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Vertical organic synapse expandable to
3D crossbar array
Yongsuk Choi1,4, Seyong Oh2,4, Chuan Qian 1, Jin-Hong Park 2,3✉ & Jeong Ho Cho1✉

Recently, three-terminal synaptic devices have attracted considerable attention owing to their

nondestructive weight-update behavior, which is attributed to the completely separated

terminals for reading and writing. However, the structural limitations of these devices, such

as a low array density and complex line design, are predicted to result in low processing

speeds and high energy consumption of the entire system. Here, we propose a vertical three-

terminal synapse featuring a remote weight update via ion gel, which is also extendable to a

crossbar array structure. This synaptic device exhibits excellent synaptic characteristics,

which are achieved via precise control of ion penetration onto the vertical channel through

the weight-control terminal. Especially, the applicability of the developed vertical organic

synapse array to neuromorphic computing is demonstrated using a simple crossbar synapse

array. The proposed synaptic device technology is expected to be an important steppingstone

to the development of high-performance and high-density neural networks.
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W ith the rise of the “big data” era, in which there
has been an explosion of unstructured data, such as
images, text, sound, and video, handling such types

of data through using conventional von Neumann computing
with separate processing and memory units has become
difficult1–5. Neuromorphic computing‒which mimics the ability
of the human brain to perform energy-efficient parallel proces-
sing of information using a complex neural network (NN)‒has
attracted considerable attention as one of the pathways to meet
such technical demands6–10. The brain processes and memorizes
information simultaneously, which makes it free from the bot-
tleneck problem. As such NNs in the brain consist of numerous
synapses, the development of high-density and low-power
synapse-like devices is essential to the successful implementa-
tion of neuromorphic computing1,2,4,11–14. As pioneering
research, extensive studies on an artificial synapse based on a
two-terminal resistive memory device have been conducted in
recent years4,7,11,13,15–17. These two-terminal synapses are fabri-
cated in a crossbar array structure, whose simplicity and short
channel ensure a high integration density and low power con-
sumption. However, nondestructive weight update in the two-
terminal synapse is difficult to be accomplished because of its
structural nature, i.e., a single shared terminal for reading and
writing7,15–21. Very recently, Wang et al. effectively alleviated this
issue by applying a significantly low readout voltage pulse,
but further researches are still required for resolving this
issue fundamentally17. In the meantime, three-terminal synaptic
devices have attracted considerable interest owing to their
nondestructive-weight-update behavior, which is attributed to the
completely separated terminals for reading (drain) and writing
(gate)1,6,9,22–27. In recent studies, three-terminal artificial synap-
ses implemented with various inorganic and organic materials
showed a desirable weight-controllability property via various
charge-storage principles using interfacial traps28–30, atomic
vacancies14, ion intercalation22,26,28,31, and floating gates32–35.
For example, electric-double-layer transistors and floating-gate
transistors have been demonstrated to be able to successfully
emulate a biological synapse12,32,33,36. However, three-terminal
synapses have a lower array density and a structural limitation on
line-design compared to the two-terminal crossbar array struc-
ture in a complicated circuit configuration; these drawbacks result
in a lower processing speed and higher energy consumption of
the entire system.

Herein we propose a vertical synapse featuring a remote weight
update via ion gel, which is also extendable to a crossbar array
structure. For the device configuration, a sub-100-nm-thick poly
(3-hexylthiophene) (P3HT) channel is positioned at every cross-
point of the pre- and postsynaptic terminals, and the ion-gel
weight-control (WC) layer is deposited on them. Mobile ions in
the ion gel readily penetrate the free volume in the P3HT channel,
which results in a nonvolatile change in the channel conductance.
Important synaptic properties, such as short-term plasticity
(STP), excitatory and inhibitory postsynaptic currents (EPSC and
IPSC, respectively), and long-term potentiation/depression (LTP/
D) are evaluated via current–voltage measurements. In particular,
the dimensional condition of vertical channel for achieving the
optimal LTP/D characteristics are investigated via control of
the channel length and area of the line cross-point. Finally,
the applicability of the developed organic synapse array to the
hardware NNs (HW-NNs) is evaluated in two ways: small-scale
real-time learning and large-scale theoretical simulation.

