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ABSTRACT
Predicting time series has significant practical applications over different disciplines. Here, we propose an
Anticipated LearningMachine (ALM) to achieve precise future-state predictions based on short-term but
high-dimensional data. From non-linear dynamical systems theory, we show that ALM can transform
recent correlation/spatial information of high-dimensional variables into future dynamical/temporal
information of any target variable, thereby overcoming the small-sample problem and achieving
multistep-ahead predictions. Since the training samples generated from high-dimensional data also include
information of the unknown future values of the target variable, it is called anticipated learning. Extensive
experiments on real-world data demonstrate significantly superior performances of ALM over all of the
existing 12 methods. In contrast to traditional statistics-based machine learning, ALM is based on
non-linear dynamics, thus opening a new way for dynamics-based machine learning.

Keywords: dynamics-based machine learning, delay embedding theory, short-term time series prediction,
dynamics-based data science

INTRODUCTION
Making an accurate prediction based on observed
data, in particular from short-term time series, is of
much concern in various disciplines, arising from
molecular biology, neuroscience geoscience to at-
mospheric sciences [1–6] due to either data avail-
ability or time-variant non-stationarity. Based on
the source of predictability, various methods have
been proposed [7–11], such as statistical regression
methods including ARIMA [12], robust regression
[13] and exponential smoothing [14], and machine
learning methods including the long short-term
memory network [15] and reservoir computing
[16–19]. For the statistical forecast for time series,
there are also many theoretical works that focus on
regret minimization [20]. However, most of such
methods require sufficiently long measurements of
time series and there is no effectivemethod available
for predictionwith short-term time series because of
a lack of information.

On the other hand, little attention has been
paid to prediction from short-term but high-
dimensional data, which have become increasingly

and widely available in many fields. Such short-term
but high-dimensional data have rich information
content due to the measured high-dimension
variables, which can be exploited for the predic-
tion. Actually, to transform the information of
high-dimension data into the future evolution of a
target variable, randomly distributed embedding
(RDE) [21] has been theoretically derived based
on delay embedding theory and further numeri-
cally validated by one-step-ahead predictions of a
number of short-term time series. The challenging
problem for this framework is how to solve the
unknown non-linear map between the sampled
nondelay attractors of high-dimensional variables
and the delay attractor of one target variable,
where each attractor is numerically represented
by a series of data points (Fig. 1a). In this work,
by accurately learning the non-linear RDE map
or spatial-temporal information-transformation
(STI) equation so as to make precise predictions,
we propose an anticipated-learning (AL) neural
network, namely the Anticipated Learning Ma-
chine (ALM), based on the observed short-term
high-dimensional data. From the generalized
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Figure 1. (a) The general principle of the Anticipated LearningMachine (ALM). The observed attractor, a delay attractor and sampled nondelay attractors
are all topologically conjugated with each other. Each sampled nondelay attractor preserves the dynamical information of the system in different ways.
By integrating the information contained in these sampled nondelay attractors, we could find an accurate one-to-onemap even under noise deterioration.
(b) Anticipated Learning Machine. For each future value, those maps are co-trained into a unified map � . When the maps are trained, the weighted
sum is used as the prediction. The predicted value is then used as the label when training other maps to predict the next time point. Clearly, ALM �

transforms spatial input X(tm) to temporal output Z(tm) (also see Supplementary Fig. 1) at each point tm.
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embedding theory [22–24], we show that ALM can
transform recent correlation information of high-
dimensional variables to future dynamical informa-
tion of any target variable by the AL neural net-
work, thereby overcoming the short-termdata prob-
lem and also achieving multistep-ahead predictions.

