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Abstract: MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 

nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-

coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been 

described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, 

cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are 

associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in 

animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant 

miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of 

target prediction programs and databases on experimentally validated information have been developed for animal miR-

NAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe 

the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site in-

teractions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of 

some previously published studies. We further provide experimentally validated functional binding sites outside 3’-UTR 

region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of 

miRNA binding sites will be briefly discussed. 
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1. INTRODUCTION 

 Functional studies indicate that microRNAs (miRNAs) 
regulate the expression of crucial genes which are involved 
in the initiation, progression and prognosis of many human 
pathologies. miRNAs comprise a recently discovered class 
of small, non-coding RNA molecules of 21-25 nucleotides 
(nt) in length that regulate the gene expression by base-
pairing with the transcripts of their targets i.e. protein-coding 
genes, leading to down-regulation or repression of the target 
genes [1]. However, target gene activation has also been 
described [2]. miRNAs are involved in diverse regulatory 
pathways, including control of developmental timing, 
apoptosis, cell proliferation, cell differentiation, modulation 
of immune response to macrophages and organ develop-
ment [1, 3] and are associated with many diseases, such as 
cancer [3-11]. 

 miRNA transcripts initially originate as long primary 
miRNAs (pri-miRNAs) by RNA polymerase II. The pri-
miRNAs are then processed to a stem-loop (hairpin) struc-
ture fragment termed precursor miRNAs (pre-miRNAs) in 
the nucleus by an RNase III enzyme, Drosha, in complex 
with the double-strand RNA-binding protein DGCR8 [12, 
13]. In a next step, the approximately 70nt hairpin structure 
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pre-miRNAs are then exported to the cytoplasm by Exportin-
5, where they are transformed into small, single-stranded 
miRNAs with the help of Dicer [12, 13]. One strand of the 
mature miRNA enters the RNA-induced silencing complex 
(RISC) which contains Argonaute2 (Ago2), Dicer, and trans-
activating response RNA-binding proteins and binds to the 3’-
untranslated region (3’-UTR) of the target mRNA. Whereas, 
the other strand, termed miRNA*, is degraded. If the comple-
mentarity is perfect, then RISC usually cleaves the target 
mRNA (classical RNA interference); however, if the base-
pairing is imperfect, then RISC induces translational repres-
sion of target genes by targeting their 3’-UTR [1, 13, 14]. Pre-
viously it has been shown that 5’ end of miRNA could be de-
terminant in target repression [15]. The 5’ end sequence of 
miRNA is called ‘‘seed’’ and has a length of 6-8nt which is 
energetically favourable for the miRNA-target interaction 
[16]. Mutations in the seed region of a miRNA sequence leads 
to a lack of interaction [17]. The binding reduces the expres-
sion level of target protein by a number of mechanisms includ-
ing inhibition of translational initiation [18], inhibition of 
elongation, and induction of deadenylation which decreases 
mRNA stability and increases the rate of mRNA degradation 
[13]. In addition to their role in such posttranscriptional re-
pression, miRNAs are now implicated in transcriptional gene 
silencing by targeting the promoter region [19]. Thus, miR-
NAs can inhibit gene expression via translational repression, 
target mRNA degradation, or transcriptional inhibition. 

 The miRNA gene family is one of the largest in higher 
eukaryotes: more than 1,900 human mature miRNAs have 
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been documented in the release 18 of miRBase database 
[20], each of them having the potential to bind to hundreds 
of transcripts [21]. Since the breakthrough discovery of the 
very first miRNAs, computational methods have been 
proven to be relevant tools in understanding the mode of 
miRNAs action. Most computational methods applied in 
miRNA research are about miRNA-mRNA interaction pre-
dictions. Few years ago, scientists determined miRNA-
mRNA interactions through experiments. The first miRNAs 
and their target genes were identified by genetic techniques 
[22]. Nonetheless, these genetic techniques were abandoned 
due to the lack of high-throughput experimental methods and 
laborious nature; therefore, it is of paramount importance to 
design computational approaches to identify miRNA-target 
interaction predictions. In this review, we summarize the 
rules adapted by prediction algorithms to generate possible 
miRNA binding site interactions and to introduce most rele-
vant methods that have been developed for miRNA-mRNA 
interactions prediction. We then outline the applications of 
these most relevant algorithms with the help of previously 
published studies. We further provide experimentally vali-
dated functional binding sites outside 3’-UTR region of tar-
get mRNAs and the resources which offer such predictions. 
Finally, the issue of experimental validation of miRNA bind-
ing sites will be briefly covered. 

