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Abstract Malaria parasites use the RhopH complex for erythrocyte invasion and channel-

mediated nutrient uptake. As the member proteins are unique to Plasmodium spp., how they

interact and traffic through subcellular sites to serve these essential functions is unknown. We show

that RhopH is synthesized as a soluble complex of CLAG3, RhopH2, and RhopH3 with 1:1:1

stoichiometry. After transfer to a new host cell, the complex crosses a vacuolar membrane

surrounding the intracellular parasite and becomes integral to the erythrocyte membrane through a

PTEX translocon-dependent process. We present a 2.9 Å single-particle cryo-electron microscopy

structure of the trafficking complex, revealing that CLAG3 interacts with the other subunits over

large surface areas. This soluble complex is tightly assembled with extensive disulfide bonding and

predicted transmembrane helices shielded. We propose a large protein complex stabilized for

trafficking but poised for host membrane insertion through large-scale rearrangements, paralleling

smaller two-state pore-forming proteins in other organisms.

Introduction
Malaria parasites evade host immunity by replicating within vertebrate erythrocytes. In humans, the

virulent Plasmodium falciparum pathogen uses multiple ligands for erythrocyte invasion

(Cowman et al., 2012) and then remodels its host cell to achieve tissue adherence and nutrient

acquisition (Goldberg and Cowman, 2010; Wahlgren et al., 2017; Desai, 2014). Remarkably, a sin-

gle protein complex, termed RhopH, contributes to each of these activities despite their separate

timings and cellular locations (Gupta et al., 2015; Goel et al., 2010). The three subunits of the

RhopH complex, known as CLAG, RhopH2, and RhopH3, are conserved and restricted to Plasmo-

dium spp.; none have significant homology to proteins in other genera (Kaneko, 2007), suggesting
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that these proteins and the complex they form evolved to meet the specific demands of blood-

stream parasite survival.

While RhopH2 and RhopH3 are single-copy genes in all Plasmodium spp., CLAG proteins are

encoded by a multigene family with variable expansion in malaria parasite species infecting humans

and other vertebrates including birds, rodents, and primates (Kaneko et al., 2001; Cortés et al.,

2007; Rovira-Graells et al., 2015). Each of these subunits is transcribed in mature schizont-infected

erythrocytes (Figure 1A; Ling et al., 2004); during translation, these proteins assemble with

unknown stoichiometries into a complex that is packaged into rhoptry organelles (Ito et al., 2017).

Upon host cell rupture, RhopH3, but not CLAG or RhopH2 subunits, facilitates invasion of the next

erythrocyte. Some 18 hr later, CLAG3, a paralog encoded by the parasite chromosome 3, inserts in

the host erythrocyte membrane to form the plasmodial surface anion channel (PSAC) for nutrient

uptake (Desai et al., 2000; Nguitragool et al., 2011; Pillai et al., 2012); other paralogs may also

contribute to PSAC (Gupta et al., 2020) or, in the case of CLAG9, to cytoadherence

(Trenholme et al., 2000; Goel et al., 2010; Nacer et al., 2011). RhopH2 and RhopH3 also traffic to

the host membrane and are required for PSAC activity (Ito et al., 2017; Counihan et al., 2017).

Because these proteins have no homologs in other genera, how they traffic within infected cells and

serve these multiple roles is unknown.

Our data reveal essential features of the RhopH complex. We combine mass spectrometry, sin-

gle-particle cryo-electron microscopy (cryo-EM) and biochemical studies using conditional knock-

down of protein export to determine that the RhopH is initially produced as a soluble complex that

functions in erythrocyte invasion. The complex remains soluble in extracellular merozoites and, upon

completed invasion, is deposited into the parasitophorous vacuole surrounding the intracellular par-

asite. A protein translocon on the parasitophorous vacuolar membrane, PTEX (de Koning-Ward

et al., 2009), contributes to RhopH export via an unknown mechanism (Ito et al., 2017). Our high-

resolution de novo RhopH complex structure and biochemical studies suggest large-scale conforma-

tional changes for eventual conversion to an integral form at the host erythrocyte membrane. This

conversion is PTEX dependent and enables channel-mediated uptake of host plasma nutrients.

eLife digest Malaria is an infectious disease caused by the family of Plasmodium parasites,

which pass between mosquitoes and animals to complete their life cycle. With one bite, mosquitoes

can deposit up to one hundred malaria parasites into the human skin, from where they enter the

bloodstream. After increasing their numbers in liver cells, the parasites hijack, invade and remodel

red blood cells to create a safe space to grow and mature. This includes inserting holes in the

membrane of red blood cells to take up nutrients from the bloodstream.

