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Abstract Through the course of over three decades, non-

human primate (NHP) studies on cell-based therapies

(CBTs) for Parkinson’s disease (PD) have provided insight

into the feasibility, safety and efficacy of the approach,

methods of cell collection and preparation, cell viability, as

well as potential brain targets. Today, NHP research con-

tinues to be a vital source of information for improving cell

grafts and analyzing how the host affects graft survival,

integration and function. Overall, this article aims to dis-

cuss the role that NHP models of PD have played in CBT

development and highlights specific issues that need to be

considered to maximize the value of NHP studies for the

successful clinical translation of CBTs.

Keywords Parkinson’s disease � Nonhuman primates �
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Introduction

Since the early 1980s, scientists have relied on nonhuman

primate (NHP) models to assess whether cell-based thera-

pies (CBTs) can be beneficial for Parkinson’s disease (PD).

CBT strategies and NHP models of PD emerged into the

scientific arena simultaneously. In a way, the availability of

the new NHP models fueled CBT progression towards

clinical application.

As the main aim of CBTs for PD was and still is the

replacement of neurons lost in the disease, PD animal models

with neurotoxin-induced neuronal loss became an ideal plat-

form to assess the approach. CBT studies in rodent models

provided invaluable information on neuronal survival,

migration and integration after grafting (Kim et al. 2013).

Clinical translation of CBTs requires progressive evaluation

in different species and as a first-in-class and invasive brain

therapy, NHP experiments are a logical next step (Capitanio

and Emborg 2008). Compared to rodents that are inbred,

NHPs are outbred. Behavioral outcome measures such as fine

motor skills, which are affected in PD, can be easily tested in

NHPs but not in other large species, like pigs. Clinically rel-

evant behavioral outcome measures are critical to determine

the efficacy of the strategy, including the selection of intrac-

erebral grafting targets. In that regard, NHPs and humans

share a similar organization of the striatum, with the caudate

nucleus and the putamen clearly delineated by the white

matter tracts of the internal capsule. In rodents, transecting

white matter tracts perforate throughout the striata, without

presenting a physical barrier for cell distribution (Fig. 1).

In this article, we aim to discuss the role of NHP models of

PD in CBT development, keeping in perspective how the field

of PD is evolving, analyze ongoing advances in CBTs and the

issues that need to be considered to maximize the value of NHP

studies for the successful clinical translation of CBTs for PD.

Parkinson’s disease: then and now

Parkinson’s disease (PD) is the 2nd most common neu-

rodegenerative disorder affecting around 1% of the popu-

lation over the age of 60 (Driver et al. 2009). When CBTs
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were first envisioned for actual clinical application, the

conceptualization of PD suggested that it was an ideal

candidate disease for brain repair. Patients were diagnosed

by typical motor symptoms (resting tremor, rigidity,

bradykinesia, and postural instability), which were associ-

ated with the loss of dopaminergic (DAergic) nigral neu-

rons. As the symptoms responded to oral dopamine (DA)

replacement therapy, it was expected that dopamine

replacement with a cell source should be an efficient way to

securely and locally deliver DA and, basically, cure PD. In

addition, the brain was viewed as an immunoprivileged,

postmitotic organ.

The understanding of PD and the brain has evolved over

time, which affects the application of CBT strategies.

Today, PD diagnoses still depend on the presence of typical

motor symptoms, and postmortem confirmation of nigral

DAergic neuron loss and the presence of intracytoplasmic

neuronal inclusions termed Lewy bodies [LBs; (Vermilyea

and Emborg 2015)]. Yet, PD is now recognized as a

complex neurodegenerative disorder that includes non-

motor symptoms (NMS). Depression, anxiety, loss of sense

of smell, gastrointestinal dysfunction and cardiac dysau-

tonomia are common PD NMS, which are associated with

neurodegeneration in other areas of the central and

peripheral nervous system (Chaudhuri and Odin 2010;

Chaudhuri et al. 2011). Interestingly, NMS precede the

onset of the movement disorder by decades and are now

proposed as prodromal signs of the disease (Postuma et al.

2012). Earlier PD diagnoses would increase the chances of

success of neuroprotective strategies. In that regard, brain

immunoreactivity has been documented (Kordower et al.

1997; Roitberg et al. 2004; Tambur 2004) and neuro-in-

flammation has been linked to PD neurodegeneration,

suggesting that immunomodulation can be neuroprotective

(Kannarkat et al. 2013). Neurogenesis has been docu-

mented in the adult brain of rodents (Altman and Das 1965;

Kaplan and Hinds 1977; Kempermann et al. 1997), NHPs

(Gould et al. 1999) and humans (Eriksson et al. 1998), and

directed neurogenesis has been discussed for self-brain

repair (Rakic 2004).

Another chain of events that led to findings with great

implications for PD and CBTs started in 1996, when

mutations in the alpha-synuclein (a-syn) gene were found

in familial forms of PD (Polymeropoulos et al. 1997).

Subsequent studies identified a-syn as the main component

of LBs (Spillantini et al. 1997, 1998). Then, in 2008 LBs

were reported in dopaminergic fetal grafts of PD patients

that were transplanted a decade earlier, suggesting that the

grafts ‘‘caught PD’’ from the host (Li et al. 2008; Kordower

et al. 2008). Since then, a-syn research has taken a center

stage in PD research (Bendor et al. 2013; Vermilyea and

Emborg 2015). Investigations on whether a-syn has prion-

like activity revitalized the Braak and Braak hypothesis

that PD may start in the brainstem and propagate through

the neural axis (Braak et al. 2004; Chu and Kordower 2015;

Hilker et al. 2011). Studies on protein aggregation followed

(Luk et al. 2009), as well as the search for neuroprotective

approaches aiming to prevent aggregation (Kalia et al.

2015). It should be noted that the cause of PD is still

unclear and that the question of whether the early periph-

eral symptoms reflect where PD starts or less neuroplas-

ticity is being debated (Engelender and Isacson 2016).

NHP models of PD used for CBT evaluation

Common marmoset, vervet and macaque monkeys are the

most used NHP species for CBT studies. To the best of our

knowledge, only neurotoxin-induced NHP models of PD

have been used as testing platforms for CBTs, mainly by

the administration of 6-hydroxydopamine (6-OHDA) or

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),

although new models are emerging (Table 1).

