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Abstract

The giant freshwater prawn, Macrobrachium rosenbergii (M. rosenbergii) as an important

freshwater aquaculture species with high commercial value, exhibited unsynchronized growth.

However, the potentially metabolic mechanism remains unclear. In this study, we used liquid

chromatography tandem mass spectrometry (LC-MS/MS) to investigate the hepatopancreatic

metabolic profiles of twenty giant freshwater prawns between the fast-growing group and

slow-growing group. In the metabolomics assay, we isolated 8,293 peaks in positive and neg-

ative iron mode. Subsequently, 44 significantly differential metabolites were identified. Func-

tional pathway analysis revealed that these metabolites were significantly enriched in three

key metabolic pathways. Further integrated analysis indicated that glycerophospholipid

metabolism and aminoacyl-tRNA biosynthesis have significant impact on growth performance

in M.rosenbergii. Our findings presented here demonstrated the critical metabolites and meta-

bolic pathways involved in growth performance, moreover provided strong evidence for eluci-

dating the potentially metabolic mechanism of the unsynchronized growth in M. rosenbergii.

1. Introduction

The giant freshwater prawn, Macrobrachium rosenbergii (M. rosenbergii) is one of commercial

important species around the world due to the special characteristic of nutrition-rich, fast-

growing and higher economic values. In China, its production was up to 133,300 tons in 2018,

which potentially contributed the most to its global production [1]. Similar to numerous crus-

taceans, M. rosenbergii exhibited unsynchronized growth pattern: some individuals grow fast,

otherwise some are slowly growing. Notably, difference in growth rate was a crucial factor sig-

nificantly affected yields of giant freshwater prawns. Over the past decades, large progresses
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have been made to understand the various internal and external factors, as well as the genetic

factors, those influence individual growth variability in M. rosenbergii [2–4]. However, little is

known regarding the metabolic mechanisms of unsynchronized growth.

Metabolomics as an analytical approach was applied to detect the low-molecular-weight

metabolites [5]. While this method provides a glimpse of metabolic profiles, biomarkers and

metabolic mechanism linked with human diseases [6,7], economic traits of plants [8] and

domestic animals [9]. Also, metabolomics has been widely used in toxicity [10,11], sex differen-

tiation [12], cold stress [13], flesh quality [14] and adaptation [15], moreover, it was widely uti-

lized to growth performance [16,17] in aquaculture species. Otherwise, limited researches of

metabolomics were published in M. rosenbergii. Bose et al. conducted untargeted metabolomics

of the antennal gland (AnG), and identified several metabolites and biosynthetic pathway impli-

cated in endogenous and exogenous transport [18]. Dong et al. performed muscle metabolomics

of M. rosenbergii by treating with different concentration of ammonia-N (0, 0.108, 0.324, or 0.54

mg L−1) for 20 days. Subsequently, a list of metabolomics pathways related to lipid, carbohy-

drate, and protein metabolism were identified, which was contributed to illustrate the mecha-

nisms underlying the effects of ammonia stress in M. rosenbergii [11]. Until now, the metabolic

profiles and metabolites regarding the unsynchronized growth of M. rosenbergii was scarce.

Therefore, the objective of the present study was used the liquid chromatography tandem

mass spectrometry (LC-MS/MS) to investigate the metabolic profiles of M. rosenbergii, and

further to detect the differential metabolites between the fast-growing and slow-growing

groups. As expected, the results we obtained could provide a clue for illustrating the metabolic

mechanism to understand the unsynchronized growth of M. rosenbergii.

2. Materials and methods

2.1. Ethics statement

All procedures were in compliance with the institutional guidelines and under a protocol

approved by the Animal Experimental Ethical Inspection Form of Guangxi Botanical Garden

of Medicinal Plants.

2.2. Animals

The prawn population was established in the national Macrobrachium rosenbergii seed multi-

plication farm, Nanning, Guangxi, China. A total of 20 mating pairs (female: male = 20:20)

were constructed to produce the progeny stock. In August 2019, family production was fin-

ished. The subsequent procedure for hatching and rearing was according to Hung et al. [19].

Totally, 200 juveniles from each family were randomly selected and reared into grow-out

ponds. Finally, each of 10 prawns from one family with extremely growth performance were

chosen as fast-growing and slow-growing individuals (Table 1).

2.3. Sample preparation

The hepatopancreas of each sample from fast-growing and slow-growing groups was immedi-

ately dissected, and then stored in liquid nitrogen. Sample preparation for LC-MS/MS analysis

Table 1. Growth performance of 20 prawns between fast-growing and slow-growing groups.