Specifically, the AL neural network is a multi-
layer neural network (Fig. 1b), where high-
dimensional variables are taken as input neurons
(multiple variables but at a single time point due
to nondelay embedding) but a target variable is
taken as output neurons (single variable but at
multiple time points due to delay embedding).
ALM first generates a large number of sampled
nondelay attractors by randomly chosen variables
from high-dimensional data and then each sampled
nondelay attractor (input) paired with the delay
attractor of the target variable (output) is taken as
one training sample to train the neural network.
In such a way, the AL neural network can be
well trained to represent the RDE map by a large
number of the generated training samples with the
Dropout [25] scheme and our ‘consistent-training
scheme’, thus predicting the target variable in an
accurate and robust manner, even with short-term
data. Actually, the human brain has such AL or
predictive action ability even with a small number
of samples, which is different from the current deep
learning scheme that mainly depends on a large
number of samples to experience all situations.
Compared with the traditional neural networks
that excavate the historical statistics of the original
high-dimensional system and thus require a large
number of samples, ALM efficiently and robustly
reconstructs its dynamics even with a small number
of samples by constraining to a low dimension
space, which is actually an inherent property of such
a dissipative system. Thus, precise prediction can
be made even from short-term high-dimensional
data due to such dynamical features. Extensive ex-
periments on the short-term high-dimensional data
from both synthetic and real-world systems have
demonstrated significantly superior performances
of ALM over existing methods, which indicates that
ALM makes high-dimensional data a rich source
of dynamical information to compensate for the
observed short-term data. In contrast to traditional
statistics-based machine learning, ALM is based
on non-linear dynamics to transform the spatial
information of the all measured high-dimensional
variables into the temporal evolution of the target
variable by learning the RDE map, thus opening a
new way for dynamics-based machine learning or
‘intelligent’ AL.

Note that long-term data measured from many
complex systems such as biological systems and

financial systems can be also considered as short-
term data, since generally those systems are highly
time-varying also with many hidden variables, and
thus the effective predictions of their future evolu-
tion depend mainly on the recent short-term data.
Therefore, ALM provides a general framework to
learn and predict complex systems by exploring the
intertwined high-dimensional information of recent
short-term data rather than the past long-term data,
thus also alleviating the time-varying problem. In ad-
dition, current deep learning methods generally re-
quire a large amount of data to experience behav-
iors in almost all situations, but we show in this
paper that ALM can make accurate predictions of
such dynamical behaviors that even never appear
in the observed data due to the STI transformation
and RDE.

RESULTS
Indicators for evaluation
As shown in Supplementary Tables I–IX , we use
five criteria/indicators to measure the effectiveness
of ALM.Thefirst four criteria areMeanAbsolute Er-
ror (MAE),RootMeanSquareError (RMSE), Pear-
son and Spearman correlation coefficients. MAE
and RMSE reflect the numerical errors between the
true values and the predicted ones, and the other
two correlation coefficients show the errors in the
trends. Therefore, we construct the composite in-
dicator over all the above criteria so as to achieve
a comprehensive measurement of numerical values
and trends. The higher the composite indicator is,
the better the model performs.

Synthetic data set
To validate our model’s ability to transform the
high-dimensional information to the non-linear evo-
lution of any target variable, we consider a 90D
time-variant coupled Lorentz system (90 variables;
see Section 2.1 in the Supplementary Materials).
As shown in Fig. 2b, d and f, when there is no
noise in the data, ALMpredicts the non-periodic be-
havior (25 time points) of the Lorentz system ac-
curately with only 30 training time points, which
means that ALM can capture the system’s dynam-
ics with very short time series even for a time-
variant system, and in particular can predict the un-
experienced dynamics (as shown in Fig. 2a, ALM
only learns the dynamics in one attractor, but cor-
rectly predicts the dynamics in another attractor),
in contrast to traditional deep learning, which usu-
ally requires to learn almost all situations. To val-
idate our model’s robustness to noise, we add a
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Figure 2. The dynamics and attractor of the 90D time-variant-coupled Lorentz system. (a) The predicted evolution in the attractor. (b, d, f) The predictions
on the first Lorentz system (noise-free) for variables x6, y6 and z 6. (c, e, g) The predictions on the first Lorentz system (with noise) for variables x6, y6
and z 6. See Supplementary Figs 4–9 and Supplementary Tables I and II for the predictions by the other 12 methods.

Gaussian noise (mean = 0.0, standard deviation =
3.0) into the data and the result is shown in Fig. 2c, e
and g. Although the performance deteriorates com-
pared with the noise-free situation, ALM still cap-
tures the system’s dynamicsmore efficiently than the
other 12 methods (Supplementary Table II), which
demonstrates ALM’s effectiveness to alleviate noise

deterioration by using a large number of sampled
nondelay attractors.

Real-world data set
In the era of big data, high-dimensional data are
ubiquitous in the real world. We apply ALM to
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Figure 3. Predicting the dynamics of gene regulations. (a, c, e, g) Prediction on genes unrelated to circadian rhythm. (b, d, f, h) Prediction on genes
related to circadian rhythm.

various real-world data sets by comparing with all
of the existing 12 methods (Figs 3–5, Supplemen-
tary Figs 4–30, Supplementary Tables I–IX and Sec-
tions 2–3).