Results
Fabrication of ion-gel-gated vertical crossbar synapse array and
its synaptic properties. Figure 1a, b show a proof-of-concept

illustration of vertical crossbar synapses with two-terminal and
three-terminal device geometries, respectively. The three-terminal
vertical synapses, enabled by remote gate controllability of ion-
gel, are integrated into a large area crossbar array to construct an
artificial neural network (ANN) as shown in Fig. 2a. The device
array consisted of the bottom and top electrode lines, which
corresponded to the pre- and postsynaptic terminals, respectively.
The semiconducting polymer layer, sandwiched at every cross-
point between the top and bottom electrode lines, served as the
synaptic channel. The ion-gel layer and top gate lines were uti-
lized to achieve the nonvolatile-weight-change property of a
biological synapse as a WC terminal stack. By virtue of the free
volume in the semiconducting polymer layer, mobile negative
ions in the ion-gel could readily penetrate the channel under the
application of a negative WC voltage (VWC)37,38. The penetration
of negative ions (TFSI− ions) was proven using scanning electron
microscope-energy dispersive X-ray spectroscopy (SEM-EDS)
analysis (see details in Supplementary Fig. 1 and Supplementary
Note 1). In contrast, ions moved out from the channel layer
under the application of a positive VWC. The penetrating negative
ions accumulated hole carriers in the channel layer, which led to
an increase in the channel conductance. The conductance change
in our ion-gel-gated device caused by the ion movement was
similar to the operation of a biological synapse39–41. In the pro-
posed ion-gel-gated artificial synapse, p-type P3HT was used as
the vertical channel, whereas an ion-gel consisting of ionic liquid
and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-
HFP) was used as the gate dielectric layer (see the chemical
structures in Fig. 2a). Figure 2b shows a cross-sectional schematic
of the fabrication procedure of the proposed ion-gel-gated vertical
synapse. To fabricate the organic synapse array, a P3HT solution
blended with a crosslinking agent was spin-coated onto the
substrate with prepatterned bottom metal lines42,43. The channel
was then defined by UV exposure and a subsequent solvent
washing process. The top metal line was thermally deposited to
form the vertical channel. Finally, the ion-gel gate dielectric layer
was spin-coated, and the WC electrode lines were thermally
deposited. Figure 2c shows an optical-microscopy image of the
vertical transistor-type organic synapse array.

The channel conductance of a transistor-type synaptic device is
correlated to the synaptic weight in a biological synapse17,24.
Thus, we applied a VWC pulse to the WC terminal and monitored
the postsynaptic current (PSC) between the bottom (source) and
top (drain) lines. A typical PSC–VWC characteristic curve of the
ion-gel-gated vertical synaptic device is shown in Supplementary
Fig. 2. The device showed a high on/off ratio of over 105 within a
small VWC operation range of ±4 V. A clear hysteresis loop was
observed in the clockwise direction because of the slow move-
ment of the penetrating ions within the P3HT channel37,38. Then,
the synaptic properties, including the EPSC/IPSC, paired-pulse
facilitation (PPF), and LTP/D, of the ion-gel-gated vertical
synapse were analyzed. Under varied VWC with its amplitude
from ±0.5 to ±3 V and width of 50 ms, the PSC measured at a
constant presynaptic voltage (Vpre) of −0.01 V showed clear
EPSC and IPSC responses (Fig. 2d). The PSC immediately
increased (decreased) upon the application of negative (positive)
VWC, and it was retained even after 50 s; however, it did not
return to the initial value, because of the residual ions in the
P3HT layer.