2. PREDICTION CRITERIA FOR miRNA TARGET 

IDENTIFICATION 

 miRNA binding sites screening principles adapted by the 
most algorithms are relatively similar, and are based on pre-
vious knowledge on the pairing of mRNAs and miRNAs 
[22]. Prediction criteria used by animal miRNA targets pre-
diction algorithms include the following: 

2.1. Base Pairing 

 The target prediction programs identify potential miR-
NAs binding sites within the mRNA 3’-UTR sequence ac-
cording to specific pairing patterns. These sites can be classi-
fied into six categories: (i) 5’-dominant canonical [23], (ii) 
5’-dominant seed only [23], (iii) 3’-compensatory [23], (ív) 
newly discovered central pairing sites [24], (v) miBridge 
(simultaneous 5’- and 3’-UTR sites) [25] and (vi) Pivot [26]. 
The possible interactions of these six sites are shown in Fig. 
(1). miRNA seed is defined as the consecutive 7 to 8nt long 
sequence starting from either the 1

st
 or 2

nd
 position at the 5’ 

end of a miRNA [16, 27]. In addition to the 3’-UTR region, 
other algorithms, like miRWalk [27], identify multiple con-
secutive Watson-Crick complementary subsequences be-
tween miRNA and the complete sequence (10kb upstream 
flanking region assumed promoter, CDS, 5’- and 3’-UTR) of 
a gene. 

2.2. Thermodynamic Stability of miRNA-mRNA Duplex 

 The kinetics and thermodynamics (minimum free energy, 
MFE) of RNA-RNA duplexes can be determined by RNA 
folding programs, and have been considered important by 
most algorithms. Nonetheless, a recent study by Lewis et al. 
[28] has demonstrated that thermodynamics can be omitted 
without lowering the specificity of the detection algorithm 
by integrating other conserved sequence information. 

2.3. Conservation of Target Sites 

 Comparative sequence analysis within related species is 
performed to examine if target sequences are evolutionarily 
conserved across species. In order to reduce the number of 
false positives, many target prediction algorithms scan 
orthologous 3'-UTR sequences and then perform conserva-
tion analysis across related species. However, there are is-
sues associated with conservation analysis. The use of con-
servation filter has a risk of increasing false negatives 
whereas it reduces false positives. 

2.4. Cooperative Translational Control and Multiplicity 

of miRNA Binding Sites 

 Multiple miRNAs typically regulate one mRNA. The 
multiple miRNAs binding site in the same region of a gene 
can potentially increase the level of translational suppression 
and enhance the specificity of gene regulation, whereas one 
miRNA may have several target genes, reflecting target mul-
tiplicity. That is, combinatorial control of a single target by 
multiple miRNAs may be an important feature of miRNA 
targeting and multiple binding sites for a miRNA within the 
mRNA 3’-UTR region can increase the efficiency of RNA 
silencing [17]. Thus, some algorithms scan for the presence 
of multiple target sites [27, 29]. 

3. ALGORITHMS FOR ANIMAL miRNA-TARGET 

PREDICTIONS 

 Computational prediction of miRNA targets is much 
more challenging in animals than in plants, because animal 
miRNAs often perform imperfect base-pairing with their 
target sites, unlike plant miRNAs which almost always bind 
their targets with near perfect complementarity. In the past 
years, a large number of target prediction programs have 
been developed for animal miRNAs. These miRNA-target 
prediction algorithms are commonly based on a base-pairing 
rule, and other features such as evolutionary conservation, 
thermodynamics of mRNA-miRNA duplexes and nucleotide 
composition of target sequences are often integrated to im-
prove the accuracy. Currently existing miRNA-target predic-
tions algorithms are shown in (Table 1) and the most rele-
vant programs out of them are briefly described below. 

3.1. DIANA-microT 

 This algorithm was developed by Kiriakidou et al. [30] by 
amalgamating computational and experimental approaches. 
For the screening of putative miRNA-recognition elements 
(MREs), it uses a 38nt long frame that is progressively moved 
along 3’-UTR. The minimum energy of potential miRNA-
target interaction is calculated at each step by using dynamic 
programming that allows mismatches and is compared with 
the findings from scrambled sequences with the same 
dinucleotide content as real 3’-UTRs. DIANA-microT recog-
nizes 7, 8 or 9nt long complementary seeds from the 5’ end of 
miRNA sequence with canonical central bulge within the ana-
lyzed 3’-UTR. Hexamer sites within the seed region or with 
one wobble pairing are also considered while these results are 
enhanced by additional base pairing in 3’ region of miRNA 
[31]. DIANA-microT adapts conservative alignment for scor-
ing but also considers non-conservative sites. It also provides 
users with a percentage probability of existence for each result 
depending on its pairing and conservation profile. 
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Fig. (1). Overview of the possible interactions of six different types of miRNA binding sites. 