6-OHDA (Senoh and Witkop 1959) is preferentially

used in common marmoset monkeys (Ungerstedt 1968;

Blandini et al. 2008; Eslamboli et al. 2005). As 6-OHDA

does not cross the blood–brain barrier (BBB), it is stereo-

taxically injected directly into the right or left striatum,

medial forebrain bundle or substantia nigra, inducing uni-

lateral motor impairments. The neurotoxin is selectively

taken up by catecholaminergic neurons through mono-

amine transporters, and induces sympathetic neuronal loss

by increasing the production of reactive oxygen species

Fig. 1 Coronal brain sections of A rhesus and a mouse brain

immunostained against tyrosine hydroxylase (TH) highlighting the

comparison of brain size and complexity. Scale bar 1 cm. Cd caudate,

ic internal capsule, Put putamen, ac anterior commissure, CPu

caudate and putamen
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(ROS), and disrupting energy metabolism and neuronal

activity (Blum et al. 2001).

MPTP (Davis et al. 1979; Langston et al. 1983) is most

commonly administered to macaque monkeys, although it

is also used in other old and new world NHP species (Fox

and Brotchie 2010; Emborg 2007). Unlike 6-OHDA,

MPTP crosses the BBB and is administered to NHPs via

s.c., i.m., i.v. or intracarotid artery (ICA) injection. Severity

of PD symptoms depends on route, dose and frequency of

administration; dosing regimen varies between species

(Emborg 2007). In the brain, MPTP is transformed into its

toxic metabolite MPP? by monoamine oxidase-B (MAO-

B). MPP? is then selectively taken up by the DA trans-

porter into dopaminergic neurons where it disrupts normal

mitochondrial respiration by acting as a mitochondrial

complex I inhibitor, leading to oxidative stress and apop-

tosis (Przedborski and Vila 2001).

Although it can be argued that neurotoxic models are

missing critical components of PD, such as ‘‘true’’ LB

formation (Dauer and Przedborski 2003), several reasons

justify their use to test CBTs as DA replacement/network

restoration strategies: (1) neurotoxin-induced models pre-

sent PD-like motor symptoms and dopaminergic nigros-

triatal loss, (2) they are well characterized, and (3) they can

be induced in a protracted period of time, which facilitates

their use as testing platforms.

We agree with the concept that an ideal NHP model of

PD should mimic the disease by replicating its etiology,

which should induce the pathological mechanisms that give

rise to the typical symptoms. Yet, although great progress

has been made towards understanding the complexity of

PD and possible pathways of neurodegeneration, its cause

is still unknown. Neurotoxin-based models attempt to

capitalize on the knowledge that exposure to environmental

toxins is a PD risk factor. In that regard, both neurotoxins

trigger mechanisms associated with neurodegeneration in

PD. In addition to disrupting energy metabolism and

increasing oxidative stress, dosing with 6-OHDA and

MPTP induces inflammatory responses (Rodriguez-Pal-

lares et al. 2007; Joglar et al. 2009; McGeer et al. 2003).

MPTP dosing has also been shown to trigger an increase in

a-syn expression and, in some cases, its accumulation

Table 1 Comparison between NHP models of PD highlighting key features for evaluation of CBTs for DA cell replacement

NHP PD model PD motor

symptoms

Nigrostriatal

DA

depletion

Typical

LIDs

Synucleinopathy Comments

6-OHDA Yes Yes No Not reported Unilateral model. Requires multiple intracerebral

stereotaxic injections to induce a stable lesion

MPTP systemic Yes Yes Yes Upregulation of

a-syn

Bilateral model. Needs to be individually titrated, and

depending on dosing paradigm may require from one

week to over a year to induce syndrome. PD symptoms

may spontaneously recover

MPTP

systemic?aging

Yes Yes Yes Upregulation of

a-syn, possible

aggregates

Same as MPTP systemic plus animals may require more

intensive care post intoxication

MPTP ICA Yes Yes No Not reported Unilateral model. Requires surgical set up; Induces a

stable and reproducible lesion

MPTP

ICA?aging

Yes Yes No Not reported Same as MPTP ICA except MPTP dose needs to be 2/3

of younger animals. Monkeys may require more

intensive care post intoxication

Aged NHPs Yes Yes No Translocation of

a-syn

Not enough dopamine deficit to be responsive to L-DOPA

treatment

Viral vector

delivery of a-

syn

Yes (Common

marmosets)

Yes Unknown Overexpression

of a-syn,

aggregates

Unilateral model. Requires intracerebral stereotaxic

injections

Lewy body

extracts

No Yes Unknown Overexpression

of a-syn,

aggregates

Unilateral model. Requires intracerebral stereotaxic

injections

a-syn Transgenic Mild

(Cynomolgus

1.5–2 years

old)

Unknown Unknown Unknown Bilateral model

6-OHDA 6 hydroxydopamine, a-syn alpha-synuclein, MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, ICA intracarotid artery, L-DOPA

L-3,4-dihydroxyphenylalanine, LIDs L-DOPA induced dyskinesias
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(Halliday et al. 2009; Kowall et al. 2000; McCormack et al.

2008).

Other identified PD risk factors include aging and

genetic mutations which are exploited for modeling pur-

poses (Emborg 2007). Studies in aged NHPs with or

without MPTP have been reported. Intact aged animals

present subtle PD-like symptoms (e.g.: slowness and

overall decreased amount of movement) and nigrostriatal

dopaminergic loss, with individual variations. As the

symptoms in aged monkeys do not respond to DA

replacement therapies, the animals are not useful models to

assess cell replacement strategies. In contrast, aged animals

intoxicated with MPTP present the typical motor and

pathological syndrome observed after neurotoxin, plus the

background aged condition associated with PD, and could

be useful testing platforms, yet CBT studies in models

combining aging and neurotoxins have not been reported.

