
sensors

Article

A Monocular Vision Sensor-Based Obstacle Detection
Algorithm for Autonomous Robots

Tae-Jae Lee 1, Dong-Hoon Yi 1 and Dong-Il “Dan” Cho 1,2,*
1 Department of Electrical and Computer Engineering, Automation and Systems Research Institute (ASRI),

Seoul National University, Seoul 151-742, Korea; ltj88@snu.ac.kr (T.-J.L.); ydh01@snu.ac.kr (D.-H.Y.)
2 Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 151-742, Korea
* Correspondence: dicho@snu.ac.kr; Tel.: +82-02-880-6488; Fax: +82-02-875-0867

Academic Editor: Yajing Shen
Received: 29 December 2015; Accepted: 17 February 2016; Published: 1 March 2016

Abstract: This paper presents a monocular vision sensor-based obstacle detection algorithm for
autonomous robots. Each individual image pixel at the bottom region of interest is labeled as
belonging either to an obstacle or the floor. While conventional methods depend on point tracking for
geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping
(IPM) method. This method is much more advantageous when the camera is not high off the floor,
which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation
is then performed using the IPM results and a floor appearance model. Next, the shortest distance
between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets,
20 of which include nonobstacle images where considerable changes in floor appearance occur.
The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed.
For obstacle datasets, the segmentation precision and the average distance estimation error of the
proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are
57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false
positive rates, while the conventional method gives 17.6%.
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1. Introduction

One of the goals in robotics is to develop a mobile robot that can act autonomously in the real
world. For this purpose, detecting obstacles in front of the robot that are dangerous or impossible to
traverse is a prerequisite for motion planning [1–4]. Obstacle detection is a particularly important
issue for autonomous service robots such as robotic vacuums or monitoring robots, because they must
drive through cluttered environments and must be able to traverse every nook and cranny. They often
get stuck on obstacles such as a tangled wire or a garment and stop operating altogether. Although
innumerable studies have been done on obstacle detection and avoidance, it remains an unresolved
problem, especially when considering the real environment and cost.

Most state-of-the-art commercialized autonomous robots such as home service robots rely on
contact or range data for obstacle detection. The well-known robotic iRobot Roomba vacuum [5]
uses an infrared sensor array and bump sensors for obstacle detection. The Neato Botvac robot [6]
uses laser range finders and bump sensors, and the Dyson 360 Eye robot [7] uses an infrared sensor
array. The Samsung POWERbot robot [8] uses an infrared sensor array and bump sensors, and the LG
Roboking robot [9] uses an ultrasonic sensor array. The DR Robot Sentinel series robot [10], which is a
remote monitoring robot, uses an infrared sensor and an ultrasonic sensor array. However, none of
these sensors are ideal. The bump sensors can detect obstacles only after physically bumping into them,
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which may damage furniture or other household items. Infrared sensors suffer from a narrow field of
view and nonlinear reflectance characteristics. Ultrasonic sensors suffer from specular reflections and
poor angular resolution, which lead to incorrect detection. Laser rangefinders provide better resolution
but are power and cost intensive. In addition to their individual shortcomings, all range-based sensors
have difficulty in detecting small or flat objects on the ground. Reliable detection of such objects
requires high measurement accuracy and precise calibration.

In contrast, vision-based systems provide rich information about the environment and have
become promising alternatives, especially considering the current availability of low-cost image sensors
and high-performance processors. Of the various vision-based approaches, monocular vision-based
approaches are the most suitable for various reasons such as low cost, light weight, and short processing
times. This work thus presents a monocular vision-based obstacle detection method. The goal of
this research is to detect various types of low obstacles that are difficult to distinguish from the floor.
Especially, this work focuses on the situation where the camera is low above the floor. In various robot
platforms such as robotic vacuums or small monitoring robots, the camera cannot be installed high
above the floor. In this case, extracting cues for distinguishing between the floor and obstacle regions
in an image from a conventional point tracking method becomes extremely difficult. The detailed
situation when the camera is low above the floor is analyzed in Section 2. In addition, we focus on
minimizing the false positives related to nonobstacle images.

In this work, we focus on inverse perspective mapping (IPM) to obtain geometric cues in
obstacle detection. For further performance improvement, a vertical plane model is adopted at
the IPM stage. At the next step, appearance-based obstacle segmentation using the IPM results
and the learned floor appearance model is applied. Next, the shortest distance between the robot
and the obstacle to be avoided is calculated. We evaluated the proposed method by applying
it to 70 datasets including nonobstacle images where considerable floor appearance changes.
The quantitative segmentation accuracy is then compared with a conventional method, which we have
also implemented. The accuracy of the distance estimation of the proposed method is also analyzed.

The rest of the paper is organized as follows: we review the related works in Section 2. In Section 3,
we provide an overview of the system. In Section 4, we introduce an improved IPM-based coarse
obstacle detection method, followed by the obstacle segmentation and distance estimation method in
Section 5. Section 6 presents the experimental results, and we conclude the paper in Section 7.

