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High death tolls from recent earthquakes show that seismic risk
remains high globally. While there has been much focus on seismic
hazard, large uncertainties associated with exposure and vulner-
ability have led to more limited analyses of the potential impacts
of future earthquakes. We argue that as both exposure and
vulnerability are reducible factors of risk, assessing their impor-
tance and variability allows for prioritization of the most effective
disaster risk-reduction (DRR) actions. We address this through
earthquake ensemble modeling, using the example of Nepal. We
model fatalities from 90 different scenario earthquakes and
establish whether impacts are specific to certain scenario earth-
quakes or occur irrespective of the scenario. Our results show that
for most districts in Nepal impacts are not specific to the particular
characteristics of a single earthquake, and that total modeled
impacts are skewed toward the minimum estimate. These results
suggest that planning for the worst-case scenario in Nepal may
place an unnecessarily large burden on the limited resources avail-
able for DRR. We also show that the most at-risk districts are pre-
dominantly in rural western Nepal, with ∼9.5 million Nepalis
inhabiting districts with higher seismic risk than Kathmandu. Our
proposed approach provides a holistic consideration of seismic risk
for informing contingency planning and allows the relative impor-
tance of the reducible components of risk (exposure and vulnera-
bility) to be estimated, highlighting factors that can be targeted
most effectively. We propose this approach for informing contin-
gency planning, especially in locations where information on the
likelihood of future earthquakes is inadequate.
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Despite global efforts to reduce seismic risk, earthquakes re-
main one of the deadliest natural hazards worldwide (1).

Much of the scientific interest in reducing seismic risk, which is a
function of hazard, exposure, and vulnerability, has focused on
better understanding of seismic hazard, with a particular focus
on refining estimates of recurrence times and probabilities of
exceeding given levels of ground motion (2, 3). While hazard
assessment is a prerequisite for calculating risk, available data on
exposure and functions that model fragility often introduce sig-
nificant uncertainties. Furthermore, full risk calculations require
a holistic analysis of losses, including fatalities, injuries, and fi-
nancial, infrastructure, property, and indirect losses, so deriving
absolute risk is often intractable. Consequently, while there have
been several notable advances in the computation of earthquake
risk and probable loss at national and global levels (4–10), these
have tended to focus on data-rich regions, such as California
(11). Despite these efforts, the high death tolls in many recent
large earthquakes demonstrate that earthquake risk remains
high globally, and in data-poor regions such as the Himalaya may
even be increasing as growth in population exposure and vul-
nerability outpaces the rate of improvement in understanding of
seismic hazard (1, 11, 12).
The two most common approaches to seismic hazard analysis

(SHA) are probabilistic (PSHA) or deterministic (DSHA).
PSHA is a widely used method that identifies all known possible
earthquakes that may affect a given site and characterizes their

estimated recurrence intervals (13, 14). The resulting output is
an estimate of the likelihood of exceeding some value of ground
motion at a given location over a given period of time (e.g., a 2%
chance of exceedance in 50 y). This is especially useful for de-
termining appropriate seismic design codes for built infrastructure,
allowing engineers to establish the maximum strength of shaking
that buildings are expected to witness during their design life (14).
Despite its sound basis, PSHA can be misunderstood, leading to
implementations that attract criticism (15). This is especially true in
regions where past earthquake data are sparse (2, 11, 16–18), where
spurious probabilities can be generated (11). These criticisms have
proved controversial, however (19, 20), and several have been
largely rejected (21). Nevertheless, in regions with limited in-
formation on future earthquake probabilities different applica-
tions of PSHA can result in widely differing hazard and risk
estimates, such as recent efforts in Nepal (22).
DSHA focuses on the use of scenarios of individual or small

numbers of earthquakes, typically considering either the maximum
credible event or the worst-case event that could occur on known
active or potentially active faults (14, 23). Shaking from the
resulting scenario(s) is derived from attenuation relationships us-
ing different likelihoods of exceedance (14). The resulting output
shows the strength and extent of shaking expected from the
maximum credible or worst-case earthquake with a given like-
lihood of exceedance, providing an upper limit for planning.
This approach also has notable limitations, however, such as (i)
a focus on one or a small number of events, (ii) difficulty in
accurately determining the maximum credible event, and (iii) a
weak statistical basis for estimates of uncertainty (19, 20, 24).
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Irrespective of the approach used, the outputs of both are
arguably not tailored for contingency planning, where defining
risk in terms of the potential consequences of the next future
earthquake is the priority concern. Contingency planning oper-
ates on two levels: first through planning for times of disaster and
second for disaster risk reduction (DRR) (25, 26). Effective
planning requires both estimation of the likelihood and scale of
future earthquake impacts and understanding of those that are
specific to a single earthquake scenario or that could occur in
many different earthquakes. Likewise, effective contingency plan-
ning requires that we can determine the locations where impacts are
most likely to occur, along with the average and worst-case impacts
for all locations, so that both emergency relief and preevent DRR
activities can be prioritized. Thus, for those tasked with managing
earthquake risk, moving beyond probabilities of shaking to proba-
bilities of consequences of future earthquakes is essential (25, 27).
Addressing such complex questions about future events reso-