Next, the STP of our synaptic device was investigated. Figure 2e
shows the PPF characteristics of the device measured under a
small VWC of −1 V. In this voltage, ion penetration into the
P3HT channel was limited, and thus, the device showed clear STP
behavior. As shown in the inset of Fig. 2e, two successive pulses
applied at a shorter interval evoked highly amplified EPSC
responses. The PPF index can be defined as the ratio of the first
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Fig. 1 Schematic illustration of synaptic devices. a Two-terminal synapse. b Three-terminal synapse with crossbar array structure.
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Fig. 2 Fabrication of ion-gel-gated vertical crossbar synapse array and its synaptic properties. a Schematic diagram of ion-gel-gated vertical crossbar
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b Cross-sectional schematic of fabrication procedure of ion-gel-gated vertical P3HT synapse. c Optical microscopy image of crossbar synapse array.
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proposed ion-gel-gated P3HT crossbar synaptic device. The inset shows the PSC generated by a pair of VWC stimuli. f LTP/D characteristics of synaptic
device under application of 100 consecutive potentiation pulses (VWC=−3 V) followed by 100 consecutive depression pulses (VWC=+2 V).
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PSC peak to the second PSC peak (A2/A1)39,41. This PPF index
decreased exponentially as the interval between the first and
second pulses (Δt) increased. The relationship between the PPF
index and the interval can be expressed as PPF= 1+ C1 exp
(−Δt/τ1)+ C2 exp(−Δt/τ2), where τ1 and τ2 denote the relaxation
times of rapid and slow phases, respectively, and C1 and C2 are
constants representing the initial facilitation magnitude of rapid
and slow pulses, respectively. Our ion-gel-gated vertical synapse
showed τ1 of 87 ms and τ2 of 1762 ms, which coincided with the
corresponding values of a biological synapse39–41. Our synaptic
device also showed reliable long-term plasticity behavior wherein
the changed current did not completely return to the initial value,
because of the residual ions in the P3HT channel. To analyze the
LTP/D characteristics of the proposed device, 100 consecutive
potentiation pulses (VWC=−3 V, 50 ms) followed by 100
consecutive depression pulses (VWC=+2 V, 50 ms) were applied
to the WC terminal. As shown in Fig. 2f, the PSC after 100
negative pulses increased up to 15.3 mS, after which it decreased
continuously with the application of positive pulses. Overall, the
device successfully mimicked various electrical behaviors that
occur in biological synapses, including short-term and long-term
properties.

Optimization of vertical synaptic device geometry. The LTP/D
characteristics of a synaptic device are considered as its most
critical property in neuromorphic computing because key factors
of the LTP/D curves, such as the dynamic range (Gmax/Gmin),
nonlinearity (NL), and effective number of states (NSeff), have a
significant impact on the accuracy of the learning/recognition
tasks performed by an ANN44,45. Therefore, we optimized the
LTP/D characteristics of the proposed device by adjusting the
ion-penetration behavior through tuning of the channel thickness
and area of the ion-gel-gated vertical synapse. Figure 3a and
Supplementary Fig. 3 show the LTP/D characteristics of vertical
synaptic devices with P3HT channels of various thicknesses

under the application of a set of VWC pulses consisting of 100
potentiation pulses (VWC=−3 V) and 100 depression pulses
(VWC=+ 2 V). Here, the pulse frequency and pulse width were
fixed at 2 Hz and 50 ms, respectively (see Supplementary Figs. 4
and 5, and Supplementary Notes 2 and 3 for the additional
information about various pulse frequencies and pulse widths).
The thickness of the P3HT channel was controlled in the range of
20–95 nm by varying the concentration of the P3HT solution,
whereas the channel area was fixed at 50 × 50 μm2. The maximum
conductance value (Gmax) was the highest (18.9 mS) in the device
with the thinnest channel (20 nm), and it decreased to 2.3 μS with
an increase in the thickness of the P3HT channel to 95 nm.
Because the channel thickness is considered as the channel length
in a vertically stacked device, in this study, the channel length of
the synaptic device increased with increasing thickness of the
P3HT channel; this resulted in a decrease in the overall channel
conductance. The dynamic range (Gmax/Gmin) values of the
synaptic devices having 20-, 35-, and 55-nm-thick P3HT channels
were higher than 10, which is the minimum value required for a
successful pattern recognition task45. To extract the values of NL
and NSeff, which represent the precision of the weight-update
behavior, we first normalized the LTP/D characteristic curves of
the devices with different channel lengths by dividing each con-
ductance value by the maximum value (G/Gmax), as shown in
Fig. 3b. Then, we calculated the NL value by fitting the measured
curve to the normalized one (see detailed equations in the
methods section, Supplementary Figure 6, and Supplementary
Note 4). The synaptic device with the thinnest channel (20 nm)
showed a positive NL value (+5.4). In this device, the ions were
able to penetrate the entire channel upon the application of VWC