2. Related Work

In various environments, the floor can be locally considered to be a plane, and the detection of
obstacles can be simplified to the problem of finding floor anomalies. Current vision-based algorithms
can be classified into three categories: appearance-based methods, 3D reconstruction-based methods
and homography-based methods.

For appearance-based methods, multiple visual clues from the environment are used for obstacle
detection and free space detection. Lorigo et al. used color information in addition to edge information
to differentiate between free space and obstacles [11]. Ulrich and Nourbakhsh proposed an obstacle
segmentation algorithm based on a hue and intensity histogram [12]. These methods differentiate
ground from obstacles by simply comparing the appearance of the image pixels to the appearance
of the ground. Li and Birchfield [13] combined vertical edges, thresholding, and segmentation to
approximate a wall–floor boundary and then classified the horizontal edges that lie on that boundary.
Generally, purely appearance-based obstacle detection models fail when the floor texture changes or
when the obstacle is extremely similar in appearance to the floor.

For 3D reconstruction based-methods, 3D information is extracted from point tracking for obstacle
detection. Shen et al. [14] proposed a Lucas-Kanade-Tracker (LKT)-based time-to-contact (TTC) calculation
for obstacle detection. Souhila et al. [15] proposed a Horn and Schunck dense optical flow-based TTC
calculation for obstacle detection. The TTC-based method can be regarded as a simplified 3D reconstruction
since these method can obtain depth information for each flow vector without doing full 3D reconstruction.
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Lalonde et al. [16] and Naito et al. [17] proposed full 3D reconstruction-based obstacle detection using an
optical flow calculation. However, these works provide obstacle information only for tracked features.
Furthermore, these methods require robust features for tracking in obstacle regions, and the accuracy of
point correspondence affects obstacle detection performance.

For homography-based methods, most of the works track points near the floor, and obtain
the cues for distinguishing between the floor and obstacle regions in an image from the floor
homography error. Jin and Li [18] proposed a method for ground plane detection in which they
used a dominant homography calculation between two images by classifying sparse feature points
as floor or obstacle. Conrad et al. [19] used a SIFT feature tracking and homography-based modified
expectation maximization algorithm to cluster pixels as belonging to one of two possible classes:
ground or nonground. However, these works provide obstacle information only for tracked features,
and require robust features for tracking in both ground and obstacle regions.

More recently, segmentation methods have been combined with point tracking-based homography
methods. These methods usually perform a purely appearance-based region segmentation first and
combine homography information from point tracking, then the optimal label of image segments
are determined. Specifically, Cui et al. [20] proposed LKT-based ground plane estimation based
on homography combined with region-growing segmentation for obstacle labeling. Lin et al. [21]
used k-means-based color segmentation combined with SURF feature tracking for ground labeling.
Kumar et al. [22] proposed a LKT-based homography calculation for ground plane detection,
which they then combined this with graph-based segmentation for floor extraction. More recently,
Kumar et al. [23] proposed superpixel-based rough segmentation combined with homography
information from LKT and vertical line detection for small obstacle detection. They formulated
the problem as a Markov random field and used the graph cut algorithm [24] for optimal obstacle
labeling. Although these methods combine image appearance and a homography-based geometry
model, they still require robust points for tracking, especially for the obstacle region.

As mentioned above, most of the prior works are based on point tracking. The point tracking-based
methods suffer from the problem of false correspondence and require robust features to be tracked.
However, for low-mounted cameras, point tracking near the floor becomes extremely difficult because the
affine motion model, which is assumed by most of the algorithms, becomes invalid. Figure 1 shows the
point tracking results of five sequential real indoor environment images when the camera moves forward
with no rotational motion. The images are captured from a camera mounted at 6.3 cm above ground.
For tracking, we use the pyramidal implementation of LKT scheme [25] employed by most previous works.
A tangled wire case is shown in Figure 1a. Most of the tracked features are clearly false correspondences.
A windowsill case is shown in Figure 1b. No tracked features appear in the windowsill region, which is
the actual region of interest. Figure 1c shows a nonobstacle case where the floor appearance changes as a
function of robot motion. The tracked features of the floor region clearly include false correspondences.
These erroneous tracking results induce large homography errors and eventually lead to false positives.
For robotic vacuums, false positives in obstacle detection mean poor cleaning performance.

Figure 1. Tracking results for LKT [25] method when robot moves forward with no rotation. (a) Tangled
wire. (b) Windowsill. (c) Floor with changing appearance.
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Furthermore, for low-mounted cameras, the homography errors from point tracking provide
less-differentiable information. Figure 2a shows the theoretical homography errors as a function of
obstacle height under the assumption of exact tracking and for several camera heights. The obstacle is
assumed to be 0.5 m in front of the first camera, and the second camera moves 0.1 m forward with
respect to the first camera. Evidently, it is much more difficult to distinguish obstacle from floor with a
low camera. In this work, we use a camera mounted at 6.3 cm above ground, as shown in Figure 2b.

