP and prevented
vagally- and aconitine-induced AF in an atrial selective manner in a dog model of AF [121].

Constitutively Active IK,ACh Channels (IK,Ach_Const)

Recently, it has been published that in atrial myocardium originating from patients
in permanent AF, acetylcholine-activated potassium channels are constitutively active
(IKA,Ch_Const), namely they are opened without direct ligand stimulation [116,122]. These
studies hypothesised that in long-term chronic AF, the constitutively active IK,ACh current
is one of main factors responsible for the triangularization and shortening of APD, thus
making the atria susceptible for re-entry based tachyarrhythmias [116]. Conclusion of
this observation is that selective blockade of IKA,Ch_Const may have potent antiarrhyth-
mic/antifibrillatory effects [116,120]. Because of the lack of selective IKA,Ch_Const antago-
nists, this hypothesis could not be proved directly so far.

However, our recent study questioned this hypothesis. In an experimentally induced
tachypaced dog model of permanent AF (ATR) we have revealed that the real amplitude of
IKA,Ch_Const does not seem to be large enough to contribute substantially to the shortening
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of APD and thus to the shortening of atrial ERP [13,123,124]. Therefore, we have proposed
the following new concept [13]: under physiological condition, in vivo, “background”
vagal stimulation is always present, thereby it is probable that the acetylcholine-activated
potassium channels are active in atrial myocytes either in SR or in AF. In permanent AF,
the IKA,Ch_Const can also be activated, and its effect is added to the vagal nerve stimu-
lated IKA,Ch, so these net outward currents can be large enough to cause atrial ERP/APD
shortening. This hypothesis suggests that blockade of both basal IK,ACh and IKA,Ch_Const
currents may prevent AF. Indeed, recently we have clearly demonstrated the presence of
IKA,Ch_Const in atrial cardiomyocytes isolated from ATR dogs, near of a clear presence of
cholinergic activated IK,ACh [13]. Selective blockade of these two combined currents with
low concentration (18 and 56 µg/kg iv., respectively) of Tertiapin Q (Figure 5) successfully
prevented the experimentally induced AF in conscious ATR dogs [13,124]. Further exper-
iments are performed recently to provide more evidence for our hypothesis. It remains
questionable whether the results obtained in the dog heart can be directly translated to
humans, since the newly developed compounds failed to prolong AERP and to reduce AF
burden in humans [125,126].

3.2.4. NCX Modulators

Under resting conditions, the Na+/Ca2+ exchanger (NCX) transports one intracellular
Ca2+ ion for three extracellular sodium ions, resulting in net inward current. In depolar-
ized cells, this bidirectional Na+/Ca2+ exchanger works in reverse mode; consequently it
elevates the intracellular Ca2+ level and generates net outward current, which contributes
to the shortening of the action potential. Rapid atrial rates caused by AF or rapid pacing
favours the reverse mode of NCX (e.g., NCX1 activity). This may trigger AF by increasing
the incidence of DAD arrhythmias. Based on this observation, it has been hypothesised
that selective NCX blockade may prevent the formation of triggered arrhythmias, and
consequently may prevent, reduce, or suppress AF, i.e., it was proposed that NCX blockers
can be useful antiarrhythmic drugs [127–129]. However, lack of highly potent and selective
NCX blockers made not possible direct verification of this plausible hypothesis. The first
truly potent and selective blockers of the NCX were reported only after 2000.

KB-R7943 (Kanebo, Tokyo, Japan, Figure 5) is a substance that inhibits preferably only
the reverse mode of the NCX. Unfortunately, several studies revealed that the selectivity
level of the compound is not high enough, i.e., at the same concentrations, the NCX
blocking effect was also associated by a clear blocking potency on numerous other (Ito, IK,
IK1, ICaL and INa) channels. Several studies reported that KB-R7943 prevented atrial ERP
shortening caused by pacing-induced AF in anesthetized dogs, [130,131], but this effect of
KB-R7943 cannot be attributed solely to its NCX blocking properties since as mentioned
before, this molecule may also modulate the function of other ion channels.

SEA0400 (Taisho Pharmaceutical, Tokyo, Japan, Figure 5) is a more selective NCX
inhibitor than KB-R7943, and it was the most studied NCX blocker compound for several
years. It was published that micromolar concentrations of SEA0400 effectively blocks NCX
in both forward and reverse mode; however, it turned out that micromolar concentrations
of SEA0400 effectively suppressed the L-type Ca current (ICaL) as well [131]. By applying
SEA0400 as NCX blocker in human atrial tissue preparations, it was reported that the
NCX current is significantly upregulated in AF as compared to SR [132]. Despite another
study, which revealed that NCX blockade with SEA0400 may suppress ectopic automaticity
in pulmonary veins [129], it is important to emphasize that these observations remain
questionable because of the lack of trusted selective NCX blocking effect [128].