Gene expression data
We first analyse a set of gene expression data
for studying circadian rhythm, measured by
Affymetrix microarray on the laboratory rat (Rattus
norvegicus) cultured cells from suprachiasmatic

nucleus (SCN), which consists of the expression of
31 099 genes with 22 time points [26] (31 099 di-
mensions/variables). As a consequence of a sophis-
ticated gene regulation mechanism [27], all these
genes form a high-dimensional dynamical system,
which facilitates various biological functions. A bio-
logical system at a molecular level is a complex sys-
tem that is generally characterized bymany weak as-
sociations among variables like genes and proteins,
and also by many hidden (unmeasured) variables;



1084 Natl Sci Rev, 2020, Vol. 7, No. 6 RESEARCH ARTICLE

thus, it is difficult to be predicted ormodeled.We ap-
ply ALM to predict gene dynamics based on the first
11 time points of the observed gene expression data.
We select 8 genes to predict the remaining 11 time
points, as shown in Fig. 3. Clearly, our ALMpredicts
the trends and values of gene expression more ac-
curately than other methods (also see Supplemen-
tary Figs 10–17). Note that our model not only
works well on genes relevant to circadian rhythm
such as Fut4, but also on those irrelevant to circadian
rhythm such as Spink1, which demonstrates ALM’s
ability to transform the high-dimensional variables
to the non-linear dynamics of any target variable.
The Pearson coefficient on Nr1h3 is illustrated in
Supplementary Fig. 33a and other scores are shown
in Supplementary Table III and Supplementary
Fig. 32a.

Plankton data set
The second data set is collected from an optical
plankton counter and Conductivity-Temperature-
Depth (CTD)mounted to a ScanFish platform that
was towed and undulated behind the vessel [28].
This data set contains 58 attributes/variables and
can be regarded as a small ecosystem. As shown in
Fig. 4a, ALM predicts the trend of the oxygen con-
tent much better in contrast to the majority of other
methods. The Pearson coefficient is illustrated in
Supplementary Fig. 33b and other scores are shown
in Supplementary Table IV and Supplementary
Fig. 32b.

Climate data sets
The next two data sets of our analysis are climate
data sets, which are known by their complex spatio-
temporal characteristics.

The first data set is a 72-dimension ground-
ozone-level data set collected from 1998 to 2004 at
theHouston,Galveston andBrazoria areas [29].We
can predict the average temperature and TT Index
well, as shown in Fig. 4b and c. The series of the av-
erage temperature andTT Index predicted by ALM
get the highest scores on the composite indicators
compared with other methods as shown in Fig. 5c,
indicating that ALM can predict the future values ef-
ficiently.ThePearson coefficient on the average tem-
perature is illustrated in Supplementary Fig. 33c and
other scores are shown in Supplementary Table V
and Supplementary Fig. 32c.

The seconddata set is thewind speed data set col-
lected in Japan by the JapanMethodological Agency
[30].There are 155 wind stations in total and we se-
lect one station near Tokyo. As shown in Fig. 4d,
ALM predicts the dynamics of the wind speed sig-
nificantly more accurately than other methods. The

Pearson coefficient is illustrated in Supplementary
Fig. 33d and other scores are shown in Supplemen-
tary Table VI and Supplementary Fig. 32d.

Stock index data set
A 1130-dimension stock index data set is used to
measure the effectiveness of our model on a highly
unstable system. Due to the linkage effect in the
stockmarket, different sectors of the stockmarket in-
teract internally and form a complex system.Wepre-
dict the Shanghai Stock Exchange A (SSEA) Share
Index and illustrate the result in Fig. 4e. Clearly,
ALM achieves higher accuracy than other methods,
whichmeans that ALM can capture the system’s dy-
namics even if the system is highly unstable. The
Pearson coefficient is illustrated in Supplementary
Fig. 33e and other scores are shown in Supplemen-
tary Table VII and Supplementary Fig. 32e.

Traffic data set
This data set is the traffic speed collected from
207 loop detectors (variables) on the highway of
Los Angeles County [31]. We train our ALM on
50 time points at 6 locations respectively and pre-
dict the next 10 time points. As shown in Fig. 4f–j
(also see Supplementary Fig. 31), our ALMpredicts
the traffic flow accurately. The Pearson coefficient
is illustrated in Supplementary Fig. 33f and other
scores are shown in Supplementary Table VIII and
Supplementary Fig. 32f.