For homography-based methods that do not use feature tracking, IPM-based methods can be
used for obstacle detection. Originally, the IPM method was frequently used for eliminating the
perspective effect of the original image in traffic stream detection or lane detection problems [26,27].
Few attempts were made to detect obstacles with monocular settings [28,29]. Neimann et al. [28]
proposed an obstacle detection method for a vehicle application that estimates the ego motion and uses
IPM. Jiang et al. [29] proposed a fast IPM algorithm for road surface recovery and obstacle detection
for vehicle applications. Ma et al. [30] proposed a pedestrian detection algorithm that combines IPM
detection with a vertical 1D profile to improve detection in the vertical direction and to overcome its
limitation in a low-contrast environment. Since the IPM-based method does not use the point matching
information, no risk of false correspondence exists. Furthermore, the IPM methods are based on the
image warping from a floor homography model, not based on the homography errors. This provides
more-differentiable information to distinguish the obstacle from the floor. In the method proposed
herein, we combine the geometric cues from IPM and the appearance model for obstacle segmentation.
For further performance improvement, a vertical plane model is adopted at the IPM stage.

Figure 2. (a) Theoretical homography errors according to camera height when feature tracking is
perfect. (b) Forward-viewing mono camera mounted at 6.3 cm above ground on a home service robot.

3. System Overview

In this work, it is assumed that the ground is relatively flat, and there are no overhanging obstacles
in the environment. As sensory inputs, this study uses images captured from a forward-viewing mono
camera and odometry from robot wheel encoders and gyroscope. The camera is 6.3 cm above the floor
and slightly tilted by 7.2˝ to account for various consumer services such as monitoring or human-robot
interactions. Figure 3 shows the overall flowchart of our approach.

In numerous cases, obstacles are placed more than 1 m in front of the robot. When the camera is
low, the disparities in sequential images from the distant obstacle region reduce to nearly zero, which
makes detecting far obstacles almost impossible. By skipping such images, unnecessary computation
is avoided, which reduces the computation burden of the processor. For these reasons, we aim to detect
near obstacles that appear in the bottom region of images. The algorithm passes over images by simply
checking the variation of edge numbers in the bottom third of the image. This strategy is appropriate



Sensors 2016, 16, 311 5 of 19

for robots that move at a speed less than 0.5 m/s, but it may not be applicable for fast-moving robots.
When the robot moves toward a nearby obstacle, the number of edges in the lower image area usually
increases because most obstacles contain edges. The simple change detection algorithm triggers the
main obstacle detection algorithm to run for at least the three subsequent images. As the robot moves
forward with no obstacle in the image, a change in the floor pattern will also trigger the main algorithm
to run. In this case, the main algorithm distinguishes floor patterns from obstacles.

After the main algorithm is triggered, improved IPM-based coarse obstacle detection is applied to
the lower region of interest (ROI) image. If the lower ROI image is classified as a nonobstacle image,
the obstacle segmentation step is skipped. Otherwise, the obstacle is segmented and the distance to the
obstacle is estimated. The main novelties of this work are as follows. Firstly, a vertical plane model is
adopted at the IPM stage for coarse obstacle detection. Secondly, the IPM-based method is combined
with the color and texture appearance model for obstacle segmentation.

Figure 3. Flowchart of the overall approach.

4. Improved IPM-Based Coarse Detection

4.1. Conventional IPM-Based Obstacle Detection

Figure 4 illustrates the geometrical properties of the camera image plane along with the
corresponding transformed plane on the ground. A robot acquires images 1 and 2 at two different times
t1 and t2, respectively, and can apply the relative transformation by using the odometry information
between the two frames. Assume that pixel x1 in image 1 belongs to the floor. Then x1 can be projected
to the floor as x1,ground, and then reprojected to image 2 as x’. This can be simplified as follows by
using the floor homography matrix H:

x11 “ H ¨ x1 (1)
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where H may be calculated by using the camera intrinsic matrix K, relative camera rotation R relative
camera translation t floor normal n and the camera-floor distance d as follows:

H “ K ¨ pR´ t ¨ nT{dq ¨K´1 (2)

Figure 4. Illustration of IPM-based detection principle.

Likewise, assume that no obstacles exist under the horizon of image 1. Then all points of image 1
under the horizon can be warped, and the virtual image at time t2 can be generated. If this assumption
is true, the virtual image at time t2 should be same as the real image 2. But if an obstacle exists under
the horizon of image 1, the virtual image is no longer the same as the real image 2 of the obstacle
area. In this way, obstacles are detected by simply subtracting the virtual image from real image 2.
Because of its geometrical characteristics, the detection region of the IPM algorithm is limited to the
region under the horizon, which means that, instead of evaluating the entire obstacle region, only
the region under the horizon need be used for IPM detection. In this work, the obstacle detection
region is set to be the lower vertical third and the middle horizontal three-quarters of the image. Any
obstacle that appears in this region directly prevents the robot from moving forward. Hereinafter, we
refer to this region as the ROI, and the algorithm applies IPM-based obstacle detection and obstacle
segmentation inside this ROI. Note that, although trapezoidal regions are generally used to define the
ROI, for simplicity we use a rectangular ROI in this research.