Fast-growing group Slow-growing group

Body weight (g) 10.33±0.93A 4.87±0.38B

Body length (cm) 6.4±0.28A 5.07±0.15B

https://doi.org/10.1371/journal.pone.0243778.t001
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was conducted as previously described by Want et al. [20]. Briefly, samples of 100 mg were

mixed with 1 mL chilled extraction liquid (methanol: water = 4:1, vol: vol) containing

2-Chloro-L-phenylalanine (Shanghai Hanhong Scientific Co.,Ltd.) as internal standard, vor-

texed for 30 s, and homogenized to extract the compounds from the hepatopancreas. Then,

the homogenate was further ultrasonically treated in ice bath for 3 min, and deproteinized

through centrifugation at 4˚C (12,000 rpm, 10 min). The supernatant was subsequently trans-

ferred into a new microcentrifuge tube and lyophilized. The dried samples were reconstructed

with chilled methanol/water (4:1, v: v) for further process.

2.4. LC–MS/MS analysis

Briefly, the LC-MS/MS experiments were performed on the Dionex UltiMate 3000 Uhplc sys-

tem coupled with Q Exactive mass spectrometer (Thermo Fisher Scientific, CA, USA) operating

in data-dependent acquisition (DDA) mode. Samples were injected onto a Hypersil GOLD

HPLC column (50×2.1 mm, 1.9 μm). The mobile phase consisted of a gradient system of (A) 10

mM ammonium formate in water and (B) 10 mM ammonium formate in methanol: 0–2 min,

5% B; 2–5 min, 5–30% B; 5–19 min, 30–99% B; 19–22 min, 99% B; and 22.1–25 min, 5% B.

Compound ionization was conducted as the following parameters: Q-Exactive mass spec-

trometer was operated in positive/negative polarity mode with spray voltage 3.5 kV/3.2 kV,

capillary temperature of 320˚C, sheath gas flow rate 30 psi and aux gas flow rate 10 arb. Sam-

ples were analyzed using liquid chromatography-high resolution mass spectrometry

(LC-HRMS) in full scan + data dependent MS2 mode with a scan range from 100–1000 m/z at

a resolution of 70,000, followed by data dependent MS/MS (dd-MS/MS) with a normalized

collision energy of 30 and at a resolution of 17,500. To avoid instrument drift, fourteen quality

control (QC) samples were preprocessed as the samples for data quality assessment.

2.5. Data analysis

Data processing including peak alignment, retention time correction, and peak area extraction

was conducted by commercially available software, Compound Discoverer v. 3.0 (Thermo

Fisher Scientific, CA, USA). The identified metabolites were searched against mzCloud and

ChemSpider database. For multivariate statistical analysis, principal component analysis

(PCA) and orthogonal partial least-squares discriminant analysis (OPLS–DA) were performed

to detect the metabolic variations between the two experimental groups through the SIMCA-P

v.14.1 software (Umetrics, Umeå, Sweden) after pareto (Par) scaling. The quality of OPLS-DA

model was assessed based on the cumulative parameters R2X, R2Y, and Q2 in cross-validation,

and applying a permutation test with 200 permutations.

Significantly differential metabolites of the pairwise comparisons were identified with VIP

score > 1 obtained from OPLS-DA model and p< 0.05 from Student’s t test. Hierarchical

cluster analysis (HCA) was performed via TBtools software v.1.046 [21]. Afterward, pathway

enrichment analysis of identified metabolites was carried out through MetaboAnalyst v.4.0

software [22] (https://www.metaboanalyst.ca/).

3. Results

3.1. Overall data set and metabolic profiles

In total, 5,589 and 2,704 peaks were detected in positive and negative ion modes, respectively.

Subsequently, after further quality control filtering, 1,254 and 222 peaks were retained for par-

allel analyses.
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To characterize the variations in the metabolic profiles of M.rosenbergii between the fast-

growing group and slow-growing group, PCA and OPLS-DA were conducted.