pulses, which enhanced the overall channel controllability. In
contrast, the NL values of the devices with the thicker channels
decreased in the negative direction and reached −0.6 for the
device with the 55-nm-thick P3HT channel. This is because the
channel region far away from the ion gel was relatively
impermeable to the mobile ions in the thick-channel device,
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which degraded the controllability of channel conductance under
the same number of VWC pulses. Note that a similar behavior of
the NL value was seen in the LTD region. The synaptic device
with the 20-nm-thick channel exhibited a sharp decrease in the
NL value as high as −8.7, and the 55-nm-thick P3HT exhibited a
relatively linear decreasing characteristic (NLLTD=− 2.3). Fig-
ure 3c, d show the absolute NL and NSeff values plotted as
functions of the P3HT thickness for the LTP and LTD char-
acteristics, respectively. Here, states having ΔG above the noise
range (0.5% of Gmax−Gmin) were defined as the effective states.
The |NL| value (denoted by black circles) was lowest (0.6/2.3 for
LTP/D regions) for the device with the 55-nm-thick P3HT
channel. This device also showed the highest NSeff of 96/72 for
the LTP/D regions.

Next, the effect of the channel area on the LTP/D
characteristics was investigated by varying the width of metal
lines (Fig. 3e, f). The channel areas were controlled to 30 × 30,
50 × 50, 70 × 70, and 90 × 90 μm2, where the thickness of the
P3HT channel (that is, channel length) was fixed at 55 nm.
Among these devices, the one with the largest channel area (90 ×
90 μm2) showed the highest conductance value in the absence of
any external voltage stimulus (VWC= 0 V), which indicates that
the device had the lowest channel resistance (Supplementary
Fig. 7). However, this device with the 90 × 90 μm2 channel
showed a poor Gmax/Gmin of 1.9, which was attributed to the
obstruction of ion penetration by the large metal coverage
(Supplementary Fig. 8). The Gmax/Gmin value increased from 1.9
to 18 as the channel area decreased from 90 × 90 μm2 to 30 × 30
μm2, because of the enhanced channel controllability. The highest
Gmax and Gmax/Gmin values were obtained for the device with the
30 × 30 μm2 channel. The absolute value of NL and the NSeff
value for the LTP/D regions were plotted as a function of the
channel area, as shown in Fig. 3g, h. The device with a channel
area of 50 × 50 μm2 exhibited desirable synaptic properties in
both the LTP and LTD regions (i.e., low |NL| values and the
highest NSeff). The device with the channel area of 30 × 30 μm2

also showed a low |NL| of 0.35 and high NSeff of 96. However, this
device had a high |NL| value of 4.2 and a low NSeff of 50 in the
LTD region. Overall, the LTP/D characteristics of the ion-gel-
gated vertical synapse were strongly affected by the ion
penetration into the organic channel. From these results, the
device with the channel area of 50 × 50 μm2 and channel
thickness of 55 nm was confirmed to exhibit desirable LTP/D
characteristics such as large Gmax/Gmin, low |NL|, and sufficient
NSeff.