Genetic-like NHP PD models have been induced by

intracerebral injection of viral vectors encoding for mutateda-

syn or administration of LB extracts [see review (Vermilyea

and Emborg 2015)]. Adeno-associated viral (AAV) vector-

induced nigral overexpression of human a-syn wild type and

A53T has been shown to induce PD-like motor symptoms,

significant nigral dopaminergic cell loss, anda-syn aggregates

in common marmoset monkeys (Eslamboli et al. 2007; Kirik

et al. 2003). AAV and lentiviral vectors encoding for A53T a-

syn have also been used in cynomolgus (Koprich et al. 2016)

and rhesus (Yang et al. 2015) monkeys. In both studies, A53T

a-syn induced nigral cell loss and a-syn accumulation and

aggregation; behavioral changes were not reported. A com-

bination of AAV-induced overexpression of Parkin and A53T

a-syn was reported in cynomolgus; although the animals had

decreased striatal dopaminergic markers and a-syn accumu-

lation and phosphorylation, no motor symptoms were

observed. It should be noted that in vervet monkeys nigral

injection of AAV expressing a short hairpin RNA (shRNA) to

knock down a-syn induced a region-specific decrease in TH-

positive nigral cell number and striatal innervation compared

to animals that received scrambled shRNA; no behavioral

changes were reported (Collier et al. 2016). Intracerebral

inoculation of a-syn fibrils has been extensively used in

rodents, but not yet in monkeys (e.g.: (Luk et al. 2012; Pau-

mier et al. 2015)). Instead cadaveric LB extracts have been

injected into the striatum or nigra of cynomolgus monkeys

with or without previous MPTP, (Recasens et al. 2014). The

extracts induced some decreases in striatal and nigral

dopaminergic markers and increases in a-syn expression, yet

PD motor symptoms were not detected. It should be noted that

with exception of the AAV a-syn studies in marmosets, all the

other reports in genetic-like models were performed in a few

subjects; further characterization and validation of the models

are needed before they are used as testing platforms for CBTs.

Transgenic NHP models induced by oocyte injection of

lentiviral vectors encoding for mutations of interest are

emerging; transgenic rhesus monkeys overexpressing mutant

A53T a-syn have been reported (Niu et al. 2015). The authors

also reported some behavioral deficits after 1.5–2.5 years of

age. New technologies such as CRISPR/Cas9 genomic editing

present an opportunity to create NHP models with PD asso-

ciated mutations expressed at physiological levels that may

help clarify the disease onset process, including motor and

non-motor symptoms (Gaj et al. 2016). Timely evaluation of

CBTs in these novel NHP models may provide clues to

understand a-syn-related problems during clinical translation

and define the role of CBTs in global therapies.

CBTs for DA cell replacement: from rodents
and monkeys to PD patients

Fetal mesencephalon and autologous adrenal medullary

tissues were the first sources used to demonstrate the fea-

sibility for DA cell replacement. In 1979, Bjorklund and

Stenevi (Bjorklund and Stenevi 1979) reported positive

effects of fetal grafts in circling behavior of 6-OHDA-

treated rats, and in 1981, Freed et al. (Freed et al. 1981)

showed adrenal graft survival in a similar model. In 1984,

Morihisa and colleagues (Morihisa et al. 1984) transplanted

adrenal medullary tissue and fetal mesencephalic cells into

MPTP-treated parkinsonian rhesus monkeys and showed

some survival of adrenal, but not fetal, cells. In follow-up

experiments, poor survival of transplanted adrenal tissue

was reported (Morihisa et al. 1987) yet as the PD signs

ameliorated, researchers hypothesized that the intense host-

derived dopaminergic sprouting in the transplanted area

was responsible for the behavioral improvements.

Improved graft survival was observed when methods were

applied to minimize the endothelial components (Schueler

et al. 1993). With regard to fetal mesencephalic grafts,

between 1986 and 1994, 15 NHP reports were published

(Bakay et al. 1987; Collier et al. 1987; Redmond et al.

1986, 1988; Sladek et al. 1986; Annett et al. 1990, 1994;

Bankiewicz et al. 1990; Collier et al. 1994; Dubach et al.

1988; Elsworth et al. 1994; Fine et al. 1988; Sladek et al.

1993; Taylor et al. 1990, 1991) demonstrating the feasi-

bility of the approach, as well as different degrees of

antiparkinsonian effects. It should be noted that these

studies were performed in a limited number of NHPs per

treatment group, in most cases the area of the brain targeted

was the caudate nucleus, the animals did not receive

immunosuppression and the effect of antiparkinsonian

medication was not evaluated (Fitzpatrick et al. 2009).

Both CBT approaches were rapidly translated to

humans. In 1985, Backlund et al. reported two cases of

patients receiving adrenal medulla grafts resulting in mild

effects, and in 1987, Madrazo and colleagues showed the
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first dramatic improvement of PD symptoms in two

patients (Madrazo et al. 1987). Following these promising

results, several similar case studies were undertaken, with

different, less favorable outcomes [see review: (Redmond

2002)]. Goetz et al. reported the results of a multi-center

study of 19 patients in 1989 (Goetz et al. 1989). The

grafted patients showed minimal temporary antiparkinso-

nian effects, described as decreased mean severity of ‘‘off’’

time (time when the positive effects of pharmacological

treatment wear off) as assessed by both the Activities of

Daily Living subscale of the Unified Parkinson’s Disease

Rating Scale (UPDRS) and the Schwab and England scale.

Yet, the patients’ antiparkinsonian medications could not

be decreased and postoperative morbidity was consider-

able, due to the double surgery (abdominal and brain)

required to harvest the adrenal medulla and then transplant

the cells. Postmortem results revealed poor cell survival

and localized host regional neuronal sprouting, similar to

the results in the NHP experiments.

With regard to fetal mesencephalon grafting, after

multiple case reports in PD patients [see (Freed et al. 1992;

Redmond et al. 1993)] the National Institute of Health

(NIH) funded two prospective, double blind, randomized

control trials aiming to assess the efficacy and safety of

transplanting fetal mesencephalic tissue to treat PD. The

Freed et al. (Freed et al. 2001) trial consisted of 40 PD

patients: 20 received bilateral post-commissural putaminal

grafts of ventral mesencephalic fetal neurons, and 20 had a

burr hole drilled into their skull as a sham procedure.

Immunosuppression was not administered. The fetal cells

were cultured for 1 week prior to transplantation. The

primary endpoint was patient self-reports on activities of

daily living (recorded at home for 12 months). The Olanow

et al. trial (2003) consisted of 34 PD patients: 11 received

bilateral post-commissural putaminal grafts of ventral

mesencephalic fetal neurons from one donor fetus, 12 from

four donor fetuses, and 11 received bilateral sham proce-

dures. Oral cyclosporine (CsA) immunosuppression was

administered to all patients starting 2 weeks prior to sur-

gery and continued for 6 months after grafting. The pri-

mary endpoint was the UPDRS motor subscore. Both trials

did not show significant differences between treatment

groups, although further analysis revealed that patients

younger than 60 years old or with less severe PD at base-

line had improvements in their parkinsonian signs. Positron

Emission Tomography (PET) imaging demonstrated

increased [18F]fluorodopa uptake in the grafted areas sug-

gesting graft survival that was later confirmed by post-

mortem examinations.