As shown in Fig 1A and 1B, apparent separation was observed of the 20 prawns between

fast-growing and slow-growing groups. The percentage of explained value in the metabolomics

analysis of PC1 and PC2 was 28.2% and 18.3% (positive ion mode), 45.8% and 16.0% (negative

ion mode), respectively. Subsequently, a further examination based on the OPLS-DA score

plot showed a clear separation between the two groups. In the positive (negative) ion mode,

the parameters considered for classification from the software were R2X (cum) = 0.303, R2Y

(cum) = 0.860, Q2 (cum) = 0.528 (R2X (cum) = 0.608, R2Y (cum) = 0.704, Q2 (cum) = 0.467)

(Fig 1C and 1D). Subsequently, model cross-validation through permutation tests (200 times)

generated intercepts of R2 and Q2 (positive ion mode, 0.644 and -0.478; negative ion mode,

0.573 and -0.433, respectively) (Fig 2). Herein, all of which confirmed that the OPLS-DA

model was stable and not over-fitted. Taken together, multivariate analyses (PCA and

OPLS-DA) demonstrated a clear and significant separation of the fast-growing group versus

slow-growing group.

3.2. Significantly differential metabolites

On the basis of the OPLS-DA results, a total of 44 (36 in positive ion mode and 8 in negative

ion mode) significantly differential metabolites (SDMs) were identified (VIP > 1, p< 0.05)

between the fast-growing and slow-growing groups (Table 2), and MS/MS spectrums of seven

representative SDMs were listed in additional file 1. Among the 44 SDMs, 11 and 33 metabo-

lites were significantly up-regulated and down-regulated compared with those in slow-grow-

ing group. Hierarchical clustering analysis also indicated that each type of the two groups

exhibited a distinct metabolic pattern (Fig 3).

3.3. Metabolic KEGG pathway analysis

To explore potentially metabolic pathways affected by different growth performances, pathway

analysis of 44 SDMs were performed by MetaboAnalyst 4.0. Functional analysis revealed that

the metabolites those significantly difference were involved in glycerophospholipid metabo-

lism, aminoacyl-tRNA biosynthesis and linoleic acid metabolism (Fig 4). The putative com-

pounds hit LysoPC (20:5(5Z,8Z,11Z,14Z,17Z)) (LysoPC), PC (14:0/18:1(9Z)) (PC),

Glycerophosphocholine (GPC), PE (16:0/22:1(13Z)) (PE), L-histidine, L-arginine and L-

proline.

4. Discussion

In the past decades, unsynchronized growth of M. rosenbergii have caused severe productive

and economic losses, while the potentially metabolic mechanism behind the phenomenon

remains unclear. Hepatopancreas as the major organ, is implicated in carbohydrate and energy

metabolism, protein and lipid synthesis [23]. Moreover, it plays an important role in the syn-

thesis and secretion of digestive enzymes, nutrient absorption, digestion, reserve storage and

mobilization [24]. Accumulating evidence have shown that hepatopancreas has significant

impact on crustacean growth [25]. Thus, in the present study, we performed hepatopancreatic

metobolomics of giant freshwater prawns with different growth performance between the fast-

growing group and slow-growing group based on the LC-MS/MS. To our knowledge, this

study was the first investigation to identify the key metabolites and pathways implicated in

growth performance, which will provide novel insights into understanding of metabolic mech-

anism underlying the unsynchronized growth in M. rosenbergii.
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Of note, combining our data and KEGG database, a comprehensive scheme that controlling

growth performance of M. rosenbergii is proposed, as shown in Fig 5. We speculated that in

the hepatopancreas, glycerophospholipid metabolism might affect the physiological functions

of cells and membranes, moreover provide energy for aminoacyl-tRNA biosynthesis and

amino acid biosynthesis via fatty acid degradation and oxidation in response of different

growth performance in M. rosenbergii.

Fig 1. PCA (A and B, in positive and negative modes, respectively) and OPLS-DA (C and D, positive and negative modes, respectively) scores

plots based on LC-MS/MS data of hepatopancreas samples from Fg (red) and Sg (green).

https://doi.org/10.1371/journal.pone.0243778.g001

Fig 2. OPLS-DA permutation test for positive (A) and negative ion mode (B).

https://doi.org/10.1371/journal.pone.0243778.g002
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Table 2. Significantly differential metabolites for 20 prawns between fast-growing and slow-growing groups.