Operational stability of vertical synaptic device. In addition to
the high LTP/D performance of a synaptic device, its operation
must also be stable to enable its practical application to an
ANN44,45. To investigate the repeatability and stability of the
LTP/D characteristics in each cycle, various pulse sets with
different numbers of pulses were applied to the WC terminal.
The potentiation and depression pulses were set to −3 V and
+2 V, respectively (see the LTD optimization procedure in
Supplementary Fig. 9 and Supplementary Note 5). Figure 4a
shows the PSC response of the synaptic device over five cycles
under the application of different numbers of pulses, ranging
from 5 to 100 (a total of 2000 pulses). The LTP/D characteristic
curves extracted under the application of various pulse sets
were highly stable and repeatable over the five cycles. To
investigate the synaptic characteristics more quantitatively, we
calculated the |NL| and NSeff values. As shown in Fig. 4b, our
synaptic device showed a linear weight-update behavior of |NL|
< 2 for all pulse sets. We then extended the number of mea-
surement cycles to 50 (a total of 10000 update pulses) and

investigated the PSC response (Fig. 4c and Supplementary
Fig. 10). During the test, our device showed reliable LTP/D
behavior without any sign of degradation (Fig. 4d). Further-
more, key parameters such as NL, NSeff, and Gmax/Gmin

remained constant during the lengthy cycle test (Fig. 4e). The
cycle-to-cycle variations of |NL|, NSeff, and Gmax/Gmin were
calculated to be 1.4%, 6.4%, and 1.1%, respectively. Addition-
ally, we investigated the LTP/D characteristics by elongating the
cycle test to 200 k pulses for observing the degradation of the
device performance (Supplementary Fig. 11 and Supplementary
Note 6). Then, reliability of the PSC was also investigated under
irregular-pulse conditions. Figure 4f shows a plot of the real-
time change in the PSC of the device under the application of
two different VWC pulse sets. The regular set consisted of
successive potentiation (P) and depression (D) pulses
(PPPDDD), whereas the random set consisted of randomly
arranged P and D pulses (PPDPDD). For a detailed evaluation
of the PSC change, the PSC plots in the first and last cycles of
the regular set (black line) and random set (red line) were
overlapped, as shown in the middle and right panels of Fig. 4g.
The variation in the PSC state between the regular- and
random-pulse conditions was lower than 1% at the base state
for every pulse cycle. This value is quite comparable with other
research results reported thus far (see the comparison in Sup-
plementary Table 1 and Supplementary Note 7). Overall, the
optimized vertical synaptic device showed stable weight-update
behavior under various VWC conditions. Additionally, we
investigated the writing energy of the device for single poten-
tiation/depression pulse by measuring the current between WC
terminal and postsynaptic terminal (see details in Supplemen-
tary Fig. 12 and Supplementary Note 8). The device exhibited
energy consumption of 11.9/1.6 nJ for the potentiation/
depression pulse, which was further reduced to 0.25/0.17 nJ
under a pulse width of 700 ns.

Logic application of vertical synaptic device and training/
recognition processes. Finally, to confirm the applicability of the
developed device to HW-NNs, we prepared a small-scale synapse
array with a size of 2 × 3 and trained Boolean logic operations
such as binary AND and OR onto the neural network based on
the synapse array. Various logic gate operations can be imple-
mented on this neural network platform via the training of the
gate functions, as in the case of reconfigurable circuits1,43,46.
Figure 5a shows circuit diagrams of AND and OR gates com-
posed with our synaptic devices. V1 and V2 denote two logic
inputs, and Vb denotes a bias voltage. The Gmeans a conductance
value of the synaptic device. The VWC1, VWC2, and VWCb denote
weight-control voltages. IAND and IOR are the output currents
corresponding to the AND and OR logic operations, respectively.
This circuit matches a single-layer neural network consisting of
three input neurons, two output neurons, and six synapses con-
necting them, as shown in Fig. 5b. The learning process of this
neural network is as follows. When the input voltages are applied
to the input neurons, the output current vector (I) is calculated as
the inner product between the conductance matrix of the synaptic
array (G) and the input voltage vector (V), i.e., I=GV. We then
compare the obtained output currents with a threshold value
(here, ITH=−5 nA), consequently distinguishing whether the
output is “0” or “1”. If the output current is less than −5 nA, its
state is considered as “0”; else, its state is considered as “1”. As the
final step of the learning, all conductance values in the synaptic
array are updated by VWC toward reducing difference between
the output value and the corresponding value of the truth table in
Fig. 5c. Through this learning process, we updated all con-
ductance values of the synaptic array in real-time and then
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investigated output currents when the two logic inputs were “00”,
“10”, “01”, or “11”, respectively (Fig. 5d). Two voltage values of
0.02 V and 0.2 V were used for binary logic input states of “0” and
“1”, respectively. Before training (black line), the initial output
currents were close to the ITH so that were difficult to determine
the output state. Particularly, when the inputs were “10” or “01”,
there were little differences between the output current values and
the threshold value in both operations of AND and OR. However,
as the learning proceeded and after completing the learning, the
differences between those values became more explicit. This result
successfully demonstrated that our synapse array can be func-
tionalized as the AND and OR logic gates via the learning
process.