 

Table 1. Overview of the Existing Resources for Validated and Predicted miRNA-target Information 

Content Resource URL [Reference] 

General information miRBase http://www.mirbase.org [20, 61] 

MiRecords http://mirecords.biolead.org [80] 

miRTarBase http://mirtarbase.mbc.nctu.edu.tw [61] Validated miRNA-target interaction information 

TarBase http://www.microrna.gr/tarbase [60] 

Diana-microT http://diana.cslab.ece.ntua.gr/microT [30, 31] 

miRDB http://mirdb.org [77] 

miRWalk http://mirwalk.uni-hd.de [27] 

miRanda http://www.microrna.org [33-35] 

miTarget http://cbit.snu.ac.kr/~miTarget [92] 

PicTar http://pictar.mdc-berlin.de [37, 38] 

PITA http://genie.weizmann.ac.il/pubs/mir07 [39] 

RNA22 http://cbcsrv.watson.ibm.com/rna22.html [44] 

RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid [32] 

Predicted miRNA-target interaction information 

TargetScan http://www.targetscan.org [16, 28] 

HMDD http://cmbi.bjmu.edu.cn/hmdd [64] 

miR2Disease http://www.mir2disease.org [62] miRNA-disease interaction information 

PhenomiR http://mips.helmholtz-muenchen.de/phenomir [63] 
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3.2. miRWalk 

 The miRWalk algorithm [27] is a recently designed com-
putational approach which identifies multiple consecutive 
Watson-Crick complementary base-pairings between 
miRNA and gene sequences. This algorithm searches for 
seeds based on Watson-Crick complementarity, walking on 
the complete sequence of a gene starting with a heptamer 
(7nt) seed from 1

st
 and 2

nd
 position from the 5’ end of 

miRNA sequences. As soon as it identifies a heptamer per-
fect base-pairing, it immediately extends the length of the 
miRNA seed until a mismatch arises. It then returns all pos-
sible hits with 7nt or longer matches. These binding sites are 
then separated on the basis of their identified locations (start, 
and end positions and regions) in the analyzed sequences. 
Then it assigns the prediction results in five parts, according 
to promoter region, 5’-UTR, CDS, and 3’-UTR and mito-
chondrial genes. In addition, the probability distribution of 
random matches of a subsequence in the analyzed sequence 
is calculated by using Poisson distribution [32]. It can be 
expected that the longer perfect complementation of a seed is 
associated with a lower probability, thus the higher are the 
chances of an effective miRNA-target interaction. 

3.3. miRanda 

 The miRanda algorithm [33] was originally created to 
identify the putative miRNA target genes in Drosophila 
melanogaster. However, it was also applied to predict 
miRNA-target interactions in humans. It is based on a com-
parison of miRNAs complementarity to 3’-UTR regions. 
Three rules (sequence complementarity based on a position 
weighted local alignment algorithm, free energies of RNA-
RNA duplexes and conservation of target sites in related 
genomes) are used to select the target genes for each 
miRNA. In the improved version of miRanda [34], one wob-
ble pairing is allowed in the seed region that is adjusted by 
matches in the 3’ end of the mature miRNA sequence. This 
strategy is adapted to integrate different types of miRNA-
target interactions. miRNAs with multiple binding sites 
within 3’-UTR are promoted, which participates in increas-
ing the specificity, however, it diminishes the number of 
miRNAs with a single but perfect base pairing. It takes into 
account the evolutionary relationships of interactions more 
globally focusing on the conservation of miRNAs, relevant 
parts of mRNA sequences and the presence of a homologous 
miRNA-binding site on the mRNA [35]. 

 Recently, an important improvement to the miRanda al-
gorithm has been introduced [36]. Betel et al. designed a 
support vector regression (SVR) based novel algorithm, 
called mirSVR, for scoring and ranking the miRNA-target 
interactions resulting from the miRanda algorithm by adopt-
ing supervised learning on mRNA expression changes fol-
lowing miRNA transfections. mirSVR combines target site 
information and contextual features into an integrated model. 
Notably, this method detects a significant number of experi-
mentally observed non-canonical and non-conserved sites 
[36]. 

3.4. PicTar 

 PicTar [37, 38] identifies binding sites that are co-
regulated by multiple miRNAs in a synergistic manner, in 

addition to binding sites targeted by a single miRNA and 
then calculates the free energy of identified miRNA-target 
duplexes. Each finding is scored using a Hidden-Markov 
Model (HMM). miRNAs with multiple alignments are pre-
ferred. PicTar uses genome-wide sequence alignment of 
eight vertebrate species to eliminate false positive results and 
it scores the candidate genes of each species separately to 
calculate a combined score for a gene. It is mandatory to 
have recurring nucleotides at overlapping positions in the 
analyzed mRNAs of paired species. 