An unexpected outcome for both trials was the occur-

rence of what was then named ‘‘runaway’’ dyskinesias, also

known as graft-induced dyskinesias (GIDs). Unlike typical

PD dyskinesias that are induced by chronic long-term L-

DOPA administration [see (Bezard et al. 2001)], these

uncontrolled abnormal movements were not associated

with antiparkinsonian medication and did not ameliorate

with reduction or cessation of L-DOPA treatment. GIDs

were observed in a quarter of the grafted patients in the

Freed et al. and half the Olanow et al. trials.

Several issues may have contributed to the onset of GIDs.

As patients that received the fetal mesencephalic grafts

presented focal points of increased PET signal (Ma et al.

2002), it was proposed that the grafts produced ‘‘hot spot’’

regions in which DA was being excessively released. To

answer the question of whether there was an association

between GIDs and focal versus widespread distribution of

cell grafts in the striatum (Maries et al. 2006), 6-OHDA-

treated rats received either a focal striatal transplant of

200,000 cells, or the same number of cells across six different

striatal locations. The experiment showed that GIDs were

only present in the focal graft recipients. It also brought to

light that the number of functional cells within a focal site

might be of equal concern. Another proposed contributing

factor for GIDs was that the chronic L-DOPA treatment

preceding the transplantation may have ‘‘primed’’ the

patients to have dyskinesias. In 6-OHDA-intoxicated rats, L-

DOPA pre-treatment affected graft integration and func-

tionality, although GIDs were present with or without L-

DOPA pre-treatment (Steece-Collier et al. 2009). A study in

24 systemic MPTP-treated vervet monkeys (Chlorocebus

sabaeus) assessed whether priming the animals to develop L-

DOPA-induced dyskinesias (LIDs), and then injecting allo-

geneic fetal dopaminergic cells in a ‘‘spread’’ or ‘‘hotspot’’

pattern would affect the development of GIDs (Kordower

et al. 2016). The investigators did not detect GIDs in any of

the monkeys, regardless of cell distribution or condition.

Possible species differences could be at play as well as

methods of cell preparation. A critical limitation of this

report is that the animals’ MPTP-induced parkinsonism

spontaneously improved overtime. All the monkeys pre-

sented similar mild PD scores with no differences between

grafted and control subjects. Thus, the graft’s antiparkinso-

nian efficacy or graft potential to produce true functional

hotspots could not be evaluated.

Inflammation has also been proposed to promote the onset of

GIDs through aberrant synapse formation between grafted

neurons and host striatal medium spiny neurons [MSNs;

(Soderstrom et al. 2008)]. This theory was derived from the

observation of GIDs in patients who did not receive immuno-

suppression following fetal engraftment or those that had been

recently taken off an immunosuppressive regimen. Interest-

ingly, the evaluation of spine density maintenance in MSNs

through administration of slow-release pellets of the calcium

channel antagonist nimodipine has led to intriguing evidence

about the importance of preserving MSNs for reducing LIDs

and transiently reducing GIDs (Soderstrom et al. 2010). Patient
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and rodent studies have also highlighted that serotonergic and

noradrenergic neurotransmission either by host innervation or

by mixed-cell grafts may contribute to GIDs (Shin et al. 2012).

As the cause of GIDs is being unraveled, new strategies aiming

to prevent or decrease GIDs are being evaluated.

Another potential complication for CBTs was uncovered in

2008, when follow-up postmortem analysis of PD patients

treated a decade earlier with fetal grafts found LB-like

pathology in the grafted cells (Kordower et al. 2008; Li et al.

2008). Although it is unclear how much the aggregates

affected the functionality of the grafts, the implication that PD

could be transferred to the grafted cells reverberated

throughout the field (see ‘‘Parkinson’s disease: then and

now’’). A preliminary confirmation of a-syn being transferred

into grafted cells was obtained in rats injected with adeno-

associated viral vector serotype 6 encoding for human a-syn

into the striatum after fetal cell engraftment (Kordower et al.

2011).

New clinical trials utilizing fetal mesencephalic tissue

for DA cell replacement are currently ongoing in Canada,

Europe (Transeuro), South Korea and Mexico (listed in:

clinical trials.gov and isrctn.com). The investigators lead-

ing these trials aim to optimize the approach by taking

advantage of the knowledge gained from the clinical and

preclinical studies described above.

Additional clinical trials using CBTs for DA cell
replacement in PD

A number of alternative sources for dopaminergic neurons,

including mesencephalic fetal porcine cells, cadaveric

human retinal-pigmented epithelium (hRPE) and autolo-

gous sympathetic and carotid ganglia, have been investi-

gated to avoid the surgical complication of using

autologous adrenal medullary tissue and to overcome the

practical and ethical limitations of using human fetal cells

for large-scale clinical applications. NHP preclinical stud-

ies were only performed for hRPE. The DA-producing

cells were attached to gel microcarriers (Spheramine�) and

placed into the striatum of parkinsonian monkeys. The

grafts improved motor function and postmortem analysis

showed cell survival and a mild inflammatory reaction

(Watts et al. 2003). Controlled clinical trials for hRPE as

well as all the sources listed above failed to show a sig-

nificant antiparkinsonian effect (Fitzpatrick et al. 2009).

Ex vivo gene therapy for PD

Ex vivo gene therapy originated as a method to engineer

cells for delivery of therapeutic molecules (Raymon et al.

1997). The cells are typically genetically modified using

viral vectors. The main advantage of this method compared

to direct intracerebral viral vector delivery (in vivo gene

therapy) is that the transfected cells can be monitored

before transplantation for the effects of viral infection and

the production of a foreign protein. Safety, genetically

engineered, ‘‘tricks’’ have been developed to curtail

unwanted side effects, such as regulatable promoters to

stop gene expression and kill-switches to terminate the

cells and completely stop product synthesis.

Ex vivo gene therapy strategies have been developed for

DA replacement and trophic factor delivery with variable

results. MPTP-intoxicated rhesus monkeys received autol-

ogous fibroblasts genetically engineered to produce tyr-

osine hydroxylase [the rate-limiting enzyme for DA

production; e.g., (Bankiewicz et al. 2000)] with minimal

antiparkinsonian effects. Glial cell line-derived neu-

rotrophic factor (GDNF) producing C2C12 cells were

encapsulated and transplanted into MPTP-treated baboons

(Kishima et al. 2004) inducing only temporary improve-

ments of their parkinsonian symptoms, probably due to the

low survival of encapsulated cells which led to a low and

variable protein production. New cell sources for ex vivo

gene therapy (see below) are emerging. For example,

human neuroprogenitor cells (hNPCs) have been shown to

survive and locally produce GDNF in the brain of

parkinsonian immunosuppressed rats and monkeys (Behr-

stock et al. 2006; Emborg et al. 2008). Although the clin-

ical translation for PD has not been pursued (probably due

to the poor results of GDNF protein delivery trials;

(Richardson et al. 2011)), a clinical trial for amyotrophic

lateral sclerosis is currently ongoing (http://www.clin

icaltrials.gov).