nates with the challenges faced by climate and meteorological
modelers attempting to generate future climate and weather
scenarios. They address this through the use of ensembles of
models, which consist of suites of scenarios of future climate or
weather events based on different conditions and model reali-
zations (28–34). The outputs from all scenarios are then aggre-
gated to identify common elements that are more likely to be
realistic representations of future events. Here, we propose a
similar approach for the assessment of seismic risk, to derive
greater clarity on the potential impacts of future earthquakes.
We establish an ensemble of earthquake scenarios, with each
individual scenario containing empirically derived estimates of
the associated impacts. We then average and compare conse-
quences from all scenarios in the ensemble to examine the
emergent impacts, focusing on those that are common to mul-
tiple scenarios. Our approach is not intended to supersede either
PSHA or DSHA, as no individual analysis is suitable for all
intended tasks (14). Instead, we propose the approach as a
complementary tool for the assessment of seismic risk with the
specific aim of informing earthquake contingency planning. We
concentrate here on providing the median and maximum impact
estimates, the number of impact-inducing scenarios, the speci-
ficity of impacts to individual scenarios, and exceedance proba-
bilities for impacts. We demonstrate the approach using the case
of earthquake-induced fatalities in Nepal. Earthquake hazard in
Nepal is relatively poorly constrained, leading to often widely
differing hazard maps (22), but is thought to be among the
highest globally (35–38). Population exposure and vulnerability
to earthquakes is also high (39, 40), and previous earthquake
impacts have been substantial (41–44), yet impact estimates for
future earthquakes are limited (42). While we focus on fatalities,
other forms of loss (injuries and financial losses) could also be
explored in this manner.

Materials and Methods
Method Overview. We adapt the ensemble approach used in climate and
meteorological modeling for the purposes of estimating the consequences of
future earthquakes. We model the losses associated with 30 different
earthquakes that are large enough to cause substantial damage in Nepal at
three different times of day to give 90 scenarios, based on our current un-
derstanding of active fault locations and potential future earthquakes. The
sample of scenarios is chosen based on current understanding of historic
earthquakes (Fig. 1) and fault slip rates to give a suite of geologically diverse
prototypical scenarios and is large enough that the statistical properties of
the results can give some useful insight into the possible consequences of
these earthquakes. While each of the modeled earthquakes is plausible, the
exact probability of each remains unknown. Instead, each scenario is
assigned a uniform probability and weighting in the ensemble. While this
approach avoids issues associated with selection of weights based on poorly
constrained recurrence intervals, it has important consequences for our re-
sults. First, a uniform weighting precludes the ability to discuss “absolute
risk,” because the hazard calculations do not include absolute probabilities.

Thus, we focus on “relative risk” between scenario outcomes, which we
argue is invaluable for earthquake contingency planning. Uniform proba-
bilities will also overemphasize the contribution from the largest-magnitude
events, as well as those on upper-plate faults. Conversely and importantly,
uniform weighting allows a focus on the role of exposure and vulnerability
in producing risk and impacts. This is crucial for contingency planning and
DRR, because while earthquake hazard is irreducible, both exposure and
vulnerability to earthquakes can be reduced.

While the recurrence interval for each of our scenarios is unlikely to be
uniform, previous work has suggested that earthquakes of all magnitudes
on the Main Himalayan Thrust (MHT) have ∼500-y recurrence intervals, and
that major [moment magnitude (Mw) >7] earthquakes can be followed by
great (Mw >8) earthquakes in the same location sooner than plate conver-
gence rates would suggest possible (36). Such observations may explain the
relatively short intervals between the 1833 (Mw 7.8), 1934 (Mw 8.2), and 2015
(Mw 7.8) earthquakes in central and eastern Nepal (Fig. 1). Others, however,
have suggested that recurrence intervals for the largest magnitude events
on the MHT may be on the order of 1,000 y (45). Importantly, however, this
highlights that at present we remain unable to assign meaningful re-
currence intervals beyond uniform.

In each scenario, we combine estimates of ground shakingwith population
and building exposure data taken from the most recently available (2011)
national population census of Nepal (46) and use previously published,
empirical building fragility curves to estimate resulting impacts. We calculate
fatalities by Village Development Committee (VDC), which was the third-
level administrative division in Nepal up to 2017 and is consistent with the
2011 census data. We then aggregate fatalities and fatality statistics (fre-
quency, median, maximum, and specificity) across the 75 districts and five
development regions, which comprised the pre-2017 first- and second-level
administrative divisions. We focus on fatalities as a single measure of impact,
but other loss measures such as injuries, financial losses, or property losses
could equally be calculated. Because we focus on relative risk, the numbers
of fatalities discussed below are only indicative of expected impacts, and
they are not intended as absolute estimates of likely fatalities in Nepal. Fi-
nally, to provide information tailored to earthquake response planners, we
also consider social vulnerability, which has been shown to be a significant
predictor of earthquake impacts and losses (47). We combine our physical
vulnerability metrics with two examples of social vulnerability metrics
employed as proxies for disaster vulnerability: the Human Development In-
dex (HDI) (48) and a remoteness index that reflects the need for and ease of
providing logistical assistance, to estimate total relative seismic risk for each
district of Nepal.