Satellite cloud-image data set
This data set comes from the satellite cloud-image
data recording the route of typhoon Marcus col-
lected by the National Institute of Informatics [32].
The data set is composed of a series of 241 cloud im-
ages (2402 variables) starting from 15 March 2018
to 24 March 2018 with 1 image taken per hour.
Basedon50 images,wemakepredictionsof the trop-
ical cyclone’s central position for the next 27 time
points. The predicted result is shown in Fig. 4k–m
and amovie is given in the SupplementaryMaterials,
which accurately predicts the real trajectoryof the ty-
phoon center.

All of the results above imply that ALM is able to
make precise predictions by transforming the high-
dimensional data into the future evolution of the
target variable, opening a new way for dynamics-
based machine learning in contrast to the tradi-
tional statistics-based machine learning. Theoret-
ically, ALM can transform the high-dimensional
(spatial) information into the dynamic (temporal)
information as indicated in Equation (1) and Fig. 1,
thus achieving accurate multistep-ahead prediction
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Figure 4. Predicting the dynamics of various real-world systems. (a) The oxygen content in a vessel. (b) The average temperature of the sea. (c) The
TT index of the sea. (d) The wind speed at a wind station near Tokyo. (e) The stock index of SSEA. (f) The traffic flow on the highway of Los Angeles in
Location 1. (g–j) The traffic flow in all locations across the first four time points. (k–m) The predicted route of the typhoon center.
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Figure 5.Analyses and comparisonswith existingmethods. The higher the composite indicator, the better themethod performs. (a) Composite indicators
of different methods on the gene data set. (b) Composite indicators of different methods on the plankton data set. (c) Composite indicators of different
methods on the ground-ozone-level data set. (d) Composite indicators of different methods on the wind speed data set. (e) Composite indicators of
different methods on the stock index data set. (f) Composite indicators of different methods on the traffic data set. (g) The distribution of predictions by
our ALM. (h) Predictions under different lengths of the time window by ALM. Note that values of x-axis are unequal intervals.

even with the small size of the measured samples
(short-term time series data). Except RDE, which
is for one-step-ahead prediction, all the other com-
parisonmethods are designed neither for short-term
time series data nor for exploiting the dynamical
information from high-dimensional data. Here, we

shouldmention that ALMcannot have accurate pre-
dictionswhen encountering a sudden change in real-
world data sets. The reason might lie in the fact that
sudden changes in systems are usually caused by ex-
ternal factors, which are not included in the trained
system.
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Analysis and comparison with existing
methods
Distribution of prediction
Since each sampled nondelay attractor preserves the
dynamical information of the entire system in a dif-
ferent way, when integrating the information sam-
pled from different nondelay attractors, the result-
ing predictions could be different. To study the in-
fluence of randomness caused by the samplingmen-
tioned above and the random initialization of the
neural network, we plot the prediction distribution
in Fig. 5g. For each prediction, 100 randomly initial-
ized neural networks are trained on the Lorentz data
set. Clearly, the shape of the distribution is similar to
the Gaussian distribution and most predictions fall
within a small range.

Time-invariant assumption for a short-term
time series
Each � i is generally time-variant for many real-
world systems but can be considered as time-
invariant only when the time window or time se-
ries is short. To approximate the maximal length of
the practical time window, we train � i on different
sizes of the training time window and make a 10-
steps-forward prediction for each time window by
using the 155D wind speed data set. The result is il-
lustrated in Fig. 5h. At the beginning, the time win-
dow is too short to train � i , so the prediction is in-
accurate. As the length increases, the performance
first improves and then drops drastically. It means
that, within a certain range, � i can be considered
as time-invariant and trained by our method effi-
ciently. When the time window becomes long, the
system structure changes or � i changes. In other
words, � i cannot be considered as time-invariant
for such a long-term time series. This analysis in-
dicates that long-term data may not be helpful for
the prediction of a complex system (or time-variant
system) and only recent data (short-term) are valu-
able for predicting the dynamics by exploiting high-
dimensional information to compensate for the lack
of data, which is actually a major advantage of ALM
over existingmethods. Certainly for a time-invariant
system, ALM also works well for a long-term time
series.