3.5. PITA 

 The PITA [39] algorithm predicts miRNA-target interac-
tions by focusing on the accessibility of the target sequence 
(mRNA) that is specifically affiliated with the secondary 
structure of the analyzed transcript. PITA works on an as-
sumption which is based on the fact that the secondary struc-
ture of the mRNA plays an important role in miRNA-target 
interaction recognition by thermodynamically promoting or 
preventing the interaction. It first scans the complementarity 
seeds (single mismatch or G:U wobble pairing can be al-
lowed) of miRNAs within the sequences of the analyzed 
mRNAs and then compares the miRNA-target duplex free 
energy, and the energetic cost of impairing the target to make 
it accessible to the miRNA. 

 Previous studies have also incorporated the folded 
mRNA secondary structure information for the possible 
screening of miRNA-target interactions [40, 41]. Long et al. 
[40] designed a two step model i.e. nucleation potential and 
hybridization energy for a miRNA-target interaction. By 
considering the role of target secondary structure on the effi-
cacy of repression by miRNAs, they employed Sfold, a RNA 
secondary structure prediction program, for the statistical 
analysis of the structures that co-exist in dynamic equilib-
rium for a particular mRNA. Furthermore, Long et al. con-
ducted a comparative analysis of the binding sites of miR-
122 within the genome of Hepatitis C virus (HCV) to clas-
sify the functional (5’ non-coding region site) and nonfunc-
tional (3’ non-coding region site) interactions. Their model 
well explained the difference between these two sites, which 
were not, justified by several miRNA-target prediction algo-
rithms i.e. TargetScan, PicTar, miRanda and RNAhybrid. On 
the other hand, Robins et al. [41] developed an algorithm for 
target prediction by integrating the RNA structure informa-
tion, the 7nt from 5’ end, the entire miRNA match score and 
combined scores for multiple sites in the targets, but they did 
not consider evolutionary conservation. Their findings sug-
gest that miRNAs have fewer targets than previously re-
ported which is contrary to other studies [28, 42, 43]. 

3.6. RNA22 

 Rna22 [44] detects pre-created miRNA patterns (statisti-
cal significant miRNA motifs that are generated by analyz-
ing the known mature miRNAs sequence) in the analyzed 
mRNA sequence. It first searches for reverse complement 
sites of patterns within mRNA of interest and determines 
sites with many patterns aligned (so called ‘hot spots’). In a 
next step, it identifies those miRNAs that are likely to anneal 
with these sites. This approach also allows identifying sites 
targeted by yet-undiscovered miRNAs. The important pa-
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rameters (such as minimum number of base-pairs between 
miRNA and mRNA, the maximum number of unpaired 
bases and the free energy cut-off) are defined by users. 
Rna22 does not account for the cross-species conservation 
criteria in the final scoring. 

3.7. RNAhybrid 

 RNAhybrid [32] is an improved version of classical RNA 
secondary structure prediction programs such as Mfold [45, 
46] and RNAFold [47]. This program identifies the energeti-
cally most favourable binding sites of a small RNA within a 
large target RNA sequence. RNAhybrid detects miRNA tar-
gets by matching a 6nt seed starting from the 2

nd
 position 

from the 5’ end of the mature miRNA sequence. 

3.8. TargetScan and TargetScanS 

 Both algorithms [28] rely on different approaches for the 
prediction of possible miRNA-target interactions. Target-
Scan [16] identifies a perfect Watson-Crick base pairing 
complementary between 7nt long miRNA seed (from base 2 
to 8 in the 5’ end of the miRNAs), and the annotated 3’-UTR 
sequence and expends each seed match with additional base 
pairings to the miRNA. It further calculates the thermody-
namic free energy of miRNA-target interaction using the 
RNAFold package [47]. Then it assigns a score to each UTR. 
Thereafter, it scans the sets of UTRs from other species 
(such as mouse and rat) for phylogenic analysis. 

 TargetScanS [28] is an alternative, simplified version of 
TargetScan which predicts targets having a conserved 6nt 
seed match flanked by either a 7nt match or 6nt with A on 
the 3’ terminus not taking into consideration the free energy 
values. 