Significantly differential metabolites identified in positive ion mode

No. Metabolites MW(Da) RT(min) Log2FC P-value VIP

1 LysoPC(0:0/18:2(9Z,12Z)) 519.332 17.303 -1.33 0.0014 13.8337

2 LysoPC(0:0/18:1(9Z)) 521.348 17.922 -0.78 0.0144 9.9551

3 LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)) 541.316 16.71 -1.81 0.0010 7.7474

4 LysoPC(0:0/16:0) 495.332 17.665 -0.99 0.0351 4.7933

5 LysoPC(18:3(9Z,12Z,15Z)) 517.316 16.704 -1.58 0.0012 4.6793

6 PC(14:0/18:1(9Z)) 731.545 21.13 0.26 0.0086 3.9071

7 LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 567.331 17.471 -1.12 0.0004 3.7332

8 Methyl eicosapentaenoate 316.240 18.56 -0.66 0.0479 3.4406

9 Glycerophosphocholine 257.102 0.458 -0.78 0.0324 3.3007

10 L-Arginine 174.112 0.487 -0.53 0.0250 3.2579

11 LysoPC(16:1(9Z)) 493.316 16.885 -0.64 0.0353 3.1972

12 15,16-Dihydrobiliverdin 584.263 14.911 -2.56 0.0022 2.9967

13 4-Methoxycinnamic acid 178.063 4.534 0.23 0.0436 2.7188

14 Retinal 284.214 18.555 -0.67 0.0390 2.2772

15 LysoPC(22:5(7Z,10Z,13Z,16Z,19Z)) 569.347 17.58 -1.33 0.0020 2.2174

16 PE(16:0/22:1(13Z)) 773.592 21.839 0.41 0.0480 2.1821

17 LysoPC(14:0) 467.301 16.539 -1.28 0.0002 2.0772

18 LysoPE(0:0/20:5(5Z,8Z,11Z,14Z,17Z)) 499.269 16.673 -1.22 0.0138 2.0684

19 Adenosine 267.097 2.057 -1.94 0.0235 2.0605

20 LysoPC(20:2(11Z,14Z)) 547.363 18.217 -1.47 0.0016 1.9187

21 L-Proline 115.063 0.506 -0.54 0.0468 1.7536

22 L-Palmitoylcarnitine 399.334 17.702 -0.79 0.0435 1.6945

23 Nupharamine 251.188 13.506 1.14 0.0053 1.6195

24 Alanyl-Leucine 202.132 4.516 0.38 0.0283 1.6171

25 LysoPC(20:3(8Z,11Z,14Z)) 545.347 17.707 -1.42 0.0018 1.5545

26 LysoPE(18:2(9Z,12Z)/0:0) 477.285 17.238 -1.17 0.0242 1.4848

27 LysoPE(0:0/20:1(11Z)) 507.332 17.434 -0.94 0.0306 1.2884

28 LysoPE(0:0/18:0) 481.316 17.138 -1.32 0.0021 1.2403

29 LysoPE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) 525.285 17.397 -1.29 0.0095 1.2357

30 Primidolol 333.169 6.939 0.45 0.0319 1.2201

31 trans-Hexadec-2-enoyl carnitine 397.319 16.896 -0.88 0.0491 1.1108

32 Codonopsine 267.147 9.468 1.52 0.0193 1.0629

33 Oxidized glutathione 612.151 0.434 -0.82 0.0189 1.0456

34 Valyl-Valine 216.147 5.706 0.27 0.0229 1.0404

35 Adenosine monophosphate 347.063 0.629 -3.3 0.0446 1.0208

36 LysoPC(18:4(6Z,9Z,12Z,15Z)) 515.301 16.117 -1.78 0.0048 1.0113

Significantly differential metabolites identified in negative ion mode

No. Metabolites MW(Da) RT(min) Log2 FC P-value VIP

1 Neotame 378.217 14.489 1.28 0.0015 5.4073

2 CP 47,497-C6-Homolog 304.239 17.776 -0.11 0.0301 2.1848

3 N-Arachidonoyl dopamine 439.304 18.267 -1.05 0.0172 1.7745

4 Bilirubin 584.261 14.917 -2.29 0.0022 1.7004

5 L-Histidine 155.068 0.505 -0.41 0.0077 1.6767

6 5-Chloro AB-PINACA 364.165 10.048 0.93 0.0107 1.2014

7 3-Methyl-4-[2-(4-morpholinophenyl)hydrazono]-1-phenyl-4,5-dihydro-1H-pyrazol-5-one 363.170 10.633 0.49 0.0161 1.1153

8 L-Malic acid 134.020 0.455 -0.36 0.0471 1.0751

https://doi.org/10.1371/journal.pone.0243778.t002
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4.1. Glycerophospholipid metabolism and linoleic acid metabolism

Amongst, the elements of glycerophospholipid metabolism, including LysoPC (20:5

(5Z,8Z,11Z,14Z,17Z)), PC (14:0/18:1(9Z)), Glycerophosphocholine and PE (16:0/22:1(13Z))

were significantly altered between the two groups. It has been reported that PC and PE are the

main lipid constituents of cell membranes, which play critical roles in functioning well of cells

Fig 3. Heatmap of significantly differential metabolites between the fast-growing and slow-growing groups.

https://doi.org/10.1371/journal.pone.0243778.g003

Fig 4. Significant metabolic pathways for 44 SDMs.

https://doi.org/10.1371/journal.pone.0243778.g004
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[26]. Decreasing the PC content affected the integrity of liver cells and mitochondrial mem-

brane, thus directly leading to proliferation, differentiation and apoptosis [27]. LysoPC is the

main component of low density lipoprotein. Generally, the content of LysoPC was low

occurred in cells or tissues, high concentrations could damage the membrane system of cells

[28].