ORM-10962 (Orion Pharmaceutical, Espoo, Finland), Figure 5) is a newly developed,
and purportedly the most selective and highly potent NCX blocker. It has been published
that a submicromolar concentration of ORM-10962 significantly reduced both the inward
and outward NCX currents (reverse and forward mode of NCX). This molecule did not
significantly change the main potassium currents involved in action potential repolariza-
tion (Ito, IKr, IKs, IK1), the L-type Ca2+ current and the Na+/K+ pump. One µM ORM-10962
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had no effect on the maximum rate of depolarization (dV/dtmax) of action potential which
indicates that fast inward Na+ current is unaffected. However, the amplitude of pharma-
cologically induced early and delayed afterdepolarizations was significantly decreased
by ORM-10962 (3 and 10 µM) in a concentration-dependent manner [133]. These results
suggest that ORM-10962 is the firstly reported highly selective NCX blocker [133].

In a recent study, the effect of combined ranolazine and SEA0400 and ORM-10103
compounds were investigated in an established experimental model of AF in rabbits.
AF was induced by isoproterenol and acetylcholine. Combined ranolazine and NCX
blocker experiments showed that the inducibility of AF was reduced in both groups by the
additional perfusion with ranolazine and the selective NCX-inhibitors [134].

3.2.5. Gap Junctions Modulators

Gap junctions are clusters of ion channels that provide connections and communica-
tion among cells, allowing the passage of ions and small molecules. They are composed
of two hemichannels (connexons), while the connexon consists of six connexin proteins.
Cardiac connexins have different isoforms (molecular weight of 30, 37, 40, 43 and 45 kDa).
Human atria express particularly connexin 40, and connexin 43 [135,136]. Localization
and function of connexins are governed by posttranslational modification and connexin
phosphorylation [137]. Most of the gap junction channels are localized at the poles of car-
diac cells [138] in close proximity to voltage gated sodium channels [139], while a smaller
portion of gap junction channels can be found on the lateral side of cardiomyocytes. The
consequence of this uneven distribution of gap junction channels is anisotropic conduction,
namely the transversal conduction velocity is smaller than the longitudinal one [140]. Cell-
to-cell coupling via gap junctions determines the conduction velocity and tend to smooth
out the beat-to beat variations in action potential duration, which can affect refractoriness.

Under pathological conditions such as ischaemia, gap junction channels close, which
slows conduction and reduces action potential duration resulting in increased beat-to-beat
variability of action potential duration and dispersion of refractory period. The dispersion
of action potential duration is pronounced in the ischaemic area especially in the border
zone [141,142]. These may result in a meandering activation pathway, conduction block,
and re-entry arrhythmias [143–145]. Conduction disturbances can be caused by fibrosis
as well, since it deteriorates side-to-side electrical coupling of atrial cells [146], therefore
fibrotic border zone may become a substrate for re-entrant arrhythmia [147].

Electrical and structural remodelling caused by permanent AF accompanies changes
in the atrial intercalated discs. Alteration of junctional complexes of intercalated discs like
fascia adherens junctions (N-cadherin), desmosomes (desmoplakin), and the gap junction
proteins (connexins) was described [147]. Remodelling associated with AF causes heteroge-
neous spatial distribution of gap junctions. Although the published results are inconsistent
concerning CX40 and CX43 expression in the atria of patients with AF, however, most of the
results demonstrate the redistribution of gap junctions from the poles of cardiomyocytes
to the lateral sides of these cells. This heterogeneous gap junction distribution seems
independent of AF aetiology [148–150]. The heterogeneous distribution of gap junctions
may lead to increased dispersion in refractoriness, to altered conduction and non-uniform
anisotropic characteristics that can facilitate re-entrant circuits [151].

In some models of AF (like ischemia and mitral valve disease-related AF), the adminis-
tration of specific gap junction modulators that prevent closure of cardiac gap junctions may
possess antiarrhythmic effect against AF [152–155]. In the porcine model of burst pacing-
induced AF, the atrial overexpression of connexin 40 and connexin 43 preserved conduction
velocity and prevented sustained AF [156]. However, these specific gap junction modu-
lators may have minor effects when the altered conduction and non-uniform anisotropic
characteristics is caused by the heterogeneous gap junction distribution [157–159]. In
bovine atrium an endogenous antiarrhythmic peptide (AAP) was identified, which acts
on the gap junction [160]. Several derivatives of AAP were synthetized that enhance gap
junction conduction like AAP10, ZP123 and GAP-134 [161–163].
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AAP10 (Figure 5) was one of the first studied antiarrhythmic coupling peptides [161].
AAP10 improved both metabolic and electrical coupling on guinea pig and rat ventricular
cells and in atrial cells [164–166]. In HeLa cells expressing Cx43, Cx40, AAP10 remodelled
coupling via Cx43 and to a lesser extent Cx40 gap junction channels, which was followed
by enhanced Cx43 or Cx40 protein expression [166,167].

