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Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique to decipher

tissue composition at the single-cell level and to inform on disease mechanisms, tumor het-

erogeneity, and the state of the immune microenvironment. Although multiple methods for

the computational analysis of scRNA-seq data exist, their application in a clinical setting

demands standardized and reproducible workflows, targeted to extract, condense, and dis-

play the clinically relevant information. To this end, we designed scAmpi (Single Cell Analy-

sis mRNA pipeline), a workflow that facilitates scRNA-seq analysis from raw read

processing to informing on sample composition, clinically relevant gene and pathway alter-

ations, and in silico identification of personalized candidate drug treatments. We demon-

strate the value of this workflow for clinical decision making in a molecular tumor board as

part of a clinical study.

Author summary

Single-cell RNA sequencing (scRNA-seq) measures the expression levels across the genes

expressed in each single cell. Thus, it is well suited to inform on the cell type composition

and the function of cells in different tissues and diseases. However, it is challenging to cor-

rectly process and interpret the large amounts of data generated with scRNA-seq. To this

end, we have developed an analysis workflow named scAmpi (Single Cell Analysis mRNA

pipeline) that starts on the raw sequencing data and performs preprocessing, quality con-

trol, and subsequent analysis steps following state-of-the-art recommendations for

scRNA-seq processing. The workflow removes low quality cells, assigns a cell type label to

each cell, and visualizes the expression of individual genes of interest and functional path-

ways on the single cells. Moreover, in disease-related analyses scAmpi can link the

observed gene expression to potential drug candidates that could be suited to treat the

disease.
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Introduction

In recent years, single-cell RNA sequencing (scRNA-seq) emerged as a high-throughput tech-

nology for uncovering gene expression at the single-cell level, which provides unprecedented

insights into, e.g., cell differentiation, the immune compartment, and tumor heterogeneity

[1,2]. Initially used to characterize PBMCs or differentiating stem cells, an increasing number

of studies exploit scRNA-seq to investigate clinical samples such as tumor tissues [3,4]. There

are multiple software suites available with extensive functionality for general scRNA-seq analy-

sis, including the widely-used tools SEURAT [5] and ScanPy [6] or the web-based software

suites CreSCENT [7] and ASAP [8]. However, they have some disadvantages: First, for non-

bioinformaticians the usage can be difficult because setting all parameters and applying the dif-

ferent steps requires at least basic R or Python programming knowledge. Second, to the best of

our knowledge, no software is available that facilitates in-silico drug candidate identifications

based on single-cell data. Finally, existing software suites are not designed to manage large-

scale data analysis in a highly reproducible, transparent, and auditable way, including error

tracking and process documentation, and thus are not suitable to be employed for routine clin-

ical use [9,10].

We therefore developed scAmpi, an end-to-end turn-key pipeline for scRNA-seq analysis

from raw read processing to informing on sample composition, gene expression, and potential

drug candidates. Utilizing the Snakemake workflow management system [11], scAmpi is easy

to use and offers a high degree of flexibility in the choice of methods, while it can be employed

in a highly standardized and reproducible fashion. This has led to the successful implementa-

tion of scAmpi for processing scRNA-seq data in the ongoing Tumor Profiler clinical study

[12,13].

Design and implementation

Ethics statement. Ethics approval has been granted by the Kantonal Ethics Commission

of Zürich with approval number BASEC-Nr.2018-02050.

In the following, we describe how scAmpi can be used for analyzing tumor scRNA-seq data

from the 10x Genomics platform (Fig 1). While the initial installation of scAmpi and its depen-

dencies demands basic IT know-how, running the pipeline only requires some familiarity with

executing command-line code. Interpretation of the output tables and graphs is easily done by

anyone with a general understanding of single cell transcriptomics analysis [14].

The default scRNA analysis workflow implemented in scAmpi follows state of the art rec-

ommendations [14] and the individual tools chosen for the different tasks have shown to pro-

duce high quality, reproducible results in our hands. However, the current choices may not be

optimal for all possible situations and one or more tools may have to be exchanged with more

suitable alternatives. For this reason, all workflow steps can be replaced with little effort and

the workflow is directly applicable also to other tissue types.

A complete analysis of a single sample with approx. 4,000 cells and 50,000 reads per cell

takes four to eight hours, depending on the available compute resources. The pipeline can eas-

ily scale to the parallel analysis of large cohorts of hundreds of samples, where each sample is

processed independently in a single-sample analysis fashion. To ensure a thoroughly docu-

mented analysis, each workflow step is tracked with log files describing command, input, out-

put, and resource requirements, as well as error documentation.