Comparison methods
We compare ALM with the following 12 existing
methods with the detailed results listed in Section
3.1 in the SupplementaryMaterials: ARIMA [12]: a
well-known autoregressive model for predicting fu-
ture time series; VAR [33]: a vector autoregressive
model, which captures the pairwise relationships

among all variables; MA: moving average, which
uses the unweighted mean of the previous data to
make prediction; SES [14,34]: Holt-Winters expo-
nential smoothing, which uses a weighted moving
averagewith exponentially decreasingweights of the
previous data to make predictions; VARM [35]: the
basic process of theVARMAX(p, q, r)model, which
includes the autoregressive process, the moving-
average process and the independent exogenous
terms (other unmodeled inputs); SVR [36]: Sup-
port Vector Regression, which uses support vector
machine (SVM) to fit curves and perform regression
analysis; SVE [37]: the classic single-variable em-
bedding; MVE [38]: the recently proposed multi-
view embedding; RDE [39]: the recently proposed
method for short-term high-dimensional time series
predictions; LSTM [15]: a famous neural network
that is widely used in the field of time series analy-
sis; Lasso [40]: the Lasso procedure is used to es-
timate the parameters of AR(p) and make predic-
tions; AdaLasso [40]: the AdaLasso procedure is
used to estimate the parameters of AR(p) and make
predictions.

For each comparison method, its predic-
tion is plotted in Supplementary Figs 4–30 and
Supplementary Tables I–IX in the Supplemen-
tary Materials with Movie-Traffic & Movie-
Satellite Images attached to the following link:
https://github.com/AnticipatedLearningMachine/
Anticipated-Learning-Machine.

METHODS
Map from each sampled nondelay
attractor to delay attractor
There are rich information contents in high-
dimensional data due to the intertwined interac-
tions among a large number of variables, which
can be explored to characterize the dynamics of
the system as a source of predictability. Actually,
to transform the correlation information of high-
dimensional data into the future evolution of a
target variable, RDE [21,39] has been theoretically
derived based on the generalized embedding theory
[22–24], which is briefly shown in Fig. 1a. Denote
ti = t + iτ , with τ being the positive time delay,
and a natural number i > 0, the observedM points
on the system’s observed attractor O are denoted
by X(tm) = [x1(tm), x2(tm), . . . , xn(tm)] for
m = 1, 2, . . . , M , where x1, x2, . . . , xn are
n variables of the observed system. Given this
observed nondelay attractor O, the delay attractor
D is reconstructed by the delay coordinate map
Z(tm) = [xk(tm), xk(tm+1), . . . , xk(tm+L−1)],
where xk is a target variable to be predicted. The

https://github.com/AnticipatedLearningMachine/Anticipated-Learning-Machine
https://github.com/AnticipatedLearningMachine/Anticipated-Learning-Machine
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delay embedding theory [23,41] and the generalized
embedding theory [22–24] reveal that the above
reconstructed two attractors with an appropriate
L > 2d (where d is the box-counting dimension of
the attractor) are topologically conjugatedwith each
other (see Section 1.1–1.2 of the Supplementary
Materials). Thus, there exists a one-to-one map
between the observed nondelay attractorO and the
delay attractorD [21], i.e.

� : X(tm) → Z(tm) form = 1, 2, . . . , M,

where the domain is the observed nondelay attrac-
tor of the high-dimensional variables X(tm) that are
available or observed values fromm = 1 tom = M ,
but the range is the delay attractor of the target
variable xk , which includes the unknown future val-
ues, i.e. xk(tM+1), xk(tM+2), . . . , xk(tM+L−1) of
the target variable. Thus, the map � is to trans-
form the information of a large number of vari-
ables to the future evolution of one target variable.
The above transformation can be also expressed as
a matrix form with � i (X(t j )) = � i−1(X(t j+1))
and� i (X(t j )) = xk(ti+ j−1) (see Section 1.2 in the
Supplementary Materials):

⎡
⎢⎢⎢⎢⎣

�1(X(t1)) �1(X(t2)) · · · �1(X(tM ))
�2(X(t1)) �2(X(t2)) · · · �2(X(tM ))

...
...

...
...

�L(X(t1)) �L(X(t2)) · · · �L(X(tM ))

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

xk(t1) xk(t2) · · · xk(tM )
xk(t2) xk(t3) · · · xk(tM+1)

...
...

...
...

xk(tL) xk(t1+L) · · · xk(tM+L−1)

⎤
⎥⎥⎥⎥⎦

.