Rotigaptide (GAP-486, ZP123, Figure 5) is a synthetic AAP analogue. The difference
between AAP10 and GAP-486 is that in rotigaptide, the d-isomers have been substituted
for l-isomers. Rotigaptide was the first molecule developed to protect against gap junction
closure. It selectively enhances gap junction conductance and cell-to-cell coupling without
affecting the function of other ion channels. Using the acute atrial stretch model of atrial
fibrillation it was reported that the rotigaptide treatment effectively reduced inducibility
of the sustained atrial fibrillation [168]. It has been reported that rotigaptide effectively
attenuates ventricular arrhythmogenesis and atrial conduction velocity slowing while it
has no effect on control [157,158,169]. In rats and dogs, rotigaptide reduced infarct size
following myocardial infarction [170], and this peptide prevented Cx43 dephosphorylation
during ischemia [171]. Subchronic exposure (12–24 h) to rotigaptide enhanced Cx43 expres-
sion [172], however, Clarke et al. did not observe increase in Cx43 expression but increased
gap junction communication was reported by ZP123 [173]. ZP123 was administered intra-
venously during Phase II clinical trials, which were conducted on myocardial ischaemic
patients with non-lethal ventricular arrhythmias [174]. In spite of promising results, the
development of ZP123 was terminated [174].

Danegaptide (GAP 134, ZP1609, Figure 5) is a small dipeptide analogue of rotigaptide
with oral bioavailability [163]. Using rat atrial muscle strips, it was demonstrated that
administration of GAP 134 prevented conduction slowing elicited by metabolic stress.
This emphasizes the GAP 134 ability to maintain cell-to-cell coupling [175]. In a whole-
animal model, in the canine model of postoperative AF GAP 134 increased conduction
velocity and significantly reduced AF duration without affecting the refractory period [175].
Based on these results, it was suggested to use GAP 134 as a preventive treatment for
post-operative AF [175]. In a dog model of pacing-induced atrial myopathy 14 days GAP
134 treatment did not change Cx43 and Cx40 mRNA levels and the spatial distribution
of Cx43. However, GAP 134 attenuated AF vulnerability in paced dogs with minimal
left atrial dilation, although it had no effect on AF inducibility in animals with marked
left atrial dilation. This suggests that in case of marked structural remodelling (profound
fibrosis), gap junction enhancers cannot affect AF inducibility [159].

In a recent clinical study, the effect of danegaptide treatment was evaluated in patients
with ST-segment elevation myocardial infarction. However, we must note that unfortu-
nately, danegaptide treatment did not improve myocardial salvage of these patients [176].

PQ1 (6-Methoxy-8-[(3-amionpropyl) amino]-4-methyl-5-(3-trifluoromethyl-phen loxy)
quinolone, Figure 5) is the most effective antiproliferative agent among synthetic quino-
line analogues [177]. PQ1-induced cytotoxicity can be related to its enhancing effect on
gap junction communication, namely PQ1 increases activity of existing Cx43, shifts the
expression and enabling of Cx43 to be localized to the plasma membrane [178]. Indeed, in
T47D breast cancer cells. PQ1 caused at least an eight-fold increase in gap junction activity
and decreased growth [177,179]. However, it has been also demonstrated that PQ1 induces
apoptosis via caspase 8 and 9, as well [179]. Oral bioavailability studies prove that PQ1
has a low toxicity to normal healthy tissue [177]. Chang et al. studied the effects of PQ1 on
sinoatrial node and pulmonary veins [180]. As it was detailed above, the conduction block
between sinoatrial node and pulmonary veins is proarrhythmic and increases the risk of
AF occurrence [181]. Chang et al. also reported that in pulmonary vein-sinoatrial node
preparation, the application of the gap junction inhibitor heptanol reduced spontaneous ac-
tivity of sinoatrial node while pulmonary vein activity was unsuppressed and burst firings
were observed. The administration of gap junction enhancer PQ1 eliminated pulmonary
vein burst firings and prevented pulmonary vein arrhythmogenesis [180].
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In summary, it is generally accepted that altered gap junction channel function con-
tributes to the development of AF; therefore, molecules acting on gap junction channels can
be effective pharmacological targets against AF. However, further detailed investigations
are required to explore their potential in AF treatment.