 By integrating both computational and experimental ap-
proaches, Grimson et al. constructed a model for predicting 
effective miRNA sites based solely on five features: local 
AU content, cooperativity of sites, proximity to nucleotides 
pairing to miRNA (from position 13 to 16), location of sites 
from the stop codon and location away from the center of 
long UTRs [48]. Using univariate regression between feature 
scores and expression changes, they developed a scoring 
system named “context score”, which has been integrated to 
TargetScan. Also, this model was experimentally validated 
for both exogenous and endogenous miRNA-target interac-
tions as it accurately distinguishes effective from non-
effective sites without considering evolutionary conservation 
filter. 

4. APPLICATIONS OF MOST RELEVANT RE-
SOURCES 

The information stored in these databases has been utilized 
by the scientific community in different ways. A few exam-
ples are: 

(i) Some research groups have been adopting a new ap-
proach for the identification of new targets for known 
miRNAs. In this approach, miRNA expression in 
healthy and/or diseased tissue and/or organ was pro-
filed by using miRNA microarrays and statistical sig-
nificant miRNAs were then selected for further vali-
dation by Northern blot and/or qPCR (quantitative 

real-time polymerase chain reaction) experiments. Af-
terwards, miRNA-target prediction programs were in-
terrogated to identify the possible target genes of 
these miRNAs [49]. Finally, cell lines and/or animals 
were used for the knockdown, knockout or overex-
pression of these miRNAs to measure the expression 
level of putative targets (genes). miRWalk database is 
helpful for this kind of approach, as a user can easily 
retrieve information on possible miRNA binding sites 
within the complete sequence or specific region(s) of 
targets by supplying miRNA names or uploading a 
file under the ‘Predicted Target module’ (as shown in 
many articles for e.g. [50]). 

(ii) The basic information on miRNAs (like mature, and 
stem loop sequence, identifiers, chromosome, strand 
and band) as well as other necessary data required for 
a miRNA research, such as regulatory binding sites 
on upstream and/or downstream flanking regions of 
pre-miRNA, information on the host gene of miRNA, 
which miRNAs share a similar seed with the user in-
put miRNAs can be easily obtained from miRBase, 
miRWalk and miRDB. 

(iii) One can collect the putative mRNA-miRNA interac-
tion pairs within other regions of genes from miR-
Walk database and then validate new targets of 
miRNA on the other regions of their genes of interest 
as utilized in [51]. 

(iv) Few resources such as miRWalk, TargetScan, 
miRanda, and TarBase and miRTarBase are very 
helpful for those researchers who want to collect the 
predicted as well as the experimentally validated 
miRNA binding site information on their genes (ob-
tained from mRNA microarrays profiling) of interest. 
They can easily interrogate these databases to gather 
such information by uploading a file of gene symbols 
or EntrezIDs. Thereafter, the potential candidates out 
of these predictions can be selected to conduct further 
analysis/experiments as described in [52]. 

(v) The comparative platform of miRWalk database has 
been extensively used and described in many articles 
(e.g. [53]), since it is very useful for carrying out a 
comprehensive analysis of miRNA binding sites re-
sulting from 10 different prediction datasets and also 
helpful in reducing the false positives. 

(vi) A recent article [54] demonstrated a novel layer of 
crosstalk between nucleus and mitochondria through 
a specific subset of human miRNAs by using the pu-
tative miRNA binding sites from miRWalk [27], 
RNA22 [44], RegRNA [55] and TargetScan [16, 28] 
databases. 

(vii) Three recently published articles on miRNA regula-
tions describe the utilization of miRWalk and Target-
Scan predictions in copy number variants [56], differ-
ent splice variants of a gene [57] and single nucleo-
tide polymorphisms (SNP) [53]. 

(viii) Moreover, the experimentally validated miRNAs (e.g. 
[58]) on one or more genes (for example [59]), dis-
eases, organs and OMIM disorders provide possible 
suggestions for the treatment of diseases by miRNA 
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(s). The information on cell lines related to specific 
miRNA(s), diseases, and gene(s) can be easily re-
trieved from miRWalk [27], TarBase [60], miRTar-
Base [61], miR2Disease [62], PhenomiR [63] and 
HMDD [64]. Afterwards, these cell lines can be used 
to measure the expressions of one or more predicted 
miRNAs and/or genes under different pathophysi-
ological conditions. Recently, Angerstein et al. [65] 
illustrated a schematic workflow on how to employ 
the existing miRNA-target interaction resources in 
identifying the regulatory roles of miRNA in multiple 
sclerosis. The authors utilized the documented infor-
mation for analysing the miRNA-target interaction 
network map, possible regulatory effects of miRNAs 
on cellular functions and their regulation by transcrip-
tion factors resulting in tissue-specific expression. 
Their comprehensive workflow pipeline serves as a 
useful guideline for performing similar studies on dif-
ferent human pathologies. 