Read data processing and normalization. Using the Cellranger software, reads are

assigned to their respective cells based on the 10x Genomics barcodes and simultaneously

mapped to the reference genome to infer read counts per gene per cell. Subsequently, several
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filters are applied to remove contaminants, cell fragments, or dying cells. Doublet detection

and removal is done using scDblFinder [15]. Per default, all non-protein-coding genes and

genes coding for ribosomal proteins are removed. All cells exceeding a specific threshold in

the number of reads mapping to mitochondrial genes are discarded, because they are likely

broken cells [16]. This threshold can be either user-specified or estimated from the data. Fur-

ther, all cells with too few expressed genes are discarded in order to remove low-quality cells or

presumably empty droplets. The remaining counts are normalized for cell-cycle effect and

library size using sctransform [17], which yields Pearson residuals as well as corrected counts

per gene per cell for the subsequent analysis steps. Several types of plots, including scatter plots

showing cells that are filtered out and box plots showing the most highly expressed genes in

the sample, are provided to support quality control.

Sample composition. The two key analyses to inform on sample composition are cell

type identification (Fig 1C) and unsupervised clustering (Fig 1D). Per default, clustering is per-

formed using Phenograph [18]. The clustering compares expression profiles across cells and

yields groups of highly similar cells. Per default, a minimum of 20 cells per group are required,

in order to reach a group size suitable for subsequent differential gene expression analysis.

In contrast, automated cell type classification is applied to each cell individually [19].

Briefly, the expression profile of each cell is compared to a priori defined lists of cell type

marker genes. Each cell type is represented by a list of genes that are known to be specific for

and highly expressed in this cell type. The set of cell types used for classification is expected to

reflect the cell types present in the analyzed tissue. The method accommodates for uncertainty

in the typing as well as unknown cell types. If the expression profile of a cell does not reach a

specified similarity threshold, it is labeled as ‘unknown’. If a cell matches two or more cell

types with high similarity (i.e., the best and second-best similarity scores are too similar), it is

typed as ‘uncertain’. Cell type lists can be derived from literature. For example, for melanoma

biopsies, we based our typing on the markers published by Tirosh et al. [3]. Using a cell type

list that was derived from data of another tissue is also possible, but should be done with care

Fig 1. Overview of the workflow implemented in scAmpi, showing a tumor sample analysis as an example. Starting from droplet-based

10x Genomics raw data (A), genome-wide read counts for each cell are generated (B). This gene-by-cell count matrix is the basis for cell type

prediction (C) and unsupervised clustering (D) to determine the cell type composition and tumor heterogeneity. Subsequent steps include

gene expression (E) and gene set (F) analysis, and drug candidate identification (G).

https://doi.org/10.1371/journal.pcbi.1010097.g001
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due to tissue-dependent expression differences. The cell type analysis works in a two-step hier-

archical fashion. In the first iteration the major cell type populations are identified, e.g., tumor

cells are distinguished from T cells. In a second step, all cells belonging to a particular major

cell type can be re-classified into subtypes. For instance, T cells can be sub-classified (among

others) into gamma delta, memory resting, or regulatory T cells. scAmpi already offers prede-

fined cell type lists for melanoma, AML, ovarian cancer, and PBMCs, but user-specified

marker lists can be easily added.

The results of the sample composition analysis (unsupervised clustering and cell typing) are

visualized in a low-dimensional representation using, e.g., Uniform Manifold Approximation

and Projection (UMAP) [20].

Differential gene expression. Detecting differential gene expression (DE) is a major

aspect of standard mRNA sequencing experiments. Here, we perform two main comparisons

for scRNA-seq data using multiple linear regression: First, provided multiple tumor clusters

are found, a DE analysis is performed that compares the expression phenotypes of the different

tumor clusters and informs on the tumor heterogeneity. Second, provided malignant (tumor)

cells as well as non-malignant cells are found, a DE analysis is performed that identifies genes

with different expression levels in each tumor cluster compared to all non-malignant cells.

Non-malignant cells can be any cell type present in the tissue, such as, immune cells, endothe-

lial, or epithelial cells. The fold-change (FC) and FDR cutoffs applied to the DE analysis can be

specified by the user (per default scAmpi applies |logFC| > 2 and FDR < 0.01).