Modeled Earthquake Scenarios (Hazard). We choose an ensemble of 30 large
(Mw >7) earthquake scenarios based on historical records and paleoseismic
evidence (Fig. 1), assuming that previously documented earthquakes are
representative of potential future earthquakes at decadal-to-centennial
time scales (49). Note that this approach cannot account for unanticipated
events such as fault linkage or simultaneous rupture of multiple faults (e.g.,
ref. 38). For known or inferred active faults without historical evidence of
earthquakes, geologic data on long-term slip rates and displacement styles,
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Fig. 1. Earthquake history of the Himalayan arc. Numerous large (Mw >7.0)
earthquakes have been recorded along the MHT system over the last 1,000 y,
with little evidence that the largest ruptures are confined to any specific
segment. Polygons show known or inferred rupture extents with associated
calendar dates and colors represent magnitudes (green, Mw 7.0–8.0; orange,
Mw 8.0–8.5; red, Mw 8.5+). Dashed box shows location of Nepal. Red lines
show active faults from Taylor and Yin (82). Ban, Bangladesh; Pak, Pakistan.
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along with fault dimensions and empirical scaling relationships (50), were
used to estimate plausible scenario earthquakes.

In the last 1,000 y, at least 15 Mw >7.5 earthquakes have been recorded
along the Himalayan arc (Fig. 1) (36–38, 44, 51). The majority of these are
associated with the MHT; however, spatial variations in rheology and ge-
ometry can limit rupture extent, giving rise to various prototypical forms of
MHT earthquake (36, 51). These include (i) giant ruptures, such as the 1950
Assam and 1505 western Nepal earthquakes, that initiate near the brittle–
ductile transition and rupture to the surface, have lengths >200 km, and
have Mw >8.5 (36, 37); (ii) great ruptures, such as the 1934 Nepal–Bihar
earthquake, that are similar to giant ruptures but do not necessarily reach
the surface and have Mw 8.0–8.5 (35, 44); and partial ruptures, like the 2015
Gorkha event, that rupture either the (iii) lower or (iv) upper ramp of the
MHT and have Mw 7.0–8.0, with larger magnitudes anticipated on the lower
ramp (52) (Fig. 2). Paleoseismic evidence of great-to-giant earthquakes on
the MHT in ca. 1100, 1255, and 1344 (Fig. 1) suggests that earthquakes on
this fault are not constrained to individual segments within Nepal and can
occur on any section of the MHT throughout the Himalayan arc (36, 44, 53).

As well as the MHT, numerous other faults within or close to Nepal have
previously sustained, or are capable of sustaining, Mw 7+ earthquakes. The
largest is the Karakorum Fault, which hosted a Mw ∼7.5 earthquake in 1895

(54) and is capable of Mw 8.0 events (55). In western Nepal, a set of faults
known as the Western Fault System (WFS) partition motion between the
MHT and the Karakorum Fault. Quaternary offsets associated with these
faults suggest repeated earthquakes since the last glacial advance (56) with
evidence of possibly two Mw 7+ earthquakes between AD 1165 and 1400
(57). Extension in the southern Tibetan Plateau is accommodated on a series
of north–south-striking normal faults, of which the largest, most active, and
closest to Nepal are the faults bounding the Thakkhola graben. These have
historically sustained Mw 6.2–6.4 earthquakes but are likely capable of Mw

7+ events (58, 59).
We therefore consider eight different prototypical scenarios for Mw 7+

earthquakes in Nepal (Fig. 2). Earthquakes on upper-plate faults such as the
WFS and the Thakkola graben are restricted in their location, whereas those
occurring on the MHT are allowed to occur at multiple locations along strike.
For the MHT, we assign earthquake magnitudes at the center of the pub-
lished ranges, comprising (i) giant earthquakes with Mw 8.6, (ii) great
earthquakes with Mw 8.3, (iii) blind lower-ramp earthquakes with Mw 7.8,
and (iv) upper-ramp earthquakes with Mw 7.3. We model these earthquakes
as occurring between Uttarakhand on Nepal’s western border and Sikkim to
the east, incrementally shifting each rupture patch to produce adjacent
scenarios that span and extend beyond Nepal to avoid edge effects. In total,
we consider five giant scenario earthquakes and seven of each of the great,
upper ramp, and blind lower ramp scenario earthquakes (Fig. 3). For the
upper-plate faults, we consider events at the upper end of the likely mag-
nitude range: (v) a Mw 7.8 earthquake on the southern part of the Kar-
akorum Fault, (vi) a Mw 7.8 event on the northern part of the WFS, (vii) a Mw