A complex of three tightly bound RhopH proteins plays an important role in these processes.

These proteins are unique to malaria parasites, and so far, it has been unclear how they collaborate

to perform these specialist roles.

Here, Schureck et al. have purified the RhopH complex from Plasmodium-infected human blood

to determine its structure and reveal how it moves within an infected red blood cell. Using cryo-

electron microscopy to visualise the assembly in fine detail, Schureck et al. showed that the three

proteins bind tightly to each other over large areas using multiple anchor points. As the three

proteins are produced, they assemble into a complex that remains dissolved and free of parasite

membranes until the proteins have been delivered to their target red blood cells. Some hours after

delivery, specific sections of the RhopH complex are inserted into the red blood cell membrane to

produce pores that allow them to take up nutrients and to grow.

The study of Schureck et al. provides important new insights into how the RhopH complex serves

multiple roles during Plasmodium infection of human red blood cells. The findings provide a

framework for the development of effective antimalarial treatments that target RhopH proteins to

block red blood cell invasion and nutrient uptake.
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Results

Freeze–thaw releases a soluble RhopH complex with 1:1:1 subunit
stoichiometry
To address these questions, we sought to recover well-behaved RhopH complexes. Alkaline Na2CO3

extraction but not hypotonic treatment partially released CLAG3 from infected cell membranes

(Figure 1B, top row), implicating both integral and peripheral membrane pools. We found that sim-

ple freeze-thaw also releases some CLAG3 from the peripheral pool (bottom row); although Na2CO3

extraction releases a larger amount, freeze–thaw is gentler and does not denature many proteins.
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Figure 1. A stable, soluble RhopH complex with a 1:1:1 subunit stoichiometry in schizont-infected erythrocytes. (A) Schematic showing RhopH complex

synthesis in schizonts (t = 0–6 hr), role of RhopH3 in erythrocyte invasion (t = 6 hr), and contribution to plasmodial surface anion channel (PSAC)-

mediated nutrient uptake at the host membrane (t = 24–44 hr). (B) Immunoblot showing that hypotonic lysis does not release CLAG3, but that alkaline

carbonate treatment (CO3
=) and freeze–thaw release distinct pools from membranes (membr). (C) Coomassie-stained gel of three RhopH proteins

recovered by coimmunoprecipitation after freeze–thaw release. Ribbon at bottom, C-terminal multi-tag strategy used for purification of CLAG3-tv2. (D)

Negative staining electron microscope image of purified RhopH complexes; scale bar, 100 nm. (E) Deconvolved native mass spectrometry (MS)

spectrum for endogenous RhopH complexes. (F) Negative stain 2D class averages without (top) or with C-terminal tagging with green fluorescent

protein (GFP) variants (CLAG3-GFP or RhopH2-mVenus, respectively). GFP-variant density is denoted by black arrows. (G) Negative stain 3D

reconstructions using freeze–thaw preparation or harvest from spent media without freeze–thaw. Note similar architectures.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Native mass spectrometry (MS) analysis of the endogenous RhopH complex immunoprecipitated via CLAG3-tv2.

Figure supplement 2. Subunit modifications and thermostability of the RhopH complex.
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Neither of these treatments is expected to release integral membrane proteins. Using multiple

C-terminal tags engineered into the single clag3h gene of the KC5 line (Gupta et al., 2018; CLAG3-

tv2; Figure 1C, bottom), we effectively harvested this minor fraction from human blood cultures.

This CLAG3 remained associated with RhopH2 and RhopH3 (Figure 1C) and yielded monodisperse

protein complexes in negative stain imaging (Figure 1D). Native mass spectrometry (MS) yielded a

molecular weight of 433,790 ± 10 Da (Figure 1E, Figure 1—figure supplement 1), matching the

expected mass for a heterotrimeric complex with a 1:1:1 stoichiometry; a 0.6% mass error may

reflect post-translational modification and/or proteolytic processing, as reported for RhopH3

(Ito et al., 2017). A smaller 333,232 ± 3 Da fraction corresponded to a minor CLAG3–RhopH2 heter-

odimer. Thus, freeze–thaw permits gentle, detergent-free harvest of this essential complex.