Gene expression and pathway analysis. The user can provide grouped lists of priority

genes and pathways to be visualized (Fig 1E). Gene expression is visualized for each cell in a

color-coded UMAP together with a violin plot that shows the expression distribution per clus-

ter, separately for each group of genes. Further, for each cluster, various gene expression sum-

mary statistics are provided, such as the gene expression rank, the average expression, and the

proportion of cells with non-zero expression.

Pathway analysis is performed in two independent approaches (Fig 1F). Based on the DE

genes, a competitive gene set analysis is performed using the camera function from the limma

R package [21]. Here, we output all pathways with an FDR below a user-defined cut-off that

are up-regulated, down-regulated, or are categorized as mixed if both over- and under-

expressed genes were identified in the respective pathway. Gene set enrichment based on DE

analysis is very common, but has certain drawbacks for single-cell data, as these experiments

often lack a proper reference, which can bias the pathway enrichment. Thus, we also perform a

GSVA-based pathway analysis [22], in which gene sets are ranked relative to each other within

each cell independent of all other cells. As this approach is comparing gene sets within a cell, it

does not rely on the presence of a reference cell population.

In-silico drug candidate identification. Initially developed for bulk sequencing data [23],

the in-silico drug candidate identification framework was refined and adapted to facilitate sin-

gle-cell and expression data analysis (Fig 1G). For each tumor cell cluster, the differentially

expressed genes resulting from the comparison of malignant versus non-malignant cells are

used to query DGIdb [24] to obtain potential drug-gene interactions. These drug-gene interac-

tions are undirected in the sense that they do not reveal whether the tumor might be sensitive

or resistant to the identified drug. Thus, we further enrich the drug-gene interactions with

information from clinicaltrials.gov and CIViC [25]. CIViC is a database of curated drug-gene

interaction information providing information on the observed expression type, i.e., over-

expression or under-expression. This directed in-silico drug candidate identification is also

visualized on the sample composition UMAP.
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Results

We showcase the readout and analyses possible with scAmpi for scRNA-seq data from a biopsy

of a melanoma patient who was included in the Tumor Profiler clinical study [12]. The full

analysis from raw fastq files to in-silico drug candidate identification is triggered with only two

commands. For details on the default parameter settings, we refer to S1 Text. In the initial

mapping step, Cellranger identifies 4193 cells. Subsequent filtering in scAmpi removes 10%

(437) of cells due to low quality (Fig 2A). Fig 2B and 2C show examples of QC metrics on the

UMAP representation of the cells. After normalization, the cell-cycle phase has no apparent

effect on the embedding of the cells anymore. Instead, as shown in Fig 3A, the embedding is

cleanly separated by cell type populations.

The cell type composition analysis identifies a melanocytic melanoma cell population that

constitutes 34% of the sample. The tumor immune microenvironment is very diverse and

shows a large group of T cells, mainly sub-classified as memory effector T cells, as well as mac-

rophages, B cells, NK cells, and Endothelial cells (Fig 3A). This finding is in agreement with

results from CyTOF experiments also performed on the case study presented in [12]. Further

investigation of the immune microenvironment is facilitated by gene expression visualization

and a population-based and ranked overview of the average gene expression and number of

non-zero cells for each gene. For instance, as shown in Fig A in S2 Text, memory effector T

cells express PDCD1 (PD-1), an immune checkpoint marker relevant for immunotherapy.

Other immune checkpoint markers are also expressed, together with an observed MHC class I

expression (HLA-A/B/C) on the tumor cells indicating that T cells would be able to recognize

tumor cells. Taken together, this molecular phenotype suggests a potential suitability of anti-

PD1 immunotherapy. This finding is also supported by other technologies presented in [12],

such as CyTOF and imaging mass cytometry.

Unsupervised clustering (Fig 3A) reveals that the melanoma population groups into four

clusters, indicating tumor heterogeneity. scAmpi offers multiple readouts to further investigate

this heterogeneity, including, e.g., individual gene expression analysis, gene set enrichment

analysis, and differential gene expression comparing the tumor clusters (see S3 Text for

Fig 2. Examples of scAmpi’s basic scRNA-seq quality control plots of a melanoma sample. The scatter plot in (A) shows cells colored by their respective

category of applied filters. The vertical and horizontal lines indicate the chosen thresholds applied for the minimum number of genes (x-axis) and maximum

fraction of reads mapping to mitochondrial genes per cell (y-axis), respectively. In (B), the UMAP embedding (after normalization) of all cells is shown, with

cells colored by estimated cell-cycle phase. In (C), the same UMAP is shown, this time with cells colored by the fraction of reads mapping to mitochondrial

genes.