7.3 event on the southern part of the WFS, and (viii) a Mw 7.3 earthquake in
the Thakkhola graben (Fig. 3).
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Fig. 2. Map and simplified north–south cross-sectional views of the eight
prototypical scenario earthquakes in our ensemble. Red-outlined boxes
(Left) show the surface projection of the assumed failure planes. Thick red
lines in (Right) show the down-dip extents of fault rupture, while dashed
lines show possible simultaneous/alternative rupture scenarios. (A) giant (Mw

8.5+) earthquakes on the MHT such as the 1505 western Nepal event; (B)
great (Mw 8.0–8.5) earthquakes on the MHT such as the 1934 Nepal–Bihar
event; (C and D) Mw 7.0–8.0 ruptures of the lower or upper ramp of the
MHT, similar to the 2015 Gorkha event; (E) Mw 7.0–7.5 ruptures of normal
faults in southern Tibet, such as those bounding the Thakkhola graben (note
that rupture is not shown in cross-section); (F) Mw 7.0–7.5 ruptures of the
southern portion of the WFS; (G) Mw 7.5–8.0 ruptures of the northern por-
tion of the WFS; (H) Mw 7.5–8.0 ruptures of the Karakorum Fault. KKM,
Karakorum Fault; MCT, Main Central Thrust; MFT, Main Frontal Thrust; TKK,
Thakkhola graben. Data from ref. 51.
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Fig. 3. Earthquake scenario ensemble. Modeled ground shaking in terms of
PGA with 50% probability of exceedance for the 30 scenario earthquakes in
the ensemble. Note that shaking values are only shown for locations within
Nepal. Scenario codes are given in the format fault_magnitude_location.
Cen, Central Region; Chn, China; Est, East Region; Far, Far-West Region;
FMW, Far-West, Mid-West, and West Regions; KKM, Karakorum Fault; Mid,
Mid-West Region; MWC, Mid-West, West, and Central Regions; Sik, Sikkim
(northeast India); TKK, Thakkhola graben; Utk, Uttarakhand (northwest In-
dia); WCE, West, Central, and East Regions.
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We model the shaking from each of these events in terms of peak ground
acceleration (PGA, in units of meters per second2) with OpenSHA (60), using
the ground motion prediction equations of Abrahamson and Silva (61),
exceedance probabilities of 50%, and shallow shear wave velocity (Vs30)
derived from topographic slope (62, 63).

Exposure.Weuse the National Population and Housing Census 2011 for Nepal
to assess the exposure of population and buildings (Fig. 4) to each scenario in
the ensemble at the VDC level, the smallest pre-2017 administrative division
for which data are available. In the absence of alternative more reliable
data, we do not disaggregate by gender or age. The census contains the
number of residential buildings per VDC with different types of foundation,
roof, and wall construction. Using this information, we classify residential
buildings into seven different generic typologies: (i) adobe, (ii) bamboo/
timber, (iii) brick and concrete (flexible flooring), (iv) brick and concrete
(rigid flooring), (v) nonengineered reinforced concrete, (vi) brick with mud
mortar, and (vii) stone with mud mortar (Fig. 4). We estimate individual
building occupancy by assuming a uniform distribution of people. Shaking
exposure for each scenario is derived using the mean modeled PGA per VDC.

While exposure as a function of both daily and seasonal variations in
building occupancy is still poorly understood, we account for some temporal
differences by deriving building occupancy rates for three different earth-
quake occurrence times: (i) night, (ii) day (working), and (iii) day (non-
working). We distinguish between urban and rural VDCs by assuming that
urban locations have higher occupancy on working days than rural locations,
and vice versa. Building occupancy rates (Table 1) are derived in consultation
with international humanitarian partners based in Nepal and are subject to
a first-order calibration through retrospective fatality modeling of the 2015
Gorkha earthquake (SI Appendix). We note, however, that these assump-
tions and associated uncertainties can be large and so represent a consid-
erable gap in current knowledge.

Vulnerability.Wederive total fatality estimates for each scenario by considering
the vulnerability of eachbuilding typology to seismic shaking, combining locally
(64) and globally derived (10, 65) building fragility data where necessary.
Based on the work of the Global Earthquake Model–Earthquake Consequence
Database (GEM-ECD) (65), we assume that shaking-derived fatalities are lim-
ited to collapsed buildings, which correspond to a subsection of the “Complete
Damage” state described in HAZUS (10). We therefore calculate the number of
buildings suffering complete damage using the relevant fragility curves, be-
fore estimating the proportion that collapse based on probabilities from the
GEM-ECD (Table 2).