RhopH complexes segregated into 2D classes with two primary views (two-lobe and side views,

Figure 1F, top row). We next used a green fluorescent protein (GFP)-derivative-tagging approach

(Ciferri et al., 2012), confirmed integrity of each variant (Figure 1—figure supplement 2A), and

detected densities reflecting addition of this globular epitope tag. This independently confirmed sin-

gle copies of each subunit and established an orthogonal arrangement for CLAG3 and RhopH2

(arrows, Figure 1F). Three-dimensional reconstruction provided a low-resolution image of the entire

complex and established a two-lobed structure (Figure 1G). A similar two-lobed structure was

obtained for RhopH complexes recovered from spent media without protease inhibitors, detergents,

or freeze–thaw, implicating a highly stable complex. Finally, the purified RhopH complex resisted

aggregation and unfolding at temperatures above those seen in malaria fevers (Figure 1—figure

supplement 2B,C). We submit that a thermostable RhopH complex is well-equipped for transit

through diverse subcellular environments.

Structure of the RhopH complex
We next determined the complex’s de novo structure using cryo-EM and concentrated protein from

sequential coimmunoprecipitation (0.8–2 mg/mL, FLAG and His10 tags). Initial analyses with 2D and

3D classifications yielded a two-lobed structure with a 3.3 Å resolution (Figure 2, Figure 2—figure

supplement 1; Table 1); per-particle contrast transfer function (CTF) estimation and motion correc-

tion improved overall resolution to 2.9 Å.

Soluble RhopH is a heterotrimeric complex consisting of single CLAG3, RhopH2, and RhopH3

subunits (Figure 2A), as predicted above. CLAG3 mediates subunit associations through indepen-

dent contacts with RhopH2 and RhopH3, which do not directly interact with one another. The visual-

ized complex assumes a ‘shallow bowl with a short base’ appearance due to an out-of-plane

orientation of RhopH2 relative to CLAG3 (Figure 2B). On the opposite face, a CLAG3 mid-section

protrudes to create a short ‘base’ that includes a critical amphipathic a-helix proposed to line the

PSAC pore at the host membrane, as described below. The bowl’s opposite rim is formed by globu-

lar a-helices from CLAG3 and RhopH3.

From other angles, an asymmetric two-lobed architecture is apparent, with a well-resolved large

lobe that enabled confident de novo model building for CLAG3 and RhopH3 (Figure 2C, Figure 2—

figure supplement 1C). In contrast, the small lobe was initially not well-resolved.

We hypothesized that both lobes have defined structures that undergo relative movement and

therefore used multi-body refinement (Nakane et al., 2018) to identify rigid but mobile substruc-

tures. Assuming two bodies joined by a CLAG3 stem, we refined each lobe separately and improved

the small lobe’s resolution (Figure 2—figure supplement 1C). The small lobe’s hammer-shaped

ends were now clearly visualized, improving model building from 225 to 513 residues for RhopH2.

Excluding their flexible N- and C-terminal tails, �90% of CLAG3 and RhopH3 residues were also con-

fidently localized. Multibody refinement also defined the directions and extent of motion between

the two lobes (Figure 2—figure supplement 2; Videos 1 and 2). Interestingly, consideration of pro-

tein energy landscapes using normal mode analysis (Suhre and Sanejouand, 2004) predicted

remarkably similar motions (Videos 3–7). Although the biological significance of this mobility is

uncertain, conservation of the stem sequence and length in P. falciparum CLAG paralogs and among

other Plasmodium spp. supports an important role (Figure 2—figure supplements 3 and 4; 48%

bridge region identity between divergent human P. falciparum and P. vivax CLAGs).

Schureck et al. eLife 2021;10:e65282. DOI: https://doi.org/10.7554/eLife.65282 4 of 24

Research article Microbiology and Infectious Disease Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.65282


90o

RhopH2 CLAG3

RhopH3

A B C

138 Å

11
6
 Å

8
0
 Å

N-terminal sphere
61 - 668 RhopH2 bridge

669 - 978 

C-terminal bundle
979 - 1326 

“Bowl view”

“base”

“rim”

E

CLAG3 300 
region

F

90o

Amphipathic 
helix

M333

F314 V330
F322

M394

Y399

D1340

F1347

L1348

F1338

Y1331

D1334

CLAG3 
1300
loop

E1345

D1339

~160o

Y399

F314

26

27

28

29

30

31

3
2

33

34 35

36
37

180o

CLAG3 
TM

CLAG3 RhopH2

D56

E1360Q230

Q912

K25

I715
HVR

D

200 aa

RhopH2

CLAG3

RhopH3

200 aa

RhopH2

CLAG3

RhopH3

G

Disulfides and unbonded cysteines

Protein
Observed
disulfides 

Possible
disulfides 

Unbonded
cysteines

Not visible

CLAG3 C335-C363, C409-C415
C519-C547, C523-C544
C1352-C1355

- C779, C1065
C1217, C1341

C17
C24

RhopH2 C233-C240, C791-C851 C871-C909 C268, C531 C46, C71, C947, C1034,
C1110, C1143, C1213,
C1217, C1291, C1344

RhopH3 C157-C231, C244-C253,
C262-C276, C475-C536

C42-C99
C421-C620

C336, C446

H

-

Figure 2. High-resolution structure of the soluble RhopH complex and stabilizing interactions. (A) Side view of the cryo-electron microscopy (cryo-EM)