Stem cells as sources of cell lines

Biological research breakthroughs and development of new

technologies have paved the way for the identification of

stem cells (SCs) as new cell sources for regenerative

medicine approaches. SCs are defined by their self-renewal

capacity and their potential for becoming a different cell

type with a specialized function. These properties allow

researchers to create cell lines to be repurposed for in vitro

studies and transplantation.

hNPCs are typically obtained from the germinal layer of

a fetal brain. Although they are not pluripotent SCs (they

are already fated toward a brain cell phenotype), in vitro

hNPCs can be expanded and differentiated to a DA phe-

notype (Sanchez-Pernaute et al. 2001). In MPTP-treated

monkeys, hNPCs induced improvements of PD signs and

postmortem analysis has shown their survival and migra-

tion. Their cell progeny seemed to differentiate in vivo into

DA-like neurons and glial phenotypes and overall have a
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‘‘homeostatic’’ impact (Bjugstad et al. 2005, 2008; Red-

mond et al. 2007). It should be noted that NPCs have been

found in the adult human and NHP brains (Eriksson et al.

1998; Gould et al. 1999). These findings, plus earlier

studies in rodents, refuted the idea that the adult brain is

incapable of forming new neurons (Altman and Das 1965;

Buzanska et al. 2002; Kaplan and Hinds 1977; Kemper-

mann et al. 1997). The option of recruiting resident hNPCs

for brain repair has tantalizing possibilities but its utility

has not yet been proven (Rakic 2004). Interestingly, one

study grafted autologous adult cortical cells (cultured for a

couple of weeks) into the caudate of MPTP-intoxicated

vervet monkeys. Grafted cells were found 4 months post-

surgery and their presence was associated with increased

local levels of GDNF (Brunet et al. 2009).

Bone marrow, umbilical cord blood and adult adipose-

derived stromal tissue (Fallahi-Sichani et al. 2007; Levy

et al. 2008; McCoy et al. 2008) have been proposed as SC

sources as they can be obtained for autologous grafts.

Although NHP studies with these cells have not been

performed, evaluation in rodents suggests that they produce

trophic factors that could be beneficial for PD. Several

clinical trials are currently ongoing to test the safety and

efficacy after administration of mesenchymal stem cells

through intravenous, intracarotid or intranasal routes

(clinicaltrials.gov). Intravenous infusion of adipose-derived

stromal vascular fraction cells is also being investigated for

safety and efficacy, as well as for benefits to the quality of

daily living in PD patients.

Embryonic stem cells (ESCs) obtained from blastocysts are

pluripotent SCs, thus they have the potential to become any

cell of the body. In 1995, Thomson et al. (Thomson et al. 1995)

reported the isolation of ESCs from rhesus monkeys. Com-

mon marmoset ESCs were isolated in 1996 (Thomson et al.

1996), followed in 1998 by human ESCs [hESC; (Thomson

et al. 1998)]. Differentiation of ESCs into a DA phenotype was

first accomplished in mice (Lee et al. 2000), followed a few

years later in human (Perrier et al. 2004; Yan et al. 2005) and

rhesus (Takagi et al. 2005). Since then, investigators have

been looking for more efficient ways to produce mesen-

cephalic DA neurons, as well as to solve the problems of

intracerebral graft survival and other challenges identified by

the fetal tissue trials. The ethical dilemma of the cells’ origin

triggered the 2001 restriction of USA federal funding for

hESC research to studies performed on authorized cell lines,

limiting the chances for creating new ones. The 8-year ban on

federal funding for ESC research was lifted on March 9, 2009.

Parthenogenesis, somatic cell nuclear transfer and altered

somatic cell nuclear transfer have been proposed as alternative

sources of pluripotent SCs (Kastenberg and Odorico 2008). In

NHPs, parthenogenesis has been used to generate an SC line

from cynomolgus monkeys (cyno-1). Parthenogenesis is an

asexual form of reproduction; although mammalian eggs

cannot fully develop, they can provide blastocysts to generate

parthenogenesis-derived ESCs. Using the cyno-1 cell line,

investigators differentiated the cells into dopaminergic neu-

rons (Perrier et al. 2004). These cells were successfully

transplanted into 6-OHDA-treated rats and one MPTP-treated

cynomolgus monkey (Sanchez-Pernaute et al. 2008). hNPCs

generated from parthenogenetic hSCs (hpNPCs) have been

evaluated in rats and MPTP-lesioned vervet monkeys

immunosuppressed with a combination of cyclosporine,

prednisone and azathioprine (Gonzalez et al. 2015, 2016). The

investigators first demonstrated graft survival and increased

DA striatal levels 3 months post-surgery in two NHPs (Gon-

zalez et al. 2015). Antiparkinsonian efficacy of hpNPCs was

then evaluated in 18 monkeys (Gonzalez et al. 2016). The

animals were matched according to disability and assigned to

one of 3 treatment groups: vehicle (n = 6), low (n = 6) and

high (n = 6) cell dosing. Cells were inoculated in the caudate,

putamen and substantia nigra. Twelve months post-grafting,

the low dose animals showed significant behavioral

improvements compared to their baseline condition; however,

no significant differences between vehicle and dosing groups

were detected. A clinical trial to assess the safety and tolera-

bility of hpNPCs in PD is currently ongoing in Australia

(clinical trials.gov). Three patient groups (each to receive

different cell number doses) of four patients each who have

moderate to severe PD will receive between 30 and 70 million

cells injected into the striatum and substantia nigra.

The development of induced pluripotent stem cells

(iPSCs) from somatic cells (Takahashi et al. 2007a, b; Yu

et al. 2007) has further facilitated the production of addi-

tional cell lines for regenerative medicine and disease

modeling purposes. iPSCs represent a major advancement

towards personalized medicine as cells can be generated

from the prospective recipient. iPSCs have been generated

from macaque (Deleidi et al. 2011; Liu et al. 2008) and

marmoset (Tomioka et al. 2010; Wiedemann et al. 2012;

Wu et al. 2010; Vermilyea et al. 2016a) monkeys. The

derivation of iPSCs has been modified in recent years using

expression plasmids that do not integrate into the host

DNA, which increases their safety for clinical translation.