To further investigate the feasibility of the synapse array toward
HW-NNs, we theoretically constructed a large-scale NN with a
size of 400 × 200 × 10 with the measured LTP/D characteristics of
10 synaptic devices (Fig. 5e)44. We then performed the training/
recognition tasks for Modified National Institute of Standards and
Technology (MNIST) digit patterns and plotted the recognition
rate of each device at every 40,000 training number (1 epoch) in
Fig. 5f. The corresponding parameters of each synaptic device
used in the simulation are listed in Supplementary Table 2.
Among the 10 devices, the maximum accuracy was recorded to be
as high as 92.5% when the NL value for LTP/D and the dynamic
range were −1.25/−5.72 and 10.72, respectively. The minimum

accuracy was 85.7% when the NL value for LTP/D and the
dynamic range were −0.42/−6.77 and 49.33, respectively. Further
improvement in the accuracy was achieved later by pulse
engineering (Supplementary Fig. 13 and Supplementary Note 9).
We then investigated the device-to-device variation in the
recognition rate for the 10 synaptic devices (Fig. 5g). The standard
deviation of maximum recognition rates was as low as 2.5%, and
the standard deviation after the 25 epoch learning was 4.2%.
Through this theoretical learning and recognition task, we
confirmed the applicability of the proposed synapse array for
more complex HW-NNs.

Discussion
In this study, we successfully implemented a crossbar synapse
array based on a vertical organic transistor with an ion-gel WC
layer. This three-terminal synapse array was achieved by
adopting the vertical gate-all-around field effect transistor
(GAA-FET) concept and securing acceptable gate controll-
ability with the assistance of an ion-gel dielectric. Mobile ions
in the ion gel penetrated the free volume in the P3HT vertical
organic channel located at every cross-point between the top
and bottom electrode lines, which resulted in a nonvolatile
change in the channel conductance. By virtue of ion movement,
the proposed device exhibited diverse synaptic characteristics,
such as STP, EPSC/IPSC, and LTP/D. In particular,
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optimization of the channel length and area of the line cross-
point yielded excellent LTP/D characteristics, such as a large
dynamic range (>10), low nonlinearity (<1), sufficient effective
number of conductance states (>64), and low cycle variation
(<1%). Furthermore, we demonstrated the feasibility of using
the proposed vertical organic synapse array for implementing a
complex NN through real-time training and classification tasks
in a simple 2 × 3 NN. A very high recognition rate of 92.5% for
MNIST digit patterns was achieved in a simulated two-layer
ANN with a size of 400 × 200 × 10. To implement a hardware
ANN with the vertical organic synapses as a follow-up research,
the excellent endurance of the synapses is critically required. In
this regard, identifying and understanding the failure
mechanism for weight update will help in assessing and
improving the endurance. Besides, the researches optimizing
encapsulation layers, ion-gel dielectrics, and organic semi-
conductors in the synapses need to be done for the excellent
endurance. Notably, this GAA-FET concept has already been
considered for 3-nm technology nodes (for a lateral type) and
next technology node (for a vertical type) by many global
semiconductor companies. Thus, this research is meaningful as
a proof-of-concept of a cross-point FET-type synapse array that
can be used to implement NNs based on Si CMOS technology.
We expect the proposed vertical crossbar synapse array to play
a pioneering role in the development of high-performance and
high-density NNs in the future.