Generally, the IPM-based method can reliably detect most obstacles. Even though the camera
is mounted at a low position in our case, the IPM-based method can detect any obstacle under the
height of the camera when the obstacle is assumed to have a highly textured surface, and the floor
homography model is accurate. This method completely avoids traditional feature extraction and
matching or optical flow computation in obstacle detection. Although the IPM-based method is very
efficient, it does suffer from two major drawbacks. First, few relatively large sized obstacles with
homogeneous coloring or texture in their inner region are detected [31,32]. Second, errors in the
homography model, unknown camera motion, and light reflection from the floor can introduce noise
into the floor image. These drawbacks are well illustrated in Figure 5. The total number of pixels
detected by the IPM methods as belonging to an obstacle is Nfloor. For the fan, wire, chair, and window
sill illustrated in Figure 5a–d, the IPM provides reliable detection. However, little detection occurs
for the boundary regions for the transformer and toolbox shown in Figure 5e,f. These obstacles are
relatively large and have homogeneously colored inner regions. When the appearance of the floor
changes as the robot moves, a few noisy detections occur in the floor region, as shown in Figure 5g,h.

With regard to this problem, a 1D vertical profile was proposed in [30] to distinguish true
detections from noisy detections in IPM-based pedestrian detection. However, this method is based on
the assumption that pedestrians have edges that are strongly vertically oriented compared with their
background. However, this assumption is not valid in general, and no clear cue exists to distinguish
correct detections from noisy detections at the pixel level. Instead, we classify the ROI image as
obstacle image or nonobstacle image. Only after the ROI image is classified as an obstacle image, is the
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following obstacle segmentation conducted. However, as shown in Figure 5, simply classifying these
two cases based on the number of detected pixels is not enough—further processing is needed.

Figure 5. IPM-based obstacle detection results for various cases. Few obstacles are detected for the
case of the transformer and toolbox in panels (d) and (e), whereas few obstacles are detected in the
floor region in panels (f) and (g).

4.2. Estimating Candidate-Obstacle Distance

To distinguish a nonobstacle image from an obstacle image, we propose a vertical plane
model-based image warping. To do this, the approximate distance between robot and candidate
obstacle is required. As mentioned in the introduction, feature matching or optical flow based
3D reconstruction is not reliable for estimating obstacle distance. Instead, we propose a simple
appearance-based method.

With monocular vision, a common approach to estimating distance is to assume that the ground
is relatively flat and that no overhanging obstacles are present [12,33]. If these two assumptions are
valid, the distance from the camera can be estimated for obstacle pixels in the lower region of the
image because we know the camera height and tilting angle. In other words, if we figure out the lower
region pixels of the obstacle, the approximate distance can be estimated based on the pinhole camera
model. To further simplify the problem, we estimate the horizontal border line l in the ROI image that
passes through the lower pixels of the obstacle. If we know the line l in the image, the ROI can be
divided into two regions: an upper region Ωl,upper of the line l and a lower region Ωl,lower of the line l.
The union of these two regions is the entire ROI image ΩROI as follows:

ΩROI “ Ωl,upper YΩl,lower (3)

Next, we consider the appearance of the two regions. If the two regions have different color
or texture distributions, they can be quantified as two probability density functions (pdfs). Among
the possible lines l in the ROI region, the difference between two pdfs is maximized when the line l
passes through the bottom pixels of the obstacle. Therefore, the distance estimation problem can be
formulated as finding the horizontal border line l that maximizes the difference between pdfs of upper
region and lower region. Figure 6 illustrates the problem formulation.
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Figure 6. Formulation of problem for finding the horizontal border line that maximizes the difference
in appearance between the upper and lower regions.

For the appearance model, we use the combined intensity and texture features. Of the various
texture features, we use that proposed in [34] because it discriminates very well between foreground
and background regions. The texture feature proposed in [34] is based on the geometry of textures
using semilocal image information and tolls from differential geometry. We used a 6 ˆ 6 square patch
around pixel (x,y) for semilocal image information. The texture descriptor T is defined as:

T “ exp
ˆ

´
detpgxyq

σ2

˙

(4)

where gxy is the metric tensor of the square patch and σ2 is a scaling parameter. In this work, σ2

is selected as one-thousandth of the maximum value of det(gxy) over the ROI image. The texture
descriptor is especially useful when the obstacle texture differs from that of the floor. Figure 7 shows
the extraction of texture description, which is converted to an 8-bit grayscale image for a towel, bed
cover, and wire case. The results show that texture descriptors give highly differentiable information
for dividing the obstacle region from the floor region.

Figure 7. Metric tensor based texture feature extraction converted to 8-bit grayscale image in the ROI.