reconstruction with CLAG3, RhopH2, and RhopH3 color scheme maintained in all figures that show the structure. (B) Side and 90o-turned bowl ribbon

diagrams of the RhopH complex. Buildable N- and C-terminal residues of each subunit are labeled. In (A) and (B), the CLAG3 HVR and single validated

transmembrane a-helix are colored yellow and green, respectively. (C) CLAG3 domain architecture, with residues numbered from N-terminus. (D)

Ribbon schematic illustrating pairwise interactions between subunits. The visualized N- and C-termini of each subunit are indicated by ribbon color

change. (E) CLAG3–RhopH3 binding interface, as determined by the CLAG3 1300 loop and 300 regions, shown from separate angles. Enlarged views at

bottom show critical CLAG3 residues involved in hydrophobic and charge–charge interactions. (F) The CLAG3–RhopH2 binding interface from different

views. Enlarged image at bottom left shows CLAG3 a-helices that define the RhopH2 bridge, with helix numbering from one at the protein N-terminus.

Right, Space-filling view of the CLAG3–RhopH2 surfaces at their binding interface. The proteins are separated from one another and rotated to expose

the binding surfaces; blue and red shading reflect positive and negative electrostatic potential, respectively. Complementary surface potentials on

these surfaces form salt bridges and contribute to tight interactions. (G) Ribbon schematic showing positions of cysteines that form intramolecular

disulfides (black), unbonded cysteines (red), and cysteines that were not visualized (dashed black lines). Intermolecular disulfides were not observed. (H)

Tabulated list of disulfides and unbonded cysteines.

Figure 2 continued on next page
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Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Cryo-electron microscopy (cryo-EM) data processing scheme.

Figure supplement 2. Observed and predicted movements of the RhopH complex.

Figure supplement 3. Multiple residues involved in CLAG3–RhopH2 binding.

Figure supplement 4. Conservation of amino acids at subunit interfaces.

Figure supplement 5. Neighbor-joining tree and structural similarities.

Table 1. Cryo-electron microscopy (cryo-EM) data collection, refinement, and validation statistics.

Freeze–thaw non-inserted
(EMDB-22890)
(PDB 7KIY)

Data collection and processing

Microscope
Camera
Calibrated magnification

Titan Krios
K2 Summit
59,500

Voltage (kV)
Exposure time
Frame/total (s)
Number of frames per image

300
23.2
2.5 frames/s
58

Electron exposure (e�/Å2) 69.6

Defocus range (mm) 0.5–3.5

Pixel size (Å)
Box size (pixels)

0.82
400

Symmetry imposed C1

Initial particle images (no.) 311,390

Final particle images (no.) 68,216

Map resolution (Å)
FSC threshold

2.92
0.143

Map resolution range (Å) 2.89–12.10

Refinement

Initial model used (PDB code) na

Model resolution (Å) 3.06

Model resolution range (Å) 2.9–12.10

Map sharpening B factor (Å2) �34

Model composition
Nonhydrogen atoms
Protein residues
Ligands

19,943
2388
0

B factors (Å2)
Protein
Ligand

43.95
Na

R.m.s. deviations
Bond lengths (Å)
Bond angles (˚)

0.012
1.33

Validation
MolProbity score
Clashscore
Poor rotamers (%)

2.51
13.52
1.42

Ramachandran plot
Favored (%)
Allowed (%)
Disallowed (%)

78.25
19.38
2.36
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Subunit interactions and roles
CLAG3 contains three visually distinct domains (Figure 2C): an N-terminal sphere, an elongated cen-

tral bridge for binding RhopH2, and a C-terminal bundle encasing an amphipathic helix that later

integrates in the host erythrocyte membrane (Sharma et al., 2015). The N- and C-terminal domains

hold RhopH3 tightly through bidentate interactions via a ‘1300 loop’ and a ‘300 region’ that form

orthogonal pincer-grasp interactions. We illustrate these high-confidence interactions between

CLAG3 and the other subunits in Figure 2D.