NHP studies assessing SC-derived DA cell
replacement strategies

Over the past decade, several NHP studies have analyzed the

potential use of SCs from different sources and at different

stages of differentiation for DA cell replacement (Table 2).

Takagi et al. investigated monkey ESC-derived neural

progenitors capable of producing dopaminergic neurons for

transplantation into an NHP model of PD (Takagi et al.

2005). ESCs from a cynomolgus monkey (Macaca fasci-

cularis) were differentiated on stromal cells with the
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addition of FGF2 and FGF20, and labeled in vitro with

BrdU for postmortem identification. The ESC-derived

dopaminergic progenitor cells were then transplanted into

systemic MPTP-treated cynomolgus monkeys. Beginning

at 10 weeks post-brain surgery, the neurological parkin-

sonian scores of animals receiving grafts (n = 6) decreased

significantly (p\ 0.05) compared with sham controls

(n = 4) and were associated with a significant increase in

striatal [18F]fluorodopa uptake observed by in vivo PET.

Postmortem analysis at 14 weeks post-grafting verified

survival of BrdU/TH colabeled neurons. Neither mitosis

(identified by Ki67-immunoreactivity) nor tumor formation

was observed in animals that received ESC-derived neu-

ronal transplants.

Aiming for human translation, Kriks et al. differentiated

floorplate-derived dopaminergic neurons from human

ESCs (hESCs), labeled half of the cells with GFP and then

transplanted the labeled cells into one side of the striatum,

and unlabeled cells to the other, of two systemic MPTP-

treated rhesus monkeys immunosuppressed by CsA

administration (Kriks et al. 2011). At one-month post-

transplantation, grafted cells were observed in the posterior

caudate and pre-commissural putamen as well as Iba1?-

cells, suggesting immunoreaction by the host. Daadi et al.

2012 and Wakeman et al. 2014 tested hESC-derived

DAergic neurons expressing GFP in the caudate and nigra

of MPTP-intoxicated vervet monkeys immunosuppressed

with cyclosporine, prednisone and azathioprine (Daadi

et al. 2012; Wakeman et al. 2014b). The 4 monkeys treated

by Daadi et al. showed a few TH-positive grafted cells,

extending neurite outgrowth and expressing synaptic

markers 2 months post-surgery; cell counts of grafts and

immunological response were not reported. In the Wake-

man et al. study, the two monkeys presented co-expression

of GFP and bIII-tubulin positive cells but not TH, dopa-

mine transporter (DAT) or other markers of midbrain

floorplate differentiation 6 weeks after grafting, suggesting

de-differentiation; evaluation of inflammatory markers was

not reported. Emborg et al. also studied hESC-derived

DAergic neurons; however, the brain evaluations were

performed 3 months after grafting. The cells were geneti-

cally engineered to express GFP and grafted in the striatum

and nigra of three rhesus monkeys that received MPTP by

carotid artery injection. The three animals were immuno-

suppressed by daily oral dosing of cyclosporine that was

started 48 h prior to grafting (Emborg et al. 2013b). Post-

mortem analysis at 3 months revealed graft survival in only

one of the three monkeys. The graft was infiltrated with

GFAP, CD68 and CD45 immunoreactive cells, suggesting

ongoing immune reaction despite immunosuppression.

These results further demonstrated that immunological

issues are a major concern for xenografts and that

allogeneic or autologous transplants may render better graft

survival and integration.

Grafts of human iPSC (hiPSC)-derived dopaminergic

neurons have also been attempted. In 2011, Kikuchi

et al. reported their evaluation of grafting into one

FK506 immunosuppressed MPTP-treated monkey

(Kikuchi et al. 2011). The hiPSCs were differentiated

into DAergic neural progenitors in feeder-free conditions

but were not labeled. Day 28 (d28) and d42 neuro-

spheres were transplanted into the right and left puta-

men, respectively. Graft size and function was evaluated

at 1, 3 and 6 months by MRI and at 6 months by PET

using the radioligands 6-[18F]fluoro-L-3,4-dihydrox-

yphenylalanine ([18F]DOPA), [11C]dihydrotetrabenazine

([11C]DTBZ), (E)-N-(3-iodoprop-2-enyl)-2b-carbo[11-

C]methoxy-3b-(4-methylphenyl)nortropane ([11C]PE2I),

to assess for DA synthesis, vesicle transport, and DA

reuptake, and with 30-deoxy-303[18F]fluorothymidine

([18F]FLT) to visualize cell proliferation. Interestingly,

MRI showed increase in graft size on the side of grafted

d28 neurospheres compared to d42. In general, PET did

not identify any meaningful graft-related uptake, with

exception of increased binding of ([11C]PE2I) in the

d42-grafted putamen, suggesting cell differentiation.

Neurological evaluation throughout the study showed no

behavioral recovery. Postmortem analysis 6 months after

transplantation revealed graft survival; d42 spheres pro-

duced higher amounts of TH?cells compared with the

d28 spheres, while also maintaining some progenitor

populations, which explains the observed intracerebral

graft growth; immunological response was not reported.

A major advantage of iPSC technology is that patient-

specific cells can be generated for grafting, which mini-

mizes host immune reaction and avoids immunosuppres-

sion. In 2013, Emborg et al. reported their findings in three

rhesus monkeys that received an intracarotid artery injec-

tion of MPTP, followed 6 months later with autologous

iPSC-derived neuroprogenitors into the striatum and nigra,

without immunosuppression [Fig. 2; (Emborg et al.

2013a)]. For identification, the cells were genetically

modified to express GFP. Six months post-surgery, brain

analysis showed abundant GFP-positive neuron-like cells,

which integrated with the host brain and expressed TH.

Most importantly, infiltration of host immune cells

observed by CD3 and CD8 reactivity was minimal while

HLA-DR and GFAP were mild, similar to MPTP-induced

inflammation. Although neurological scores were not

reported, it was mentioned that the animals’ PD motor

signs did not improve; the lack of recovery was probably

due to low numbers of DAergic neurons grafted. Shortly

after, Morizane et al. compared autologous and allogeneic

transplantation of iPSC-derived neural cells in intact
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cynomolgus monkeys (Morizane et al. 2013). As expected,

the allogeneic transplants elicited a marked immune

response observed, with in vivo PET, as increased uptake

of [11C]PK11195 compared to the autografts, further

emphasizing the benefit of self-derived cells for transla-

tional applications.