Next, the joint probability density estimation of intensity and texture feature is conducted in the
following way: Although relatively fast kernel density estimation methods exist such as the improved
fast Gauss transform [35], a multidimensional nonparametric kernel density estimation in general
requires high computing power. After careful consideration, we regard the intensity and texture
feature as an independent variable in a naïve Bayesian manner. The joint probability density functions
for a given region Ωl,upper and Ωl,lower can then be approximated in a simple form as:
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#

f pI, T|Ωl,upperq “ f pI|T, Ωl,upperq ¨ f pT|Ωl,upperq » f pI|Ωl,upperq ¨ f pT|Ωl,upperq

f pI, T|Ωl,lowerq “ f pI|T, Ωl,lowerq ¨ f pT|Ωl,lowerq » f pI|Ωl,lowerq ¨ f pT|Ωl,lowerq
(5)

where I and T are the intensity and texture features, respectively. Each intensity and texture pdf can be
easily calculated by using a Gaussian kernel as follows:
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where | ¨ | is the area of the given region, and G(¨) is the 1D Gaussian kernel with zero mean and variance
σ2. To estimate the difference in appearance between the two regions, we use the Kullback-Leibler (KL)
divergence. The KL divergence is frequently used to measure the distances between two pdfs [34,36].
The KL divergence between the pdfs of region Ωl,upper and Ωl,lower can be defined as:

KLp f pΩl,upperq, f pΩl,lowerqq

“
r
RT

r
RI
p f pI, T|Ωl,upperq

f pI, T|Ωl,upperq

f pI, T|Ωl,lowerq
` p f pI, T|Ωl,lowerqlog

f pI, T|Ωl,lowerq

f pI, T|Ωl,upperq
qdI ¨ dT

(7)

where RI and RT are the domain of the intensity and texture features. Next we find the horizon line
that maximizes the KL divergence of two regions as follows:

l˚ “ argmax
l

KLp f pΩl,upperq, f pΩl,lowerqq (8)

By simply scanning the possible horizontal border lines within the ROI, we can find the l˚ that
satisfies Equation (8).

To reduce complexity, two strategies are adopted: The first strategy involves normalizing the
intensity and texture feature domains RI and RT to integer values between 0ďRI < 64 and 0 ď RT < 64,
respectively. The second strategy involves using the downsampled image in finding l*. The scan is
first done over a 1/16-sized downsampled image, and then the scan is done over the original sized
image around the scanned line.

This method takes only 5 ms to process on a common PC. Figure 8 shows typical examples of
estimated horizontal border lines l*, which are marked as a red line. By assuming that the estimated
border lines pass through the lower region of the obstacle, the estimated distances between the robot
and the obstacle in Figure 8a–c are 0.42, 0.42, and 0.31 m, respectively

Figure 8. Estimated horizontal border lines that pass through the lower pixels of the obstacle.



Sensors 2016, 16, 311 10 of 19

4.3. Decision for Obstacle Existence in the ROI Using Vertical Plane Model

The previous section introduces the method for estimating the distance between the candidate
obstacle and the robot. Next, the estimated distance is transformed with respect to the first frame, and
a virtual vertical plane is set up. Figure 9 illustrates the geometrical properties of the camera image
plane and the corresponding vertical plane. We assume that the obstacle can be modeled as a vertical
plane. We calculate two homography matrixes: a floor homography matrix and the homography
matrix of the obstacle’s vertical plane. By using these two homography models, the virtual image is
calculated as done in the IPM method. The interpretation of this virtual image is that the world is
composed of a floor and a vertical obstacle plane in front of the camera.

Figure 9. Illustration of virtual vertical-plane set up for IPM-based detection.

In the subsequent step, the virtual image is subtracted from the real image 2 followed by
thresholding and binarization. Next, the total number Nobstacle of detected pixels is counted. The total
number of pixels detected by the IPM method is denoted Nfloor because the IPM method models
the ROI in image 1 as the floor. In contrast, the combined floor and virtual vertical planes model
the ROI as a floor and a vertical plane shaped obstacle. The numbers Nobstacle and Nfloor indicate
the degree of inaccuracy of each model, respectively. Next, the ratio of Nfloor to Nobstacle is used to
classify the ROI image between the nonobstacle image and the obstacle image. If the ratio is large, it is
reasonable to classify the ROI region as the obstacle image. Otherwise, the ROI region is classified as
the nonobstacle image.

Figure 10 shows the proposed decision rule to distinguish between nonobstacle image and
obstacle image. By setting appropriate thresholds, the two cases may be distinguished correctly. In our
setting, Threshold1 and Threshold2 are determined experimentally to provide the best results as 300
and 1.5, respectively. These thresholds should be adjusted according to the height and tilting angle
of the camera and image resolution. Figure 11 shows examples of calculated ratios for various cases.
Interestingly, the fan, T-shirt, and wire seem unlikely to be modeled as vertical planes. However, these
obstacles show a high ratio, as shown in Figure 11d–f. In addition, the cases where the appearance of
the floor changes lead, as expected, to a low ratio, as shown in Figure 11g,h.

Figure 10. Decision rule for distinguishing between obstacle and nonobstacle images.
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Figure 11. Examples of calculated ratio Nfloor/Nobstacle for various cases.