For adobe, brick and concrete (flexible flooring), brick and concrete (rigid
flooring), brick with mud mortar, and stone with mud mortar buildings, we
use available Nepal-specific fragility curves (Fig. 5) from Guragain (64). These
predominantly masonry buildings are most prevalent throughout Nepal,
accounting for 65% of the total and almost all buildings in rural regions (Fig.
4). For nonengineered reinforced concrete and bamboo/timber buildings, no
Nepal-specific fragility curves are available and thus we rely on fragility
curves from HAZUS (10), using the curves corresponding to building types
C3M (concrete frame with unreinforced masonry infill, midrise, low code)
and W1 (wood, light frame, low code), respectively (Fig. 5). We note that
these curves were initially developed for the United States and may not be
applicable to Nepal. Despite this, the curve for reinforced concrete structures
suggests a worse performance than found in recent empirical analysis of
building performance during the 2015 earthquake (66) and so is likely to
be conservative.

Finally, to estimate total seismic risk by district we combine fatality sta-
tistics from the ensemble with two social vulnerability measures: remoteness
and human development. Remoteness is a semiquantitative measure of ac-
cessibility for each VDC developed by the US Agency for International De-
velopment and scored out of 10 (1 =most accessible; 10 = least accessible). It
includes factors such as the distance to roads, available transportation
methods, and distance from key services. We use remoteness scores (67),
averaged across all VDCs in a district and weighted by population, as a
measure of predisaster accessibility. In the context of contingency planning,
this measure is used as a proxy for the likely scale and speed of postdisaster
aid delivery, and by inference, an indicator of high levels of compounded
postdisaster vulnerability. It can also be considered as a measure of the likely
need for postdisaster assistance, as remote rural communities have been
shown to be more likely to require assistance than more accessible urban
communities (48). HDI is a summary measure of life expectancy, education,
and standard of living, among other factors, and is scored out of 1, where
1 is most developed and 0 is least developed. We use the 2014 HDI scores for
each district of Nepal (68) as a proxy for human vulnerability to earthquakes,
with lower scoring districts considered more vulnerable. HDI has previously
been investigated as an indicator for disaster risk, with higher HDI scores
generally associated with lower average losses (48, 69). While both re-
moteness and HDI have some direct relevance to social vulnerability, these
measures are indicative rather than definitive and are not intended to ex-
haustively capture all dimensions of social vulnerability to disasters. A more
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Fig. 4. Population and building exposure in Nepal. Total population and
number of residential buildings by construction type within each VDC in
Nepal according to the National Population and Housing Census (2011). (A)
population; (B) adobe buildings; (C) bamboo/timber buildings; (D) non-
engineered reinforced concrete buildings; (E) brick and concrete (flexible
flooring) buildings; (F) brick and concrete (rigid flooring) buildings; (G) brick
with mud mortar buildings; (H) stone with mud mortar buildings; and (I) pie
chart showing the percentage of each building type. ADB, adobe; BCF, brick
and concrete (flexible flooring); BCR, brick and concrete (rigid flooring);
BMM, brick with mud mortar; NRC, nonengineered reinforced concrete;
SMM, stone with mud mortar; WDN, bamboo/timber.

Table 1. Building occupancy rates

Building occupancy

Time of day Urban, % Rural, %

Night 99 99
Day (working) 70 40
Day (nonworking) 40 70

Assumed residential building occupancy rates for urban and rural VDCs
for three different times of day.
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definitive discussion of social vulnerability to natural hazards specific to
Nepal is provided by Gautam (40).

Results
Planning for Disaster. Because the exact nature of the next earth-
quake to occur is unknowable, we use our ensemble to estimate the
relative scale of fatalities in the next earthquake, irrespective of its
nature, by assessing the frequency distribution of total earthquake
fatalities for all scenarios (Fig. 6). We find that over 70% of modeled
scenarios result in more than the ∼9,000 fatalities experienced in the
2015 Gorkha earthquake (70), while 16% exceed ∼50,000 fatalities,
and 2% exceed ∼100,000 fatalities. Based on our assumptions about
building occupancy rates, there is a substantial increase in risk for
nighttime compared with daytime earthquakes. At night, 50% of
scenarios exceed ∼23,000 fatalities and 5% exceed ∼125,000 fatali-
ties, compared with ∼10,000 fatalities and ∼65,000 fatalities, re-
spectively, for daytime earthquakes (Fig. 6). Earthquakes in the
Central Region incur the greatest losses, with 50% of scenarios ex-
ceeding ∼60,000 fatalities and 5% exceeding ∼144,000 fatalities,
compared with ∼11,000 fatalities and ∼54,000 fatalities, respectively,
for earthquakes in the Far-West Region. Only the Mw 8.6 scenarios
generate in excess of ∼100,000 fatalities, while no Mw 7.3 scenario
results in >50,000 fatalities.