The 1300 loop packs against RhopH3 with discrete foci of hydrophobic and salt-bridge interac-

tions (formed by CLAG3 residues Y1331, F1338, F1347, L1348 and D1334, D1339, D1340, E1345,

respectively, Figure 2E, left panels). These CLAG3 residues and the cognate RhopH3 residues are

highly conserved (Figure 2—figure supplement 4B and D), implicating essential roles in stabilizing

the complex. The less strictly conserved 300 region consists of three a-helices, with two helices (10

and 11) interacting with RhopH3 residues 397–412 and 575–588 to create a hydrophobic core with a

convergence of aromatic side chains (core formed by F314, F322, V330, M333, M394, Y399,

Figure 2E, bottom right). The third CLAG3 helix

(helix 14) and an upstream loop are closely

apposed to RhopH3 through complex interac-

tions. Together, the 300 region and 1300 loop

produce an extensive 3700 Å2 CLAG3 interface

with RhopH3.

The 2005 Å2 CLAG3–RhopH2 interface is

much more fragmented (residues 706–715, 787–

805, and 920–939 of CLAG3 and 414–435, 580–

594, 682–708, and 760 from RhopH2). Interest-

ingly, the CLAG3 backbone threads back and

forth through the bridge domain (Figure 2F,

bottom left) to form a wall-like interface; both

surfaces are enriched with hydrophobic, con-

served residues that form stable interactions

(Figure 2F, bottom right; Figure 2—figure sup-

plements 3 and 4A,C).

Each subunit has numerous conserved cys-

teines that contribute to tight assembly of this

large complex through the formation of

observed and possible disulfide bonds

(Figure 2G,H). Although we did not detect

Video 1. First (inward) component of motion derived

from multibody analysis.

https://elifesciences.org/articles/65282#video1

Video 2. Second (torsional) component of motion

derived from multi-body analysis.

https://elifesciences.org/articles/65282#video2

Video 3. First structural movement predicted by

elNémo normal mode analysis.

https://elifesciences.org/articles/65282#video3
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bonding between subunits, several cysteines were not visualized and could form such interactions.

Conserved cysteines are a common feature of rhoptry proteins (Kaneko, 2007); they presumably

contribute stability during egress and erythrocyte invasion and may also be critical for RhopH enzy-

matic activity at its final erythrocyte membrane destination (Carter, 1973).

CLAG3’s central position in the structure, together with its surface exposure on erythrocytes and

immune selection (Iriko et al., 2008), likely accounts for expansion of the clag gene family in all Plas-

modium spp. We examined CLAG phylogeny and found that P. falciparum paralogs cluster into well-

supported groups containing species infecting other mammals (Figure 2—figure supplement 5A).

CLAG9 clustered independently and represented an older lineage. Sequences from Plasmodium

spp.-infecting birds formed a separate group (labeled ‘Clade F’ in Figure 2—figure supplement

5A, based on taxonomy proposed by Galen et al., 2018). These sauropsid CLAG sequences are

split into two well-supported orthologous groups, one that is basal to the CLAG2/CLAG3/CLAG8

orthologs and one that is basal to the CLAG9 orthologs. This pattern suggests an ancient split into

two paralogs in the common ancestor of saurop-

sid and mammalian Plasmodium spp., with sub-

sequent diversification of mammalian paralogs.

This diversification and ongoing gene family

expansion (Otto et al., 2018) may yield distinct

RhopH complexes capable of divergent func-

tions including erythrocyte invasion, cytoadher-

ence, and nutrient uptake. Expansion may also

permit fine-tuning of PSAC permeabilities to

allow nutrient uptake in both malnourished and

well-fed hosts (Mira-Martı́nez et al., 2017).

Structural similarity searches of the Protein

Data Bank (PDB) revealed weakly significant hits

for each subunit that may guide structure–func-

tion studies of this Plasmodium-restricted com-

plex (Figure 2—figure supplement 5B and C).

RhopH3 exhibited the greatest structural similar-

ity with alignment to domains from SepL, a regu-

lator of type III translocon-based secretion in

bacteria (Burkinshaw et al., 2015). RhopH2 par-

tially aligned with Bcl-xL, an anti-apoptotic

Video 4. Second structural movement predicted by

elNémo normal mode analysis.

https://elifesciences.org/articles/65282#video4

Video 5. Third structural movement predicted by

elNémo normal mode analysis.

https://elifesciences.org/articles/65282#video5

Video 6. Fourth structural movement predicted by

elNémo normal mode analysis.

https://elifesciences.org/articles/65282#video6
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protein that also regulates membrane permeabi-

lization (Finucane et al., 1999). Both hits from

our structural similarity searches raise the tanta-

lizing possibility that RhopH2 and RhopH3 func-

tion to regulate PSAC. Such regulation could

produce the unprecedented selectivity of this

channel, which imports diverse nutrients includ-

ing purines, amino acids, sugars, and some vita-

mins while maintaining very low Na+

permeability to prevent host cell osmotic lysis

(Cohn et al., 2003).