3.3. Other Possible Ion Channel Targets for Novel Antiarrhythmic Drugs

Beside the well-known ion channels the two pore-domain potassium channels (K2P [182]),
small-conductance calcium-activated potassium (SK) channels [183], calcium activated
K+-channels [184], transient receptor channels (TRP [185]), mechanosensitive and stretch
activated channels [186] contribute to the development of cardiac action potential; therefore,
these ion channels can be useful target for antiarrhythmic exploitation as well. However,
based on the results of the relatively small number of investigations there are no or only a
very few promising findings suggesting that molecules acting on these ion channels can be
useful in preventing AF.

3.4. Non Ion-Channel Blockers—Upstream Therapy of AF

The common feature of the above detailed therapeutic possibilities is that they are
related to the alteration of ion channel or gap junctional channel functions. However, there
is a rapid development of the so-called non-ion channel approaches. The goal of these
approaches is to reverse, or to reduce structural remodelling caused by oxidative stress
and inflammation. These approaches are called as “upstream therapies” [187,188].

As previously detailed, structural remodelling is promoted by pathophysiological
conditions like inflammation and oxidative injury, fibroblast proliferation, accumulation
and/or redistribution of collagen fibres, cardiac chamber dilation, and hypertrophy. Proar-
rhythmic effects of atrial remodelling are associated with AF because they are generally
related to conduction disturbances, which promote re-entrant type arrhythmias. Both ex-
perimental and clinical studies have demonstrated that these so-called “upstream therapy”
drugs may affect structural remodelling, inflammation, and/or oxidative stress and this
way they may decrease the occurrence of AF. The occurrence of AF can be reduced by
inhibition of angiotensin-converting enzyme, administration of angiotensin II receptor
blockers, and statins as well [189,190]. In contrast, other studies questioned the efficacy of
these therapies in AF [191]. However, it is necessary to emphasize that the use of statins
is significantly associated with a reduced risk of AF in patients with sinus rhythm [192].
The highest benefit was seen for the prevention of postoperative atrial fibrillation and in
secondary prevention of atrial fibrillation [193,194]. Unfortunately, the precise role and
contribution of oxidative stress and inflammation to the development of AF is still not fully
understood [41,195,196].

4. Conclusions

During the past ten years, a large number of papers were published concerning the
pathophysiology of AF, which help to understand the mechanisms and consequences of the
development of AF and the underlying atrial remodelling. Both ion channel and non-ion-
channel-related therapeutic approaches are in use to prevent, suppress or protect against
AF. However, the currently available pharmacological treatments are far from being ideal.
Based on the recent knowledge of the pathophysiology of AF new antiarrhythmic drugs
were developed which have high affinity to the atrial myocardium and may reduce the
risk of AF. Nevertheless, it is also important to produce new molecules capable of slowing
down or preventing the recurrence of AF. Numerous publications have demonstrated
the efficacy of the recently developed molecules, which have been extensively studied.
However, only larger-scale prospective trials will prove if the use of these antiarrhythmic
compounds will result in improved prognosis of patients with AF.
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Abbreviations

AF atrial fibrillation
AFlu atrial flutter
AERP atrial effective refractory period
APD action potential duration
ARDA atrial repolarizing delayed agents
ATR experimentally induced tachypaced dog model of permanent AF
CICR Ca2+-induced Ca2+-release
CVPT catecholaminergic polymorphic ventricular tachycardia
DAD delayed afterdepolarization
EAD early afterdepolarization
FDA Food and Drug Administration
IK,Ach acetylcholine sensitive potassium current
IK,Ach_Const constitutively active acetylcholine sensitive potassium current (IK,Ach)
ICa,L L-type calcium current
IK1 inward rectifier potassium current
IKATP ATP-sensitive potassium current
IKr rapid component of the delayed rectifier potassium current
IKs slow component of the delayed rectifier potassium current
IKur ultra-rapid component of the delayed rectifier potassium current
Ito transient outward potassium current
INa fast inward sodium current
INaL late sodium current
INCX sodium-calcium (Na+/Ca2+) exchanger current (NCX)
miRNA small single-stranded non-coding RNA)
NSAID non-steroidal anti-inflammatory drugs
PVs left upper pulmonary vein
RAAS renin-angiotensin-aldosterone system
SMAD Mothers Against Decapentaplegic is a protein from the SMAD family
SR sinus rhythm
TGF transforming growth factor
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