5. Obstacle Segmentation and Distance Estimation

From the improved IPM-based coarse obstacle detection process, the existence of obstacles at
the ROI is known. The pixels detected by the IPM method provide a coarse cue about the obstacle.
However, the exact obstacle boundary remains unknown. For fine obstacle segmentation, the algorithm
does a Markov random field based obstacle segmentation by using the appearance of the obstacle and
the floor. The proposed obstacle segmentation method is analogous to interactive segmentation, as
used in [37]. Because we use appearance-based segmentation, false positives may occur, which are
actually floor region areas labeled as obstacles. Using a morphological operation and IPM-detected
data, false positives are removed. Next, the shortest distance between the robot and the obstacle is
estimated by using the results of segmentation.

5.1. Appearance-Based Probability Density Estimation

For obstacle segmentation, the probability densities of floor and obstacle appearance are estimated.
To model the floor appearance, the color histogram of the lower reference area of the image is frequently
used [11,12,25]. Our algorithm for learning floor appearance is very similar to the adaptive method of
Ulrich [12]. This method is very simple, reasonable, and practical in many robotic applications. We
use the intensity and texture features as introduced in Section 4 to model each pixel’s appearance. We
assume that the floor area over which the robot has already traveled is free of obstacles. A candidate
queue and a reference queue are used for to update the adaptive floor appearance model. The reference
queue is used to estimate the floor probability density in current obstacle segmentation. For our camera
setting, the lower 15 rows of the image correspond to the floor 0.17 to 0.26 m in front of the robot.
When no obstacle is detected in these 15 rows, the intensity, texture, and current odometry information
are stored in the candidate queue. At each sample time, the current odometry information is compared
with that from the candidate queue. Next, orientation variation is checked. Orientations that differ
by more than 25˝ from the current orientation are eliminated from the candidate queue. Finally,
the intensity, texture, and odometry information whose corresponding odometry positions differ by
more than 0.26 m are moved from candidate queue into the reference queue. In the current reference
queue, the old data whose position or orientation differ from the current position are removed because
the floor appearance may change as the robot moves. The data whose corresponding odometry
positions differ by more than 1 m or whose orientations differ by more than 45˝ are removed from the
reference queue.
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The floor intensity and texture probability density from the reference queue is estimated only
when the ROI of the current image is classified as an obstacle image by the improved IPM-based
method. Otherwise, the candidate and reference queues are only updated. When the ROI of the current
image is classified as an obstacle image at the beginning of robot operation or immediately after a
rotation, the reference queue is not available. In this case, the intensity and texture information of the
lower 15 rows of the image are immediately moved to the reference queue. A risk exists in such cases
that the reference area for floor appearance model is not obstacle free.

Estimating the obstacle appearance probability density is much easier than for the floor. We
directly use the intensity and texture of the IPM-detected pixels. The estimate of the intensity or texture
probability uses the same model as introduced in Section 4.2. The joint and conditional probability
density can be approximated in a simple form as:

#

f pI, T|Ω f loorq » f pI|Ω f loorq ¨ f pT|Ω f loorq

f pI, T|Ωobstacleq » f pI|Ωobstacleq ¨ f pT|Ωobstacleq
(9)

where the individual intensity and texture conditional probability can be calculated as follows:
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5.2. Markov Random Field Modeling

After estimating the probability density of the floor and obstacle appearance, the obstacle is
segmented by using the Markov random field model. A Markov fandom field (MRF) is a probabilistic
graphical model used to encode conditional dependencies between random variables. We pose our
problem of segmenting the obstacle region in a MRF framework and define an energy function such
that its minimum corresponds to the target segmented obstacle region in an image. In this framework,
we represent each pixel of the image as a node in a Markov random field and associate a unary and
pairwise cost of labeling these pixels. We then solve the problem in an energy minimization framework
where the following energy function E is defined:

Epxq “
ÿ

iPV

ψipxiq `
ÿ

iPV,jPNi

ψijpxi, xjq (11)

where ψi represents the unary term associated with pixel i and ψij represent the smoothness term
defined over the neighborhood system N. Here x is the set of random variables corresponding to each
pixel of the image in the ROI. Each of these random variables xi takes a label 0 or 1 based on whether it
is a floor or an obstacle, respectively. From the probability model, the unary term of each pixel is:

ψipxiq “

#

´ln f pI, T|Ω f loorq i f xi “ 0

´ln f pI, T|Ωobstacleq i f xi “ 0
(12)

ψi may be interpreted as the closeness of each pixel to the floor and the obstacle based on the
probability. The smoothness term is added only if the neighboring pixel has a different label as follows:

ψijpxi, xjq “

$

’

’

&

’

’

%

λ ¨ exp

˜

´||Ii ´ Ij||
2

2σ2

¸

i f xi ‰ xj

0 i f xi “ xj

(13)
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Once the unitary and pairwise terms are defined, the problem of segmenting obstacles and floor
depends on finding the global minima of the energy function defined in Equation (11):

x˚ “ argminxPLEpxq (14)

The global minimum of this energy function can be efficiently computed by using the graph cut
method. We use the efficient, publicly available implementation of Kolmogorov et al. [24] to find the
min cut of this graph. Since our graph cut-based obstacle segmentation is based on the color texture
appearance model, a risk of obtaining false positives always exists. To remove false positives, we first
morphologically open the system. Next, we group obstacle pixels by using connectivity. Finally, we
label the entire group as floor when no IPM-detected pixel is inside the group. False positives can be
removed efficiently with this method, leading to a reliable segmentation.