(1)

Clearly, ifwe can construct themap� or solveEqua-
tion (1) based on the measured M time points, the
future values of the target variable can be obtained.
The right-hand side of Equation (1) is the spatial
information over multivariables X, whereas the left-
hand side is the temporal information of a single tar-
get variable xk . Hence, Equation (1) can be viewed
as the transformation from spatial to temporal infor-
mation, i.e. the STI equation.

Moreover, to make full use of the infor-
mation of high-dimensional variables and also
reduce the influence of noise in data, we ran-
domly choose S variables among all n variables
to solve Equation (1). Specifically, instead of
X(tm), we first construct a nondelay attractor
S as XS(tm) = [xi (tm), x j (tm), . . . , xs (tm)]
for m = 1, 2, . . . , M by randomly choosing S
variables (Fig. 1a) and then solve Equation (1)

by replacing XS(tm) to X(tm) in the left-hand
side of Equation (1). Clearly, there are in total
(nS) = n!

S!(n−S)! such sampled attractors, which
is a huge number for a high-dimensional system
(n > S > 1) and can be used for learning the map
� even from a short-term series. Based on the
generalized embedding theory [22–24], each of
these sampled nondelay attractors is topologically
conjugated with the observed attractor if S >

2dO , where dO is the box-counting dimension of
the original attractor, and therefore topologically
conjugated with the delay attractor as well (see
Section 1.1–1.2 in the Supplementary Materials).
Specifically, as shown in Fig. 1a for each index tuple
Sl = (i, j, . . . , s ), a submap of � , denoted by
� Sl , between a sampled nondelay attractor and the
delay attractor of the target variable xk is in the form
of� Sl : XS(tm) → Z(tm) form = 1, 2, . . . , M .

Thus, by repeatedly solving Equation (1) between
the delay attractor and each of those sampled
nondelay attractors, we can have a large number of
the predicted values of the target variable at each
time point, which actually forms a distribution
of each predicted value [39], thus not only fully
exploiting the information of high-dimensional
data, but also suppressing the data-noise effect (see
Section 1 of the Supplementary Materials). Next,
we design a neural network to learn this map � by
considering all of those attractors as the training
samples.

AL neural network for constructing an
attractor map
To construct the map� , we exploit the information
contained in each� Sl as follows (Fig. 1a):

�(X(tm)) = f(� S1 (XS1 (tm)),

� S2 (XS2 (tm)), . . . ,

� Sr (XSr (tm))) = Z(tm),

where f is a smooth function combining all sub-
maps� Sl .

� can be also decomposed into a set of injec-
tive functions, i.e. � = {�1, . . . , �L } in which
� i (X(tm)) = xk(tm+i−1) stands for different time-
delay prediction except �1, which maps X(tm) to
xk(tm) (see Equation (1)). Thus, the learning of
� can be accomplished by simultaneously solv-
ing all � i in Equation (1) (see Section 1.4 in
the Supplementary Materials). The whole proce-
dure is illustrated at the bottom of Fig. 1a or Equa-
tion (1) by replacing X(tm) with XS(tm) for each
sampled nondelay attractor (see Section 1.4 in the
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Supplementary Materials). The left-hand side of the
equation refers to the spatial informationof thehigh-
dimensional variables and the right-hand side of
Equation (1) (or Fig. 1a) refers to the temporal in-
formation of xk , where the shaded ones denote the
unknown future to bepredicted. From the viewpoint
of time series analysis, the attractors map is to trans-
form the spatial information among the observed
high-dimensional variables into the temporal infor-
mationof the target variable (SupplementaryFig. 1).

Provided with the observed high-dimensional
data, plenty of possible sampled attractors can
be reconstructed with different index tuple Sl =
(i, j, . . . , l), the number of which grows combi-
natorically as the dimension of the system increases,
actually n!

S!(n−S)! in terms of the number of the sam-
pled nondelay attractors and Mn!

S!(n−S)! in terms of the
numberof the training samples. For each sampled at-
tractor, one can obtain the corresponding predictor
� Sl of the target variable xk , which makes predic-
tions in a different way.Therefore, by integrating the
information contained in different sampled nonde-
lay attractors, we can find� in an accurate and com-
prehensive manner, which, in particular, is robust to
noise in the data.