In 2015, Hallett et al. reported that the differentiation

protocols used to generate iPSC-derived DAergic neurons

could be a factor for survival and functional integration of

grafted cells (Hallett et al. 2015). After ten cynomolgus

monkeys were rendered stably parkinsonian through sys-

temic MPTP administration, the animals received iPSC- or

ESC-derived DAergic grafts differentiated following three

different protocols: (Cooper et al. 2010) (n = 1), (Sund-

berg et al. 2013) (n = 2), and a modified (Sanchez-Per-

naute et al. 2005) (n = 3; for ESCs); no transplanted

animals (n = 4) were used as controls. The grafts derived

from the Sanchez–Pernaute differentiation protocol did not

survive and were thus separately analyzed as the non-sur-

viving transplant group, compared with the Cooper- and

Sundberg-derived grafts. Only the animal that received

cells using the Cooper differentiation protocol presented

functional recovery of daytime activity and movement

analysis. The animal recovered to pre-MPTP levels for

global activity, and improved in fine motor skills after

2 years. [11C]CFT PET imaging corroborated graft func-

tion with increased uptake around the transplant site. The

lack of functional recovery and survival of the Sundberg

and Sanchez-Pernaute grafts provide evidence that DAer-

gic differentiation patterning may be critical for functional

integration.

Wang et al. also assessed the feasibility of autologous

iPSC-derived DAergic neuron grafts to one MPTP-trea-

ted cynomolgus monkey (Wang et al. 2015). Throughout

the 6-month survival period, only between 6–8, and

22–24 weeks, the transplant monkey appeared to have an

improved clinical rating compared with the control

monkeys (n = 3). Postmortem analysis in the trans-

planted monkey showed graft survival and TH

immunoreactivity.

An examination of these SC-based studies highlights

that, similar to the fetal tissue reports in NHPs, they were

mainly feasibility/safety experiments, performed in a few

animals (with exception of Takagi et al. 2005) and focusing

on assessing cell survival, cell proliferation/tumor forma-

tion and whether the grafted cells integrated and showed a

DA phenotype. Some antiparkinsonian effects were

described. Considering the ongoing improvements on SC

research, this approach shows responsible use of the NHP

resource and also underscores that the results should be

kept in perspective with the limitations of the experimental

design and outcome measures utilized.

Nigral vs. striatal targets

For DA cell replacement, the field strives to recreate and

purify A9 DA nigral cells, yet in patients, the cells have

been mainly transplanted in the postcommisural putamen

[see review: (Redmond 2002)] with a few exceptions in

which the fetal nigral cells were placed in the nigra and

putamen [e.g.: (Mendez et al. 2002); Fig. 3]. Putaminal

targeting aims to provide DA in the area where needed,

while nigral grafting is proposed to restore the nigrostriatal

pathway, including the regulation of grafted cell activity

and restoring the DA tone in the substantia nigra pars

reticulata.

Theoretically, the nigral location is a most optimal

method for brain repair, yet an obstacle for its application

is the long distance to be covered by the axons of cells

inoculated in the nigra to reach their striatal targets. The

successful reconstruction of the nigrostriatal pathway

requires time for axonal extension, axonal guidance and

ultimately recognition and synaptic connection with tar-

gets. In rodents, the feasibility and advantages of the

approach have been reported using fetal cells (Mendez

et al. 1996) and ESCs (Grealish et al. 2014), observing

positive behavioral effects as soon as 6 weeks post-fetal

grafting and 18 weeks with ESC-derived DA cells, with the

latter requiring more time to mature and integrate in the

host. In NHPs and humans, the nigrostriatal distance is

greater, which means that the time needed after grafting to

observe behavioral benefits may also increase; therefore,

multisite grafting has been preferred.

The feasibility of grafting fetal midbrain cells in the

nigra (Collier et al. 2002) or in combination with fetal

striatal grafts for axonal guidance (Sladek et al. 2008) has

been demonstrated in MPTP-treated vervet monkeys; in

both studies axonal extension through the nigrostriatal

pathway and some modest caudal putamen reinnervation

was observed at 6 months; although follow-up studies of

co-grafting fetal nigra and striatum had limited effect

(Redmond et al. 2009). Localized delivery of trophic fac-

tors has been proposed as a method to stimulate and guide

axonal growth. Striatal GDNF overexpression via AAV2

vectors was reported to enhance the survival and outgrowth

of fetal dopamine neurons implanted in the striatum (Els-

worth et al. 2008). A follow-up comparison between

MPTP-intoxicated monkeys treated with AAV5 GDNF in

the caudate nucleus or solid fetal midbrain grafts in the

caudate and putamen or a combination of AAV-GDNF and

fetal grafts or buffered saline solution did not reveal greater

functional improvement in the AAV-GDNF and fetal grafts

monkeys during the 8 months of observation (Redmond

et al. 2013). AAV2-induced overexpression of GDNF in

the caudate supported outgrowth of fetal midbrain grafts
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maximally observed at 22 months post-grafting (Redmond

et al. 2009), as well as stimulated neurite extension and

dopaminergic differentiation of hNC grafts, both placed in

the nigra of MPTP monkeys (Wakeman et al. 2014a). The

studies suggest that reconstruction of the nigrostriatal

pathway can be achieved and that research on methods

aiming to promote and guide axonal growth is needed.

The future of CBTs and NHP studies

NHP studies have paved the way for the first clinical trials

using CBTs for PD. Although the number of monkey

experiments and/or total number of animals was a fraction

compared to rodent studies, they provided key evidence

that CBTs could be used to treat PD. NHP experiments

have facilitated the optimization of cell collection and

preparation methods, cell viability, as well as identify

potential brain targets. Today, old approaches are being re-

evaluated and optimized and new ones are being devel-

oped; some are being translated into the clinic (Barker

2014). NHP research can provide an even more crucial

insight into CBTs, but as a limited resource, prioritization

of issues to be evaluated will be critical. How cells are

prepared and stored affect engraftment, the methods of

delivery, the choice of targets and related timelines of

recovery are basic questions that still need to be solved and

tested in NHPs to improve CBT outcome. The response of

the host to the candidate CBT encompasses a different set

of topics related to efficacy, safety (e.g.: prevention of

GIDs), immunomodulation and inflammatory response and

propagation of a-syn. Each of these issues can also benefit

from careful NHP research.