5.3. Estimating Obstacle Distance

To avoid obstacles, the shortest distance between obstacle and robot must be estimated from the
image. The coarse method of estimating obstacle distance, which was introduced in Section 4.2, is
for distinguishing a nonobstacle image from an obstacle image. We require now a precise estimate
of obstacle distance that uses the final obstacle segmentation results. As introduced in Section 4.2,
a common approach to estimating distance involves using a monocular camera is to assume that the
ground is relatively flat and that there no overhanging obstacles are present. If these two assumptions
are valid, then the estimated distance to the bottom of a given obstacle is correct for all obstacles.
However, the higher a given part of an obstacle is above the ground, the more overestimated is
the distance. A simple approach to deal with this problem consists of grouping obstacle pixels and
assigning the shortest distance to the entire group. An obstacle in any part of the ROI hinders the robot
in its progression, so we are only interested in the shortest distance between the robot and the obstacle
in the ROI. Therefore, the lowest part of the obstacle segmentation is important. To robustly find the
lowest pixels from the noisy obstacle segmentation result, the algorithm uses a simple median filtering.
We first store the height of the lowest obstacle pixels for each image column. Next, median filtering
is done to find the lowest pixel in the image. Using the pinhole camera model, the shortest distance
between robot and obstacle is easily calculated.

6. Experimental Results

This section presents the experimental results obtained by running the algorithm described above.
The experiments use a typical robotic vacuum with a forward-viewing camera, wheel encoders, and a
gyroscope. The robot platform is shown in Figure 2b. The images from a forward-viewing camera
are collected at a resolution of 320 ˆ 240 pixels at a 5 Hz data acquisition rate. Before conducting
the experiment, the camera is calibrated by using the common checkerboard method [38], and the
extracted intrinsic parameters are used in the visual data processing.

For the experiments, the following obstacles were selected: a wire, a fan, a speaker with a thin
plate at the bottom, a chair with U-shaped legs, a four-legged chair, a bed cover, a window sill, a
unicolor transformer, a unicolor toolbox, and a garment. We also tested four different nonobstacle
cases where the floor changes appearance depending on the robot motion as follows: a floor material
changes from marble to laminate and vice versa, a carpet changes from gray to pink, and a black
A4-size paper lies on the floor. In this case the algorithm must be sufficiently robust to distinguish
between the obstacle and any changes in floor appearance.

The experiments are conducted in a typical home environment. The obstacles were laid at various
places in the experimental environment. At the start of each test, the robot would be manually driven
at 0.35 m/s toward an obstacle by using a remote controller. Each obstacle was tested five times and at
various places. Each test dataset is composed of 15 to 20 images and odometry readings. Including the
nonobstacle cases, the total number of datasets is 70 and the total number of images is 1079.



Sensors 2016, 16, 311 14 of 19

To quantitatively evaluate obstacle segmentation performance over an image domain, the
obstacles were hand labeled for every image pixels to manually create a ground truth. Figure 12
shows examples taken from all the datasets of hand-labeled ground truth obstacle segmentation for
quantitative analysis. Next, all pixels are classified into four classes: true positive (TP), true negative
(TN), false positive (FN), and false negative (FN). We evaluated precision, false positive rate, and recall
for all image data as follows:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Precision “
TP

TP` FP

False Positive Rate “
FP

TP` TN ` FP` FN

Recall “
TP

TP` TN

(15)

Since the main algorithm is triggered based on edge information, the performance is evaluated
only for images acquired after the main algorithm is triggered. The number of images to be evaluated
was 412 from among 1079 total images. For nonobstacle datasets, all pixels in the lower ROI belong to
the floor, and the obstacle pixels simply become false positives.

To compare with conventional methods, we implemented a modified version of the model used
in [23]. Originally, [23] used LKT-based optical flow but, as shown in the Figure 2, LKT is not suitable
for low cameras. The original LKT-based method gives a disastrous result for obstacle detection in our
experimental environment. Thus, we instead used the Gunnar–Farneback optical flow algorithm [39]
for comparison, which provides better results in our environment. The best seed number for SLIC [40]
at the ROI is determined experimentally to be 500.

Figure 12. Examples of hand-labeled ground truth obstacle segmentation for quantitative analysis
(upper row: original images, lower row: hand-labeled ground truth segmentation).