5. miRNA BINDING SITES OUTSIDE 3’-UTR RE-

GION 

 In animals, it is well accepted that miRNAs control their 
target gene expression through base-pairing within 3’-UTRs 
regions of mRNAs. Therefore, for more than a decade, at-
tempts to identify the miRNA-target interactions have been 
focused to 3’-UTR regions. However, recent experimental 
studies on miRNA-target interaction have revealed a novel 
miRNA mechanism through which they may regulate the 
gene expression by targeting promoter as well as CDS re-
gions. Tay et al. described the natural occurring binding 
seeds of miR-314, miR-296 and miR-470 within the CDS 
region of the genes Nanog, Oct4 and Sox2 [66]. On the other 
hand, a few experiments have indicated possible target sites 
within the 5’-UTR [67]. A few other studies have revealed 
that small RNAs positively regulate target sequences. Kuwa-
bara et al. reported a small RNA isolated from neural stem 
cells that can transcriptionally activate the expression of 
genes harbouring NRSE/RE1 sequences [68], Jopling et al. 
discovered a liver specific miRNA which enhances viral 
replication by annealing to the 5’ noncoding region of the 
viral genome [69], Li et al., have demonstrated several 
dsRNAs that activate the expression of three genes (E-
cadherin, p21 and VEGF) by targeting their noncoding regu-
latory regions in gene promoters [2] and Place et al. have 
shown that miR-373 targets the promoter sequences of E-
cadherin and CSDC2 genes to induce gene expression [70]. 
These findings suggest that one or more miRNAs could posi-
tively regulate the expression of many genes by targeting 
their inhibitors (repressors of the upstream flanking region or 
promoter sequence). These kinds of interactions (miRNA-
mediated activation of genes) have recently been confirmed 
in a number of studies [49, 71, 72]. 

 Kim et al. accomplished an in-silico screening for 
miRNA binding sites proximal to known gene transcription 
start sites in the human genome [19]. An evidence of a cis-
regulatory role of miR-320 (located within the promoter re-
gion of POLR3D) in transcriptional silencing of POLR3D (a 
cell cycle gene) expression was also confirmed [19]. The 
authors proposed a potential role of endogenous miRNA 
pathway in transcriptional and epigenetic gene silencing 

[19]. For such miRNA-directed gene silencing, it is possible 
that miRNAs enter the nucleus to undergo modifications or 
to associate with nuclear localized proteins. Guang et al. 
have shown that Argonaute proteins can transport classes of 
small regulatory RNA to distinct cellular compartments to 
regulate gene expression [73]. It is also possible that miR-
NAs are involved in chromatin remodeling [19] or associate 
with target transcripts in the nucleus. Within the last few 
years, there have been few studies revealing nuclear import 
of miRNA [74] or their localization within ribosome-rich 
regions in both the nucleolus and cytoplasm [75]. Taken to-
gether, these findings suggest that animal miRNAs could 
modulate the expression of their targets (silencing or activat-
ing) by annealing to any region on the gene sequences. 
Based on such evidence, we have recently developed miR-
Walk [27] which is so far the only database which hosts the 
putative miRNA binding sites not only within 3’-UTR re-
gions, but also in the other regions (promoter, 5’-UTR and 
CDS) of a gene. We assume that these binding regions could 
also be considered as a potential target of miRNAs and such 
findings could facilitate researchers to validated new targets 
of miRNA not only within the mRNA 3’-UTR, but also in 
the other regions of a gene. 

6. FUNCTIONAL EXTENSION OF miRNA-TARGET 

PREDICTION RESOURCES 

 Many web-based resources have been hosted integrating 
novel features to existing prediction programs. These data-
bases mostly incorporate the putative miRNA-target infor-
mation resulting from already established prediction pro-
grams and include other necessary data that are associated 
with many miRNA, gene, protein or pathway resources such 
as UCSC genome browser, NCBI, miRBase, Ensembl, 
Swiss-Prot, KEGG pathway and other databases. 

 Similar to miRGator [76], which integrates three predic-
tion databases, miRWalk integrates 10 datasets for a com-
prehensive study. The miRWalk database is the most fre-
quently utilized resource to conduct a comparative analysis 
of miRNA binding sites resulting from the miRWalk algo-
rithm and 8 other prediction programs. This resource also 
hosts the experimentally validated information which is col-
lected by an automated-text mining search as well as from 
existing databases that document miRNAs validated data. 