Several groups are invested in the development of the

optimal cell for transplantation, working on generating cell

lines of ‘‘superdonors’’ with immunological compatibility

and improving the methods of cryoprotection to facilitate

clinical application, as creating a cell line per individual to

be treated would be a daunting task. While the idea of

testing in NHPs the same cell lines to be grafted to humans

is compelling, current data presented in this review high-

light the limitations of the xenograft approach with current

immunosuppression paradigms. Thus, a more parsimonious

approach would be to produce equivalent cells derived

from the same species, at least until the NHP equivalent of

severe combined immune deficiency (SCID) mice becomes

available (Sato et al. 2016).

Due to the brain volume and complexity of NHPs,

questions regarding intracerebral targets and graft distri-

bution will benefit from NHP studies and noninvasive

imaging approaches. For example, great strides have been

made towards the development and improvement of

intraoperative MRI (iMRI) methods (Mislow et al. 2009).

Silvestrini et al. (Silvestrini et al. 2015) used real-time

iMRI (RT-iMRI) for cell transplantation into a swine and

cadaveric human head as a concept for application in the

human brain. The platform technology utilizes a radially

branched deployment strategy to access multi-directional

deposit sites along a single cannula insertion tract. Our

group modified an RT-iMRI delivery system that has a

pivot point base, a clear silica cannula and inline pressure

monitoring system (Emborg et al. 2010, 2014) for the

in vivo delivery of DAergic progenitor cell spheres into the

putamen of a rhesus monkey [Fig. 4; (Vermilyea et al.

2016b)]. Malloy et al. (2016) used an MRI-compatible

delivery system for MRI monitoring of the distribution of

cells pre-labeled with a contrast agent into a baboon basal

ganglia. These new MRI-based imaging methods can

increase the safety and accuracy of the grafting procedures

and facilitate the evaluation of different targeting sites. In

that regard, imaging technologies, such as diffusion tensor

imaging (Hall et al. 2016), can be applied to preclinical

studies to evaluate circuit reconstruction, complementary

to traditional PET imaging with DA-related radioligands.

Application of imaging methods overtime to monitor graft

integration and function would be critical to reduce the

number of NHPs groups needed per experiment to under-

stand recovery timelines.

At this time, GIDs cannot be prevented or cured; NHP

safety studies on methods aiming to modulate grafted cell

activity are needed. Optogenetics is a technique that uses

light to control cells that have been genetically modified

to express light-sensitive ion channels (Lerner et al.

Fig. 2 An example of a grafted autologous rhesus IPSC-derived

dopaminergic neuron labeled with GFP (green) and immunostained

against TH (red); DAPI (blue). Scale bar 50 lm

376 S. C. Vermilyea, M. E. Emborg

123



2016). Optogenetic approaches have been applied to

control electrophysiological and neurochemical properties

of grafted SC-derived DA neurons in rodent models

(Chen et al. 2015; Steinbeck et al. 2015), yet its clinical

translation is not recommended as the patients would

require the intracerebral placement of a probe to locally

deliver the appropriate light wavelength. Compared to

optogenetics, the designer receptors exclusively activated

by designer drugs (DREADDs) technology use noninva-

sive methods to exert its effects, as it depends on designer

drugs to modulate the activity of cells that are genetically

modified to express the corresponding receptor.

Fig. 3 Graphical depiction of a rhesus monkey brain hemisphere in

intact and PD-like conditions and with striatal and nigral grafts. The

main area of projection of nigral dopaminergic neurons is the

striatum, which is composed by the caudate nucleus and putamen. In

PD and PD-like conditions (e.g.: after MPTP intoxication), nigral

dopaminergic neurons die; thus, striatal dopamine (DA) is decreased.

Grafting of DA-producing cells into the striatum is envisioned as a

way to ensure DA availability in the area of projection. Nigral grafts

are proposed as a way to reconstruct the nigrostriatal pathway. Cd

caudate, ic internal capsule, Put Putamen, ac anterior commissure, cc

corpus callosum, Ctx cortex

Fig. 4 Real-time intraoperative MRI for intracerebral delivery of stem cells provides feedback of cannula placement and infusion site: a oblique,

b coronal, c sagittal and d horizontal planes
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DREADDs have been used to modulate human PSC-

derived DA neurons (Chen et al. 2016). There has been a

lot of discussion regarding CBT safety centered on

defining an adequate cell number and volume for intrac-

erebral delivery. The use of DREADDs or an equivalent

technology would allow more flexibility as, theoretically,

cells can be further excited if behavioral recovery is not

observed, or inhibited if serious GIDs occur. Basically, it

would provide a strategy for patient-specific graft modu-

lation that could be monitored by a combination of clin-

ical and PET imaging tools.

How can the value of the next generation of NHP studies

be maximized for the successful clinical translation of

CBTs for PD? We propose that first and foremost, the

investigators should use NHP PD models that match the

question at hand (Table 1). As we previously discussed,

until now all monkey studies of CBTs for PD have been

performed in neurotoxic models. Many basic questions

regarding feasibility, efficacy, and safety can be answered

in these models. Yet, the same way that only old animals

can provide insight on grafting in the aging brain, studies in

models of synucleinopathies are needed to assess the

impact of protein aggregation in graft efficacy. In that

regard, the field is anxiously waiting for the validation of

current genetic models and the availability of transgenic

and genomic edited PD monkeys. Second, a well-designed

feasibility study in a few monkeys presents an opportunity

to learn if an approach is worth pursuing, with the caution

that improvement of PD symptoms could be due to indi-

vidual variability or spontaneous recovery. Demonstration

of efficacy requires properly powered NHP experiments

with blind group assignment and evaluation. Third, the

surgical method of cell delivery is critical to ensuring

appropriate targets, optimized cell survival and distribution

and should not be minimized. Fourth, the animals should

be assessed with multiple outcome measures with clinical

impact to maximize the knowledge to be extracted from the

study. Behavioral evaluations complemented by in vivo

imaging methods can facilitate postsurgical follow-up,

especially for CBT studies taken several years to be com-

pleted. Postmortem analysis should include unbiased cell

counts and evaluation of host immunological response in

order to inform about the safety, efficacy and limitations of

the approach. Fifth, grafted cells should be pre-labeled to

facilitate identification from host cells. Images of grafts

should be in low and high magnification to assess the

extent of cell survival and interaction with host. Sixth,

there are no bad results, but poorly designed experiments.

Publication of positive as well as negative experimental

results in NHPs should be encouraged for the overall

evolution of the field.

To conclude, NHP PD research plays a small but critical

role in CBT clinical translation. Ultimately, investigators

should remember that whether CBTs for PD work will

depend on the benefits outweighing the patients’ risk and

that NHPs have unique characteristics to help identify and

solve these problems.
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