https://doi.org/10.1371/journal.pcbi.1010097.g002
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details). As shown in Fig 3B, three of the four tumor clusters display down-regulation of the

MAPK pathway (gene set taken from the Hallmark MSigDB [26]), precluding the use of

BRAF/MEK inhibitor treatment. In contrast, the in-silico drug candidate identification of

scAmpi marked the complete tumor population to be potentially sensitive to palbociclib treat-

ment, based on the over-expression of CCND1 and further supported by the expression of

CDK4 (Fig 3C and 3D). This finding is observed across other technologies described in [12],

such as drug response testing (referred to as Pharmacoscopy).

Taken together, scAmpi provides not only insights into the general sample composition

and gene and pathway expression, but also enables downstream data interpretation to support

clinical decision making.

Availability and future directions

The source code of scAmpi is available on github at https://github.com/ETH-NEXUS/

scAmpi_single_cell_RNA. scAmpi offers comprehensive functionality for the analysis of

scRNA-seq data. Key aspects are on the one hand its flexibility and ease of use, which allows

the application to various tissues and disease types. On the other hand, it provides a standard-

ized and reproducible workflow that is suited for application in clinical settings and was

already utilized in a clinical study [8,21]. Moreover, scAmpi facilitates in-silico drug candidate

identification on the single-cell level, thereby directly accounting for disease heterogeneity in

the design of optimal drug treatment. Finally, because of the modular Snakemake framework,

Fig 3. Sample composition and interpretation of a melanoma sample. In (A) the UMAP embedding is colored by cell type label

(left) and cluster (right), with major cell type populations highlighted in the figure. For a complete overview of cell types, see Fig B in

S2 Text. In (B), the enrichment of the MAPK pathway is exemplified. In (C), UMAPs showing the gene expression of CCND1 and

CDK4 are shown as selected examples of individual gene expression plots. The UMAP in (D) shows the drug candidate identification

result for the drug palbociclib.

https://doi.org/10.1371/journal.pcbi.1010097.g003
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we foresee a continued extension and refinement of the pipeline and its open source code, also

by the single-cell community.

Supporting information

S1 Text. Parameter setting and analysis call.

(DOCX)

S2 Text. Cell types and immune gene expression.

(DOCX)

S3 Text. Tumor heterogeneity.

(DOCX)
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Rätsch, Natascha Santacroce, Jacobo Sarabia del Castillo, Ramona Schlenker, Petra C Schwalie,

Severin Schwan, Tobias Schär, Gabriela Senti, Franziska Singer, Sujana Sivapatham, Berend

Snijder, Bettina Sobottka, Vipin T Sreedharan, Stefan Stark, Daniel J Stekhoven, Alexandre PA

Theocharides, Tinu M Thomas, Markus Tolnay, Vinko Tosevski, Nora C Toussaint, Mustafa

A Tuncel, Marina Tusup, Audrey Van Drogen, Marcus Vetter, Tatjana Vlajnic, Sandra Weber,

Walter P Weber, Rebekka Wegmann, Michael Weller, Fabian Wendt, Norbert Wey, Andreas

Wicki, Mattheus HE Wildschut, Bernd Wollscheid, Shuqing Yu, Johanna Ziegler, Marc Zim-

mermann, Martin Zoche, Gregor Zuend.

Author Contributions

Conceptualization: Anne Bertolini, Michael Prummer, Jack Kuipers, Niko Beerenwinkel,

Franziska Singer.

Funding acquisition: Daniel Johannes Stekhoven, Niko Beerenwinkel.

Methodology: Anne Bertolini, Michael Prummer, Ulrike Menzel, Jack Kuipers, Franziska

Singer.

Project administration: Niko Beerenwinkel, Franziska Singer.

PLOS COMPUTATIONAL BIOLOGY Single-cell RNA-seq analysis from basics to clinics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010097 June 3, 2022 7 / 9

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010097.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010097.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010097.s003
https://doi.org/10.1371/journal.pcbi.1010097


Resources: Daniel Johannes Stekhoven, Niko Beerenwinkel.

Software: Anne Bertolini, Michael Prummer, Mustafa Anil Tuncel, Marı́a Lourdes Rosano-
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