Here, we design a neural network to repre-
sent map � , called the AL neural network, in
which the map � can be naturally learned by
using the Dropout [25] scheme as well as our
consistent-training scheme (see Section 1.4.2 in the
Supplementary Materials). Specifically, as shown in
Fig. 1b, the AL neural network is amulti-layer neural
network, where high-dimensional variables are
taken as input neurons X(tm) (a nondelay attractor)
but a target variable is taken as output neuronsZ(tm)
(a delay attractor). Thus, the neural network repre-
sents the� of Equation (1) that maps the nondelay
attractors to the delay attractor. In particular,
we adopt the Dropout [25] scheme to train the
neural network, where we could drop each input
unit/variable with a probability of p (a pre-set
number) in each epoch. As a result, different
subsets of input (each subset represents an index
tuple Sl ) are fed to the neural network in different
epochs. The total number of randomly sampled
processes is equal to the number of epochs and
the whole training process can be considered as
averaging the information contained in different
sampled nondelay attractors. From the fact that
each sampled nondelay attractor preserves the
dynamical information of the entire system in
a different way, by integrating the information
contained in these sampled nondelay attractors
Sl , even under noise deterioration, we could learn
a unified map � = f(� S1 , � S2 , . . . , � Sr )
(see Fig. 1b) rather than individual � Si for

i = 1, 2, . . . , r (Fig. 1a), thus making accurate
predictions of the future evolution of the system.

ALM and multistep-ahead prediction by
consistent-training scheme
Since� is composed of the set of injective functions
{�1, . . . , �L }, it simultaneously satisfies Equa-
tion (1). The previous RDE framework [21,39]
trains different � i separately for one-step-ahead
prediction and thus it may only capture a specific
part of the system’s dynamics, ignoring the global
property. Therefore, as shown in Fig. 1b, we train
�1, �2, . . . , �L simultaneously by consider-
ing the constraints� i (X(t j )) = � i−1(X(t j+1)) of
Equation (1). Therefore, we call such a learning
procedure the consistent-training scheme, which is
a cross-sample-training process. Specifically, when
predicting the value of xk at tm , �1(X(tm)) =
�2(X(tm−1)) = . . . = �L(X(tm−L+1)) should be
satisfied. Thus, during such a training process, the
parameters of �1, �2, . . . , �L are updated si-
multaneously, as shown in Fig. 1b, thereby achiev-
ing multistep-ahead predictions. By doing so, each
� i is forced to not only focus on a specific part
of the system’s dynamics, but also consider the
global property (see Section 1.4.2 in the Supple-
mentary Materials). Thus, a unified or consistent
map � can be obtained. Actually, to enhance the
computational efficiency and robustness, we adopt
a two-phase training process to learn the unified
� , i.e. the pairwise-training scheme and consistent-
training scheme, which are given in detail in Section
1.4.2 in the Supplementary Materials.

Conditions for prediction from short-term
data or a small number of samples
ALM can theoretically and numerically transform
high-dimensional (spatial) information into the dy-
namical (temporal) information of one target vari-
able, thus accurately predicting future values of the
target variable even with short-term data. But, based
on the theoretical derivation of ALM, the follow-
ing conditions for a generic system are naturally
required:

(i) the measured time series of the dy-
namical system are constrained in a
low-dimensional attractor;

(ii) all variables used for prediction are from the
same dynamical system;

(iii) stochasticity or noise in the measured data
is small;
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(iv) high-dimensional variables are measured;
(v) the dynamical system is time-invariant

during a short-term period.

For (i), even if a system is of high dimension,
its attractor is of low dimension, which is generally
satisfied in a real-world (dissipative) system. Actu-
ally, it is found that ALM also works well for the pre-
dictions of transient states. For (iii), a highly random
system is unpredictable; inotherwords, there should
be certain deterministic rules in the predicable sys-
tems.The conditions of (ii) and (iv) are obvious. For
(v), a complex system is usually time-varying and
thus difficult to be predicted even with long-term
data, but it can be considered time-invariant only in
the short term, i.e. the map � of Equation (1) is
time-invariant only during a short term, thus the pre-
diction can be achieved by ALM but based on high-
dimensional information. Clearly, all of those con-
ditions are approximately satisfied for various real
systems. It is noteworthy that the hyper-parameters
setting remains sensitive in some of the experiments
under the current framework. This is mainly due to
the strong nonlinearity or/and stochasticity of the
dynamical systems alsowith theobservednoisy data,
and thus how to make more in-depth theoretical
analysis and further develop an appropriate frame-
work taking these issues into consideration is an
open and interesting problem for the future.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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