 TarBase [60] and miRTarBase [61] document the ex-
perimentally verified information on miRNA-target interac-
tions along with their validation methods such as reporter 
genes, qPCR, western blotting, microarrays, proteomics, 
sequencing and degradome sequencing data. Such informa-
tion is manually curated by both resources through reading 
each and every page of the current literature in PubMed and 
hosted as experimentally validated miRNA-target interaction 
data. miR2disease [62], PhenomiR [63] and miRWalk [27] 
resources provide miRNA-disease and miRNA-cell line in-
teractions. The miRDB is also a web-based resource for tar-
get prediction and functional annotation [77]. An editable 
Wikipedia interface is integrated to miRDB for hosting the 
functional annotations of miRNA which can be easily cor-
rected, edited or updated by miRNA community. In addition 
to wiki annotations, it also has a section which hosts target 
predictions and basic information of miRNAs. 
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7. WHICH DATABASE IS BETTER FOR miRNA-

TARGET PREDICTIONS? 

 Comparative studies conducted with the earlier miRNA-
target prediction programs suggested that no program was 
consistently superior to all others [78, 79]. Indeed, it has 
become a common practice for the experimental researchers 
to look at predictions produced by several miRNA-target 
interaction algorithms and focus on their intersection [49, 53, 
78]. The resources (for instance, miRWalk) that host predic-
tions produced by using multiple algorithms might be helpful 
to reduce the probability of introducing false positives and/or 
negatives as much as possible. miRWalk [27] integrates 10 
datasets for a comprehensive study of the putative miRNA 
binding site predictions obtained from different algorithms. 
This resource allows the user to take more control over the 
prediction data, they consider. This resource conveniently 
incorporates eight different databases at one place. It also 
allows users to choose which combinations of databases they 
would like to consider for their search. In addition, miRWalk 
database also supplies a more holistic view of genetic net-
works of miRNA-gene-pathways and miRNA-gene-OMIM 
disorder interactions, and hosts new and unique features on 
experimentally validated miRNAs. Besides validated infor-
mation, it also offers the information on proteins known to 
be involved in miRNA processing and provides available 
literature on miRNAs. Other programs such as TargetScan 
[16, 28], miRanda [33-35] and PicTar [37, 38] are also em-
ployed to search conserved miRNA binding sites. Table 2 
displays the special features of popular miRNA-target pre-
diction algorithms. 

8. EXPERIMENTAL VERIFICATION OF PUTATIVE 

TARGET SITES 

 Once the potential putative miRNA-target interaction 
pairs are obtained, the next step is to experimentally verify 
these predicted miRNA binding sites. Since miRNA-target 
prediction algorithms are not perfect, there is always a fair 
possibility of false-positive predictions associated with them. 
Therefore, the experimental validation of these predicted 
miRNA-target interactions in the biological system is neces-
sary to complete the study of target prediction. Several 
methods such as reporter assays, microarray and proteome 
analyzes for experimental verification of predicted miRNA-
mRNA interactions are currently being utilized. The experi-
mentally validated miRNA-target interactions information 
have been documented in various databases, such as TarBase 
[60], MiRecords [80], miRWalk [27], miRTarBase [61] and 
miRNAMAP [81]. 

 A reporter gene assay is the very first method in the field 
of experimental verification of putative miRNA-target inter-
actions directly, because miRNA activity on such reporter 
genes can be easily measured [37, 44]. The putative miRNA 
binding sites are fused to a reporter construct. The mutated 
miRNA binding sites are also inserted into the constructs 
which can further use as a negative control to correctly 
measure the reporter activity. The reporter expression is then 
measured in the presence and absence of the cognate miR-
NAs in transfected cell system. Cell systems not expressing 
miRNA of interest may be co-transfected with the reporter 
construct and either a miRNA mimetic or a miRNA-

encoding vector. This method still serves as an invaluable 
approach for the validation of individual miRNA-target in-
teractions [53]. The main advantage of this method is its 
simplicity, whereas the fact that it does not support a high-
throughput identification of miRNA-target interactions is an 
important drawback. 

 Microarray and pSILAC (stable isotopic labelling with 
amino acids in cell culture) are highly efficient methods to 
measure the global transcriptome [82] or proteome [83] 
changes due to overexpression or silencing of miRNA. 
However, these methods only provide indirect evidence 
about miRNA-target interactions and fail to distinguish di-
rect from the indirect targets. Degradome analysis [84, 85] 
approach is also adapted, but it only works in a system where 
a miRNA induces RISC-mediated mRNA cleavage, and 
thus, its usage is restricted mostly to plants. 