Figure 13 shows the results for obstacle labeling from among the 50 obstacle datasets. The first
row shows the original image and the second and third rows show, respectively, the obstacle detection
result obtained by using the proposed method and the conventional method (modified version of the
method from [23]). Of these obstacles, the wire is the most hazardous for robot navigation. Wires 1, 2,
and 3 in Figure 13 show three cases from the five wire datasets. Clearly, the proposed method detects
the boundary of the obstacle much better than does the conventional method. In addition, the number
of false positives with the proposed method is much less than with the conventional method.
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Figure 13. Obstacle labeling results from the proposed and conventional methods.

Table 1 shows the quantitative evaluations of obstacle segmentation and the error in distance
estimation. For the proposed method, the precision, false positive rate, and recall are 81.4%, 5.9%, and
74.4%, respectively, whereas the results from the conventional method are 57.4%, 14.2%, and 37.6%,
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respectively. Even though the camera height is low above the floor, the image warping based IPM
method can extract obstacle information reliably. Furthermore, combining the IPM-based method
with the proposed appearance model leads to a better segmentation accuracy when compared to the
conventional method. On the other hand, the conventional point tracking based method suffers from
the false correspondence problem which leads to a decrease in segmentation accuracy. In addition, the
calculated homography error from the point tracking provides less differentiable information which
leads to a lower recall performance.

Table 1. Segmentation accuracy and obstacle distance estimation error for obstacle datasets.

Proposed Method Conventional Method
(Modified Version of [23])

Segmentation
accuracy

Precision 81.4% 57.5%

False positive rate 5.9% 14.2%

Recall 74.4% 37.6%

Obstacle distance
estimation error

Average error 1.6 cm 9.9 cm

Standard deviation of error 5.8 cm 11.4 cm

By using the segmentation results, the algorithm to estimate distance gives the shortest distance
from the robot to the obstacle based on the obstacle segmentation result. Next, the distance is
transformed with respect to the initial robot position by using the current robot position. We then
measure the distance estimation errors of the proposed method. Before each test, the shortest distance
between the robot and the obstacle is manually measured for quantitative analysis.

The total average error and the standard deviation of the proposed method are 1.6 and 5.8 cm,
respectively, whereas those for a conventional method are 9.9 and 11.4 cm, respectively. As for the
conventional method, the same distance estimation method introduced in Section 5.3 is used along
with the corresponding segmentation results. Therefore, the difference in distance estimation error is
attributed to the different performance level of obstacle segmentation.

Figure 14 shows the results of nonobstacle cases from the 20 datasets of four scenarios. The first
row shows the original image and the second and third rows show the results obtained with the
proposed method and with the conventional method (a modified version of the method used in [23]).
The false positive rate of the result is shown in Table 2. The proposed method has a false positive
rate of zero whereas the conventional method has a false positive rate of 17.6%. As mentioned
in the introduction, the most serious problem of a high false positive rate for a robotic vacuum is
that the robot regards the false positives as obstacles, which may result in poor cleaning. However,
the proposed method efficiently differentiates between these cases by using the IPM method and
proper thresholding.

Table 3 shows the computation time required to run the obstacle detection algorithm in each
approach. The computation time is measured using an Intel Core i7-2600 running at 3.4 GHz.
The proposed method and the conventional method take 87.9 ms and 136.0 ms, respectively.
The simplicity of the proposed method, the improved IPM-based method and the appearance model,
results in faster computation time compared to that of the conventional method.

Table 2. False-positive rate for nonobstacle datasets (change in floor appearance).

Proposed Method Conventional Method (Modified Version of [23])

False positive rate 0.0% 17.6%
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Figure 14. Obstacle segmentation results for nonobstacle images when the floor appearance changes.

Table 3. Computation time comparison.

Proposed Method Conventional Method (Modified Version of [23])

Computation time 87.9 ms (11.4 Hz) 136.0 ms (7.4 Hz)

7. Conclusions

This paper presented a monocular vision sensor-based obstacle detection algorithm for
autonomous robots. Each individual image pixel in the lower region of interest is labeled as belonging
either to an obstacle or to the floor based on the combination of geometric cues and the appearance
model. Unlike state-of-the-art monocular vision based algorithms, which depend on feature tracking,
the proposed algorithm uses the IPM method. This method is much more advantageous when the
camera is low with respect to the floor, which makes feature tracking extremely difficult near the floor
region. To further improve performance, a vertical plane model is adopted at the IPM stage. Using the
IPM-based obstacle detection result and adaptive floor appearance learning, the algorithm conducts
a Markov random field based obstacle segmentation. Next, the shortest distance between obstacle
and robot is calculated. We evaluated the proposed method for 70 datasets including nonobstacle
images where the floor appearance considerably changes. The quantitative analysis of segmentation
accuracy and distance estimation accuracy were conducted and compared to the state-of-the-art
method. The proposed method yields higher precision and better recall performance for the various
obstacle datasets compared with the state-of-the-art method. It also has a false positive rate of zero
for the nonobstacle datasets described in the paper. The proposed algorithm should be applicable to
various kinds of autonomous robots for better navigation and path planning.
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