Risk Metrics.
Fatality exceedance probabilities. We estimate the relative scale of
fatalities by district from the frequency distribution output from
the entire ensemble (Fig. 7). A total of 72% of scenarios result in
fatalities in Kathmandu, the largest percentage of fatal scenarios
for any district (Figs. 7 and 8). Districts in the East Region have
the fewest number of fatal scenarios, typically <40% (Figs. 7 and
8). While this may appear to be an edge effect, the impacts of
scenarios occurring across the eastern border in Sikkim were
included in the ensemble, and a similar result is not seen in the
Far-West Region related to the high proportion of timber/
bamboo buildings (Fig. 4). Importantly, as all districts have one
or more fatalities in at least one-third of the scenarios, seismic
risk is high for the whole country.
Median and worst-case fatalities. Median modeled fatalities are
highest in Kavrepalanchok and the majority of the largest mod-
eled fatality totals are in the West and Central Regions (Fig. 8).
Generally, districts that border China have the lowest median
fatalities, although notably some heavily populated districts in the
south also have low median fatalities. In Gorkha, Dhading, Lalitpur,
and Nuwakot, the median fatalities are equivalent to those experi-
enced in the 2015 earthquake, suggesting that, in this sense, the
2015 earthquake was a “typical” event in these districts.
Maximum fatality estimates broadly correlate with the pop-

ulation distribution (Fig. 4), with the three Kathmandu Valley
districts (Kathmandu, Lalitpur, and Bhaktapur) and the majority of
districts in the south having the largest worst-case fatalities (Figs. 7
and 8). Kathmandu has the largest worst-case fatalities at >24,000.
Notably, in Rasuwa and Sindhupalchok the maximum modeled

fatalities are equivalent to those recorded in 2015, suggesting that
the Gorkha earthquake was close to a worst case for those districts.

Specificity of Impacts. Understanding how the impacts might vary
under different earthquake scenarios is as important to contin-
gency planners as the median and worst-case impacts. If all
scenarios in the ensemble result in similar impacts in a district,
then the district can be considered to have low hazard specificity.
Alternatively, if impacts are highly variable across the ensemble,
then a district has high hazard specificity, as the impacts are in-
trinsic to a precise scenario and so there is more uncertainty about
what could happen in the next event. For contingency planning,
low specificity is preferable, even when associated with large im-
pacts, as planners can be confident of the scale of impacts to be
expected. For high-specificity locations, impacts are intimately
linked to whichever earthquake occurs, but as this cannot be an-
ticipated, specificity could inform planning decisions.
To calculate specificity, we determine the frequency distribu-

tion of impacts by district with respect to the corresponding
worst-case scenario. The distribution is used to obtain the per-
centage of scenarios with fatalities exceeding a given fraction of
the worst case (Fig. 7). Calculating the area under the curve
(AUC) indicates how losses are skewed toward either the mini-
mum (AUC → 0), worst-case (AUC → 1), or are evenly dis-
tributed (AUC ∼ 0.5). (Fig. 7). Specificity is considered to be
highest when AUC = 0.5 and reduces as AUC tends to 0 or 1.
All districts have an AUC between 0 and 0.53, showing that

impacts are either evenly distributed or skewed toward the

Table 2. Building collapse and fatality rates

Building type Collapse probability, % Fatality rate, %

Adobe 15.0 5.0
Bamboo/timber 3.0 0.5
Brick and concrete (flexible) 15.0 5.0
Brick and concrete (rigid) 15.0 15.0
Nonengineered reinforced concrete 13.0 10.0
Brick with mud mortar 15.0 5.0
Stone with mud mortar 15.0 5.0

Collapse probabilities and fatality rates for different building types in Nepal derived from global empirical
relationships and taken from GEM-ECD (65). Collapse probabilities apply only to buildings suffering “complete
damage” as defined by HAZUS (10) and calculated from the respective fragility curves (Fig. 5).
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Fig. 5. Residential building vulnerability. Empirically derived fragility curves
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Guragain (64) and HAZUS (10). Curves for nonengineered reinforced con-
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(wood, light frame, low code) in HAZUS (10), respectively.
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minimum. Crucially, no district has impacts skewed toward the
worst case (Fig. 7). Worst-case impacts occur in very few sce-
narios, and the large majority of impacts are far less than the
maximum. For example, in Kathmandu 75% of fatality-inducing
scenarios result in fatalities that are <15% of the worst case.
Importantly, there is large variation in specificity across Nepal:
high-specificity districts are mostly clustered in the East Region,
while low-specificity districts are along the southern border (Fig.
8). For 55 of the 75 districts in Nepal, at least two-thirds of
modeled scenarios result in impacts that are <50% of the worst
case (Fig. 7). This suggests that contingency planning for these
districts should focus on median losses, as impacts approaching

the worst case are likely to be rare. For the remaining districts,
planning should focus on the worst-case impacts as fatalities are
variable and dependent on the precise scenario that occurs.