Transmembrane domains are
shielded in the soluble complex
Biochemical studies point to a direct contribu-

tion of the RhopH complex in PSAC-mediated

nutrient uptake (Gupta et al., 2018;

Gupta et al., 2020), with a single confidently

predicted CLAG3 transmembrane domain distal

to a 10–30 residue hypervariable region (HVR,

Figure 3A). Site-directed mutagenesis of a con-

served A1215 residue in this transmembrane

domain (a-helix 44 in our structure) alters channel gating, selectivity, and conductance, supporting a

pore-lining helix (Sharma et al., 2015). Notably, a PDB structure search identified this and several

neighboring helices with a significant alignment to APH-1, an integral membrane component of

human g-secretase (Figure 3—figure supplement 1A). The corresponding APH-1 a-helix makes sta-

ble interactions with phospholipid in that structure (Bai et al., 2015), further supporting membrane

insertion of CLAG3 a-helix 44.

This important helix is buried within a CLAG3 C-terminal bundle (Figure 3B–D), paralleling buried

hydrophobic helices in some much smaller pore-forming proteins (Dal Peraro and van der Goot,

2016; Figure 3—figure supplement 1B). Transverse and longitudinal views establish that multiple

Phe side chains segregate to one surface of helix 44 and that polar side chains line up at the oppo-

site face (Figure 3E), as expected for a helix that lines an aqueous pore (Sharma et al., 2015).

Although its physicochemical properties are conserved in CLAG orthologs, helix 44 exhibits little pri-

mary sequence conservation (Figure 3F). In contrast to this helix, the nearby HVR was poorly

ordered, consistent with an unstructured extracellular loop that functions as an immune decoy

(Figure 3D). The single predicted transmembrane domains on RhopH2 and RhopH3 are also buried

in the soluble structure (helices defined by V740-D757 and G595-Y622 of these subunits, respec-

tively; Figure 3—figure supplement 1C–F). Thus, known and predicted transmembrane domains

are shielded in the trafficking RhopH complex (Figure 3G), implicating large-scale protein rearrange-

ments for their membrane insertion.

RhopH is synthesized as a non-integral complex
The peripheral and integral membrane pools (Ito et al., 2017) of the RhopH complex may both be

formed during protein synthesis. Alternatively, the complex may be produced exclusively as a solu-

ble form for trafficking and membrane insertion at a later point in the cell cycle. To distinguish

between these models, we performed fractionation studies with synchronous cultures at defined

developmental stages. During stage-specific synthesis in schizont-infected cells (Ling et al., 2004),

both peripheral and integral membrane pools were reproducibly detected (Figure 4A, top row).

This finding’s interpretation is complicated by preexisting CLAG3 derived from the preceding cycle

and trafficked to the infected cell surface (Figure 1A). To address this uncertainty, we treated early

schizont-stage cultures with protease to identify prior-cycle CLAG3 inserted at the erythrocyte mem-

brane. As the integral pool was quantitatively proteolyzed (Figure 4A,B), we conclude that the inte-

gral pool in these cells reflects protein made in the previous cycle; the larger carbonate-extractable

pool represents newly synthesized protein.

Video 7. Fifth structural movement predicted by

elNémo normal mode analysis.

https://elifesciences.org/articles/65282#video7
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Fractionation studies using purified merozoites revealed carbonate-extractable CLAG3 and unde-

tectable levels of integral protein (Figure 4C), consistent with packaging of newly synthesized

RhopH complex into rhoptries and jettisoning of the prior-cycle integral host membrane pool upon

schizont rupture; the host membrane marker, Band3, is also discarded at egress. Thus, CLAG3 is syn-

thesized as a soluble protein that associates with other RhopH subunits to interact peripherally with

membranes in rhoptries; whorls seen in rhoptries may provide a membranous surface for transfer of

these proteins to the next erythrocyte (Bannister et al., 1986).