Methods
Materials. Processing solvents such as acetone, chloroform, and 2-propanol
were purchased from Sigma-Aldrich. Regioregular P3HT (Mn: 54,000–75,000,
lot number: MKCK1947), PVdF-HFP (Mn: 110,000), and 1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) ionic
liquid were also purchased from Sigma-Aldrich. The azide crosslinker bis(6-((4-
azido-2,3,5,6-tetrafluorobenzoyl)oxy) hexyl)decanedioate was synthesized as
previously reported42. P3HT solution was prepared by dissolving P3HT in
concentrations of 3, 5, 7, 9, 11, and 13 mg mL−1 in chloroform for obtaining
P3HT organic channels of various thicknesses. After being stirred on a hot plate
for 5 h at 50 °C, the P3HT solution was blended with the azide crosslinker (5 mg
mL−1 in chloroform) in a 4:1 ratio. Ion-gel solution was prepared by mixing the
EMIM:TFSI ionic liquid, PVdF-HFP, and acetone solvent in a 4:1:7 ratio. The
ion-gel solution was stirred at 50 °C for 5 h before use.

Fabrication of vertical synapse. The bottom metal lines (Cr/Au with 1 nm/17
nm thickness) were thermally deposited on a cleaned SiO2/Si++ (thermally
grown 100 nm SiO2) wafer. The photopatternable P3HT solution was spin-
coated on top of the metal lines at 1,500 rpm for 30 s. The crosslinking reaction
of the channel area was performed under selective UV irradiation (254 nm and
1000W cm−2) through a metal shadow mask for 30 s. Then, unexposed P3HT
solution was removed with chloroform to define the crosslinked channel area,
and the sample was dried for 12 h in a glovebox. After deposition of the top
metal lines (30-nm-thick Au) via thermal evaporation, the ion-gel layer was
spin-coated at 1000 rpm and dried at 70 °C for 5 min. Finally, 50-nm-thick Au as
a WC line was thermally deposited.

Device characterization. The thickness of the crosslinked P3HT film was analyzed
using tapping-mode atomic force microscopy (Asylum Cypher S system). The
electrical properties of the vertical synaptic device and logic gates were measured
using a Keithley 4200 electrometer.
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NL calculation. The NL value of the LTP/D curve was calculated using the fol-
lowing equations:

GLTP ¼ B � 1� exp �P=APð Þð Þ þ Gmin; ð1Þ

GLTD ¼ �B � 1� exp P � Pmaxð Þ=ADð Þð Þ þ Gmax; ð2Þ

B ¼ Gmax � Gminð Þ= 1� exp �Pmax=AP;D

� �� �
ð3Þ

where GLTP and GLTD are the conductance values of the LTP and LTD regions,
respectively; P is the number of applied pulses; A is a parameter representing NL;
and B is a fitting constant used to normalize the conductance range. The A value
was extracted from the experimental data using the MATLAB code provided as an
open source44, and the corresponding NL values were derived from tables provided
by the same source.

Simulation of two-layer neural network. The simulation was conducted on the
basis of the platform “MLP+NeuroSim ver. 1.0”. A multilayer (two-layer)
perceptron-based ANN with a size of 400 × 200 × 10 was theoretically con-
structed using non-ideal factors, including the dynamic range and NL. Then,
20 × 20 MNIST digit patterns were binarized to black-and-white patterns, and a
logistic function was used as the activation function. The optimized learning
rates for the first and second synaptic weight matrices were 0.2 and 0.025,
respectively. After being trained with 1 million patterns, the two-layer ANN was
used to perform a classification task for 10,000 separate testing images. The
recognition rate was calculated for every 40,000 images during the training
process.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary Information files).
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