Prioritization for Risk Reduction.With finite resources available for
risk-reduction efforts, contingency planning requires an objective
approach to prioritize DRR efforts toward locations that are
most at-risk. To help inform this, we estimate the total relative
seismic risk for all districts in Nepal by combining the probability
of fatalities, the median and maximum fatalities, and the speci-
ficity of fatalities with remoteness and HDI. We give each district
a normalized score out of 1 for all six risk metrics, such that the
district considered most at risk (i.e., with the lowest value of HDI
and the highest value for all other metrics) scores 1, and then
simply sum for all of the metric scores assuming a uniform
weighting. We recognize that others may see value in alternate
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impacts show little variability with different scenarios. Linear distributions
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sent high specificity. In both panels, six key districts are highlighted: Kath-
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weightings of the metrics, and so we provide the raw scores in SI
Appendix, Tables S2 and S3.
Using our combination, we find that total seismic risk is no-

tably higher in western areas of Nepal (Fig. 8). Gulmi in the
West Region is the most at-risk district with a score of 3.61, and
the nearby districts of Rolpa, Pyuthan, and Baglung account for
three of the next four most at-risk districts, demonstrating that
this area has the highest seismic risk in Nepal. Saptari in the East
Region has the lowest risk, although many districts on the
southern border, particularly in the East and Central Regions,
have comparable scores.
The middle-to-low score for Kathmandu district (2.61) is

particularly notable. While Kathmandu has high scores for the
frequency of fatalities and the worst-case scenario, its low spec-
ificity, low remoteness, and comparatively high HDI all help to
reduce its total relative seismic risk compared with other districts
in Nepal. It is striking that while Kathmandu commonly features
on global rankings of high-seismic-risk cities, ∼9.5 million Ne-
palis (∼35% of the total population) live in districts with higher
risk scores than the capital, and the 10 most at-risk districts in
Nepal contain a total population of ∼2.5 million, comparable to
the population of the capital. Applying alternate weightings to
each of the risk metrics changes the values and specific ranking

of individual districts, but a similar overall pattern of higher risk
scores in the west and a middle-to-low score for Kathmandu
generally remains (SI Appendix, Fig. S3).

Discussion
The intention of this study is to outline an approach to the as-
sessment of seismic risk that focuses on the importance of the
reducible components of risk, namely exposure and vulnerability.
We argue that this is critical for identifying and prioritizing the
most pressing risk-reduction activities and the most at-risk lo-
cations at a national level. We do not intend for what we propose
to supersede either PSHA or DSHA, but instead to complement
them by specifically addressing the needs of contingency plan-
ners. It is therefore important to highlight the limitations of our
ensemble approach and possibilities for further research.
First, it is important to consider whether an ensemble can

account for the full range of potential future earthquakes. We
consider only a small number (8) of prototypical scenario
earthquakes, although we allow their locations to vary. It is not
clear how our results depend on the number of scenarios that are
included in our ensemble, although in future this could be tested.
Small changes in earthquake magnitude (∼0.1–0.2) compared
with the larger steps between scenarios included here are un-
likely to affect our results, because ground motion saturation
occurs at Mw 7.3–7.5, beyond which point the main factor con-
trolling shaking strength is distance to the fault. Small increases
(or decreases) in magnitude are also unlikely to require signifi-
cant changes in fault dimensions and therefore will not signifi-
cantly alter the spatial pattern of shaking or its impacts. We do
not consider earthquakes smaller than Mw ∼7.0 because their
impacts are likely to be smaller than what are typically consid-
ered by contingency planners (for example, the 1988 Dharan and
2011 Sikkim earthquakes, both Mw 6.9), although they may still
cause considerable disruption if they affect a major population
center. While there is some evidence that earthquakes larger
than Mw 8.6, perhaps approaching Mw 9.0, are possible along the
Himalayan arc (71), this remains contentious (38). Given the
scale of potential impacts from Mw 8.6 events compared with
the extent of Nepal, however, the scale of impacts from an Mw
9.0 event may not be substantially larger (SI Appendix, Fig. S2).
Our scenarios only consider relatively simple fault rupture pat-
terns, ignoring more complex ruptures such as those described by
Hamling et al. (72); however, incorporating such complexity into
our model requires more advanced seismic modeling, which is
beyond the scope of this study. The potential amplification of
ground motion by sedimentary basins, such as the Kathmandu
Valley, is also an important factor that has not been included in
this study, along with secondary hazards and cascading hazards
such as landsliding and liquefaction. We note, however, that
recent improvements in coseismic landslide modeling, including
our ongoing work on this topic (73–75), allow some of these
effects to be incorporated into future more holistic iterations of
this approach. Given that the effects of coseismic landslides
appear to be more pronounced among rural mountainous com-
munities (76), their inclusion may not significantly alter the
general pattern of relative seismic risk established here.
Alternatives to the assignment of uniform weights to all sce-

narios in the ensemble may also require further exploration.
Herein, we have used a uniform weighting because of gaps in our
understanding of earthquake recurrence along the Himalayan arc,
and thus the likelihood of each scenario earthquake in our en-
semble is unknown. The suggestion that earthquakes of all mag-
nitudes on the MHT may have similar recurrence times (36) may
in part support this assumption. However, while this may be true for
the MHT, it is unlikely to be so for ruptures of the other upper-
plate faults included in our ensemble. In locations where recurrence
intervals are better constrained, or where Gutenberg–Richter
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Fig. 8. Seismic risk for Nepal. Spatial distribution of relative seismic risk in
Nepal based on summary statistics for modeled fatalities from the ensemble
combined with two social vulnerability metrics: (A) percentage of scenarios with
at least one fatality, (B) median fatalities for all scenarios that cause fatalities, (C)
maximum fatalities, (D) specificity of fatalities for all scenarios that cause fatal-
ities, (E) remoteness score, (F) HDI, and (G) total relative seismic risk, calculated
as the normalized sum of all six risk metrics. Numbers in G show district ranks.
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relationships are well known, these could be used to derive
appropriate nonuniform weightings for use in the ensemble.
A further limitation relates to assumptions made around short-