We then tracked this newly synthesized pool through the parasite bloodstream cycle and found

that merozoites transfer their peripheral CLAG3 pool to immature ring-stage parasites, which also

carry negligible amounts of the integral form (Figure 4D,E, rings). With parasite maturation, CLAG3

transitions from a primarily extractable form upon synthesis in schizonts into a growing integral pool

after transfer into new erythrocytes (Figure 4D,E, trophozoites). During this conversion, CLAG3

0.0

0.5

1.0
P
ro
b
a
b
il
it
y

A B C

poorly ordered HVR

D

HVR

o

E

F
L

FF

A
F F

F

Phobius

1000 1100 1200

0

1

Residue

P
ro
b
a
b
il
it
y

TMHMM

F

1 2 3 4 5 6 7 8 9

variable average conserved

G

Figure 3. A CLAG3 transmembrane helix is buried in the soluble complex. (A) Posterior probability plots for transmembrane (TM) domain prediction,

determined for residues 940–1240 of CLAG3 using indicated algorithms. Green circle on the plots’ single confidently predicted TM (a-helix 44)

represents A1215; HVR, hypervariable region. (B) Cylinder view of RhopH complex map showing the buried a-helix 44 (green). (C) Enlarged and turned

view from (B). Additional helices that may interact with membranes are labeled. (D) Corresponding cryo-electron microscopy (cryo-EM) density and an

adjacent poorly ordered HVR. (E) Top and side views of CLAG3 a-44. Note that hydrophobic side chains cluster on the upper helix surface in these

views; polar residues are at the opposite surface and may line the eventual pore. (F) Slice-through view showing a thin interior section of the RhopH

complex. CLAG3 is shown as sticks and colored by Consurf conservation score for each residue. Note that a-44 exhibits higher sequence variation than

neighboring domains. (G) Cylinder view with known and predicted TM helices in green; these helices are buried and physically separated from one

another.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Predicted transmembrane (TM) domains are buried in the soluble RhopH complex.
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Figure 4. RhopH is produced as a soluble complex and requires interaction with the PTEX translocon for

membrane insertion. (A) Immunoblot showing that pretreatment of mature schizont-infected cells with pronase E,

a broad specificity protease, reduces CLAG3 in the membrane fraction (membr) without affecting freeze–thaw

released or Na2CO3-extractable (CO3
=) pools. (B) Mean ± S.E.M. fractional reduction of indicated CLAG3 pools

upon pronase E treatment, determined from changes in band intensities from matched immunoblots as in (A).

*p = 0.01, n = 3. (C) Immunoblots showing membrane fractionation of CLAG3 and Band3, a host membrane

marker, in purified merozoites and their schizont-infected progenitor cells. Representative of two independent

trials. (D) Similar fractionation studies at indicated stages throughout the P. falciparum bloodstream cycle. While

schizont- and trophozoite-infected cells were enriched by the percoll–sorbitol method, ring-infected cells cannot

be similarly enriched, presumably accounting for CLAG3 detection in the soluble lane and non-additive

fractionation in rings. (E) Mean ± S.E.M. band intensities from three independent trials as in (D). *p < 0.005. (F)

Schematic shows PTEX-mediated protein translocation and refolding in host erythrocyte cytosol. Middle, Anti-

CLAG3 immunoblots from 13F10 cellular fractions with and without trimethoprim (TMP) (top and bottom blots,

respectively). Bar graph shows mean ± S.E.M. fraction of integral membrane CLAG3 (Fint), determined from band

intensities. *p < 0.015; n = 3. (G) CLAG3-tv2 fractionation studies using enriched mature infected cells. Top, Anti-

HA blot showing that soluble CLAG3 (freeze–thaw and CO3
= lanes) is not susceptible to extracellular protease, but

the integral pool (membr) is. The ~40 kDa cleavage product remains membrane embedded. EXP2, an intracellular

Figure 4 continued on next page
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remains associated with other RhopH subunits and eventually localizes to the infected host cell mem-

brane (Vincensini et al., 2008; Nguitragool et al., 2011; Ahmad et al., 2020).

How does this 440 kDa soluble RhopH complex convert into an integral form? Upon erythrocyte

invasion, these and other rhoptry proteins are deposited into the parasitophorous vacuole. The

PTEX protein translocon exports proteins secreted by the intracellular parasite into host cytosol

(de Koning-Ward et al., 2009; Beck et al., 2014; Ho et al., 2018). It may therefore also export

RhopH proteins into host cytosol; such transfer would be novel as it has not been established for

other merozoite proteins deposited in the vacuole. While two studies have obtained conflicting

results about whether RhopH proteins are exported via this translocon, both reported that PTEX

knockdown abolishes activation of PSAC-mediated nutrient uptake at the host membrane

(Beck et al., 2014; Ito et al., 2017). To examine membrane insertion, we performed CLAG3 frac-

tionation using 13F10, a conditional PTEX knockdown parasite (Beck et al., 2014) whose protein

export requires trimethoprim (TMP, Figure 4F). We found that CLAG3 transitions to an integral

form in this parasite normally in the presence of TMP, but that PTEX knockdown produces a loss of

integral CLAG3 (-TMP, p = 0.01, n = 3). CLAG3 that failed to insert into the membrane was more

readily solubilized (-TMP, soluble lane), possibly due to protein crowding as a result of blocked

export from the parasitophorous vacuole. Thus, RhopH membrane insertion is dependent on PTEX

activity.