 Other experimental verification of miRNA-target interac-
tion approaches have been suggested and successfully im-
plemented (reviewed in [86]). AGO proteins of RISC can 
bind both miRNAs and mRNAs and this feature was em-
ployed in co-immunoprecipitation assays [87]. Moreover, 
high-throughput sequencing of RNAs isolated by crosslink-
ing immunoprecipitation (HITS-CLIP) was also applied to 
determine AGO-bound miRNA-mRNA interaction maps 
[88]. Such an approach is useful in reducing the false posi-
tive targets. The transcriptome-wide identification method 
i.e. PAR-CLIP (Photo-activated-Ribonucleoside-Enhanced 
Crosslinking and Immunoprecipitation) which is an im-
proved version of CLIP was used to detect miRNPs (the 
RNA-binding protein and miRNA target sites) complexes 
[89]. CLIP are very modern and elegant methods to conduct 
large-scale analyses, however, they have some weaknesses. 
These methods are technically challenging and expensive as 
well as they are unable to distinguishing between direct and 
indirect miRNA-target interactions. Moreover, Davis et al. 
proposed RNA-ligase-mediated (RLM) 5’ RACE experi-
ments to verify miRNA-target interactions [90], and Li et al. 
determined the genes that are likely to be modulated by 
miRNAs using high cytoplasmic-to-nucleic ratio of mRNA 
expression [91]. These two methods were successfully estab-
lished for the experimental validation of miRNA-target in-
teractions. 

9. CONCLUDING REMARKS 

 After the breakthrough discovery of the very first miR-
NAs and their targets, many miRNA-target prediction algo-
rithms have been developed based on different principles 
such as base-pairing pattern, evolutionary conservation, sec-
ondary structure and nucleotide composition. Since then, 
there has been a linear growth in the number of annotated 
miRNAs and their validated or predicted targets which are 
supported by a large number of miRNA-target prediction 
programs. Although these programs are still lacking sensitiv-
ity and specificity, no program is proven superior to others. 
Additionally, the methods (for e.g., miRWalk) that provide a 
comprehensive atlas of the putative miRNA binding site pre-
dictions resulting from multiple algorithms are attracting 
more attention of the scientists who want to consider all the 
possible combinations (union or interaction) of available 
algorithms for their research. Since existing target prediction
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Table 2. Overview of the Features of Popular miRNA-target Prediction Programs 

Programs Species Algorithms Advantages Disadvantages 

Diana-

microT 
Human Seed match, thermodynamics 

Prefers target structure before seed 

pairing. 

Absence of cooperativity and multi-

plicity of miRNA binding sites. 

Conservation filter. 

miRDB 
Human, mouse, 

rat, dog, chicken 
SVM classifier 

Editable Wikipedia based interface 

for functional annotation. 

Feature selection procedure is miss-

ing. 

miRWalk 
Human, mouse, 

rat 
Seed match, statistical model 

Provides binding sites within pro-

moter, 5’-UTR, CDS, and 3’-UTR 

regions. 

Amalgamates 10 prediction datasets 

and other unique features such as 

validated information on miRNAs 

associated with genes, diseases, cell 

lines, pathways, etc. 

Free energy of the duplex is missing, 

however; it integrates other algo-

rithms which consider free energy. 

miRanda 
Human, mouse, 

rat, fly, worm 

Complementarity, free energy, 

conservation 

Offers tissue-based miRNA expres-

sion profile. 

Low precision. 

Conservation filter. 

miTarget Any 
Seed match, free energy, SVM 

classifier 

Validated miRNA targets informa-

tion collected from literature search 

is used as training dataset. 

A simple filtering for feature selec-

tion method. 

PicTar 
Vertebrates, flies, 

worms 

Seed match, free energy, conserva-

tion, HMM 

Considers cross-species conservation 

to reduce false positives. 
Non-conservative sites prediction. 

PITA 
Human, mouse, 

fly, worm 
Seed match, free energy 

Considers secondary structure for 

prediction. 

Low efficiency to existing algo-

rithms. 

RNA22 
Human, mouse, 

fly, worm 
Pattern recognition 

Serves interactive exploration. 

It does not consider cross-species 

conservation filter. 

Low efficiency to existing algo-

rithms. 

RNAhybrid Any 
Seed match, free energy, statistical 

model 

Extension of classical RNA secon-

dary structure programs. 

Unable to distinguish functional and 

non-functional sites. 

TargetScan 
Mammals, flies, 

worms, fish 

Seed match, free energy, conserva-

tion 

Broadly scans for conserved 8nt and 

7nt sites. 

Restricts to seed matching and con-

servation. 

 

algorithms rely on different assumptions, combining the re-
sults from multiple tools seems to be a good practice and is 
often utilized in reducing the false positives and/or negatives 
as much as possible. As the understanding of miRNA regula-
tory mechanism widens, it can be expected that existing al-
gorithms will become progressively more accurate. 
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