and long-term population exposure, where basic research could
significantly improve the accuracy of our results. Distributing the
population equally between each building type is likely to be an
unrealistic proxy for exposure. Key differences in occupancy are
known between building typologies: reinforced concrete buildings
in Nepal are typically multistory and able to house several families,
whereas wooden and adobe buildings are smaller and usually only
house a single family. The collapse of the former building typology
therefore likely underestimates impacts, while collapse of other
building types may overestimate impacts.
Assumptions around the population exposure at different

times of day are also poorly constrained. Our initial assumptions
are based on discussions with humanitarian agencies in Nepal
but are likely to be a gross oversimplification. In reality, the
difference in population exposure between working and non-
working days, particularly in rural areas, may be less pronounced
than assumed here. Further, the population exposure is likely to
be highly spatially variable and not well represented by simple
definitions of urban and rural VDCs. We presently lack sufficient
information to fully investigate the effect of temporal variations
in exposure; while a simple analysis of night versus day has been
undertaken, a more nuanced analysis is required to investigate
how exposure varies diurnally, particularly around communal
times such as meals, and also through the seasons. For instance,
we would expect that population movements change significantly
during the monsoon period and during the Tihar and Desai
festivals (77), but the effect of these on earthquake risk is yet to
be addressed. Although we have attempted to calibrate occu-
pancy rates using the 2015 earthquake (SI Appendix, Fig. S1),
we note that it is not possible from the available data to de-
termine whether the departure of the model results relates to
limitations in the occupancy rates, the shaking estimates, the
building fragility curves or, more likely, some combination of
these factors.
While assumptions around population exposure play an im-

portant role in controlling specific impacts, we highlight that
these assumptions have been kept consistent throughout our
ensemble. Thus, while the number of fatalities presented is not
intended to be absolute, the relative differences between districts
should remain unchanged unless there are significant differences
in the movements of people within different districts beyond the
urban and rural distinction employed. Limitations associated
with population exposure serve to further highlight the need for
a more holistic approach to seismic risk analyses. Even if it were
possible to predict the precise timing and nature of a future
earthquake, we remain unable to effectively estimate its impacts
if we cannot accurately account for exposure.

Implications and Conclusions
Advances in our understanding of seismic hazard have long
shown that for locations such as the Himalayan arc, it is not a
matter of whether a devastating earthquake will occur, but when.
It is therefore essential to reduce earthquake risk where possible
and to prepare for this eventuality. We presently remain unable

to predict the precise timing or nature of future earthquakes, and
thus their resulting impacts. To date, the assessment of seismic
risk has focused primarily on improving understanding of earth-
quake hazard in terms of potential ground shaking, which has
resulted in major advances (78). Nevertheless, for contingency
planning, the precise geophysical nature of the earthquake that
next occurs is of lesser importance than its impacts (25–27). Thus,
finding an approach that provides insight on what impacts are
most likely to happen, and that can complement methods to assess
seismic hazard, has obvious benefits.
We present an approach to estimating relative seismic risk that

relies on an ensemble of scenarios representing potential future
earthquakes. This approach is particularly well-suited to coun-
tries like Nepal, where earthquake hazard is relatively poorly
understood, information on earthquake recurrence intervals is
limited, and earthquake hazard maps contain widely differing
results. Our approach weights all plausible future large earth-
quakes equally, allowing us to focus on elements of vulnerability
and exposure that contribute to relative seismic risk. Our work
shows that it is possible to assess the range of potential impacts
and to consider how specific impacts relate to specific earth-
quakes. For the majority of districts in Nepal, similar impacts
occur irrespective of the scenario earthquake, and these impacts
are typically closer to the minimum than the worst case. This
suggests first that the scale of impacts expected in a future
earthquake can already be relatively well constrained, and sec-
ond that planning for the worst-case impacts may place an un-
necessarily large burden on the limited resources available.
Instead, the optimal level of mitigation that minimizes the total
cost to society, including both the cost of expected impacts and
the cost of mitigation (22, 79, 80), may require planning for
losses significantly smaller than the worst case.
Our results also imply that, while Kathmandu is regarded as

one of the most seismically at-risk cities in the world (37, 81),
greater relative seismic risk exists in the rural western areas,
particularly in Gulmi and neighboring districts. This suggests
that, while the whole of Nepal requires urgent earthquake risk-
reduction activities, rural western districts are in particular need.
A sole planning focus on urban earthquake risk in Kathmandu
may therefore be inappropriate, as many rural populations
within Nepal are at greater relative risk.
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