Glycerophosphocholine is produced by lysoPC [29], which was response for cell viability

and motility [30]. Some studies have proposed that higher content of GPC acted as an indica-

tor of cancer progression [31]. Notably, PC was involved in linoleic acid metabolism. Interest-

ingly, in recent prior studies, researchers have observed that glycerophospholipid metabolism

and linoleic acid metabolism have closed relationship with energy metabolism via β-oxidation

[32,33]. The present study investigated that PC and PE, LysoPC and GPC were shown down-

regulated and up-regulated in fast-growing group, respectively. Overall, the data could inter-

pret that high concentration of PC and PE, low concentration of LysoPC and GPC was essen-

tial for different growth performance.

4.2. Aminoacyl-tRNA biosynthesis

For the aminoacyl-tRNA biosynthesis, previous researches have observed that it is an impor-

tant metabolic pathway before amino acid biosynthesis [34]. In this study, three amino acids

including L-histidine, L-arginine, L-proline those identified in the metabolic pathway showed

down-regulated in fast-growing group.

Zhao et al. demonstrated that dietary histidine level affected the growth performance, body

composition of juvenile Jian carp [35]. Similarly, Zehra et al. also confirmed that dietary

Fig 5. Hypothesized pathway of the different growth performances of M. rosenbergii. Up-regulated and down-

regulated metabolites are shown in red or green letters. Three significant pathways are shown in red boxes, two

pathways not significantly enriched are shown in blue boxes. Abbreviations: PE, PE (16:0/22:1(13Z)); PC, PC (14:0/

18:1(9Z)); LysoPC, LysoPC (20:5(5Z,8Z,11Z,14Z,17Z)); GPC, Glycerophosphocholine.

https://doi.org/10.1371/journal.pone.0243778.g005

PLOS ONE Metabolic profiles and variations in giant freshwater prawn

PLOS ONE | https://doi.org/10.1371/journal.pone.0243778 December 23, 2020 8 / 12

https://doi.org/10.1371/journal.pone.0243778.g005
https://doi.org/10.1371/journal.pone.0243778


histidine level has positive effects on the growth performance, protein deposition and carcass

composition [36]. L-Arginine (Arg) is synthesized from glutamine, glutamate and proline. It

has demonstrated that the concentration of Arg in hepatocytes was very low [37]. It has been

found that dietary arginine contributed to the growth performance, immunity and health sta-

tus of broiler chicks [38]. L-Proline as an essential precursor for the synthesis of proteins most

publications have paid attention to proline on plants [39,40]. It was indicated that proline dis-

plays remarkable role on plant growth and development under non-stress or stress conditions,

but the role of proline on growth was varied [41].

Meanwhile, the three amino acids have favorable roles in formation of peptide chains.

Moreover, Wang et al. proposed that aminoacyl-tRNA biosynthesis was significantly associ-

ated with the growth of D. similis [34], which was in agreement with previous finding of Yebra

et al. [42]. All in all, high contents of L-histidine, L-arginine, L-proline might disrupt the

homeostasis of hepatopancreas, and perturb the transport process to the intestine or plasma.

5. Conclusions

In summary, we investigated the metabolic profiles of hepatopancreas between the fast-grow-

ing group and slow-growing group in M. rosenbergii based on the LC-MS/MS, and identified

44 significantly differential metabolites. Integrated analysis of key metabolic pathways showed

that glycerophospholipid metabolism and aminoacyl-tRNA biosynthesis played crucial role in

response to unsynchronized growth. Notably, seven metabolites, consist of LysoPC(20:5

(5Z,8Z,11Z,14Z,17Z)), PC(14:0/18:1(9Z)), Glycerophosphocholine, PE(16:0/22:1(13Z)), L-his-

tidine, L-arginine and L-proline, were strongly correlated with growth performance. The

results obtained in our study demonstrated the critical pathways and metabolites to decipher

the potential metabolic mechanism of the unsynchronized growth in M. rosenbergii.
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