Stage-dependent membrane insertion was further evaluated in CLAG3-tv2 parasites with prote-

ase susceptibility studies. Both the freeze–thaw released and carbonate-extractable pools of CLAG3

were unaffected by extracellular protease, but the integral pool at the host membrane yielded a

C-terminal cleavage product that remained membrane embedded (Figure 4G). a-Helix 44 is within

this cleavage fragment and likely provides the responsible transmembrane anchor. Collectively,

these findings indicate that CLAG3 is synthesized and trafficked in a soluble RhopH complex that

undergoes marked rearrangements during its export to enable insertion at the host membrane.

Discussion
We propose that RhopH evolved as a modular three-protein complex suited for essential and diver-

gent functions at separate points in the bloodstream parasite cycle (Figure 5). A soluble form, pack-

aged into rhoptry secretory organelles, facilitates RhopH3 contribution to erythrocyte invasion

through still unknown mechanisms that presumably involve surface interactions. A large exposed sur-

face area of ~32,000 Å2 and globular architecture of RhopH3 provide candidates for inquiry. Our

structure similarity searches found that RhopH3 residues 434–665 align with domains 2 and 3 of

SepL; because domain three mediates interaction with the Tir receptor (Burkinshaw et al., 2015),

one possibility is that RhopH3 interacts with an unidentified host cell receptor at this site. The

RhopH3 C-terminus provides another surface for the presumed interactions, as suggested by site-

directed mutagenesis of serine 804 and by studies with a monoclonal antibody against a 134 aa

recombinant fragment (Doury et al., 1994; Ekka et al., 2020). This entire region (residues 716–897)

is not resolved in our structure and appears to be flexible. Invasion-inhibiting antibodies that bind

here may directly or indirectly prevent essential interactions with a cognate receptor. These findings

and recent structural studies of the Rh5-CyRA-Ripr (Wright et al., 2014; Wong et al., 2019) should

enable structure-guided therapies targeting erythrocyte invasion, an Achilles heel in the parasite’s

bloodstream cycle.

A soluble RhopH complex may also facilitate transfer to new erythrocytes for a second role in

PSAC-mediated nutrient uptake (Nguitragool et al., 2011). We determined that the complex is

transferred to the new host cell and deposited in the parasitophorous vacuole in a soluble form. The

member subunits may then be exported into host cell cytosol via PTEX, as suggested by confocal

immunofluorescence assays showing blocked export of each RhopH subunit in PTEX knockdown par-

asites (Ito et al., 2017). Forward and reverse coimmunoprecipitation experiments also suggest that

the RhopH complex directly interacts with PTEX to enter host cell cytosol (de Koning-Ward et al.,

Figure 4 continued

parasite membrane protein, is primarily integral and is protease insensitive. Aldolase, a parasite cytosolic protein,

is quantitatively released by freeze–thaw and carbonate treatment. Representative of more than three trials.
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2009; Counihan et al., 2017). We next show that CLAG3 membrane insertion occurs via a PTEX-

dependent mechanism (Figure 4F). Insertion may occur either concurrently with or after export.

Because exported chaperones are thought to facilitate refolding of exported proteins and subse-

quent transit to specific host cell sites, failed CLAG3 membrane insertion may result from blocked

export of multiple effector proteins.

Our structure reveals several intriguing and unique problems faced by the RhopH complex during

its export and host membrane insertion. How this large complex crosses the parasitophorous vacuo-

lar membrane remains unclear. If it transits directly through PTEX, this tightly assembled ternary

complex with numerous disulfide bonds would require carefully coordinated unfolding and disas-

sembly by HSP101 and possibly other vacuolar activities before translocation (Beck et al., 2014;

Ho et al., 2018; Matthews et al., 2019). Subsequent reassembly in host cytosol may be even more

complicated, with largely uncharacterized machinery needed to reform a stable complex without

denaturation.

Another dilemma exposed by these studies is the precise mechanism by which one or more

RhopH subunits become integral to the host erythrocyte membrane while remaining strictly associ-

ated with each other (Ito et al., 2017; Ahmad et al., 2020). Although membrane insertion during

transit through PTEX would follow the precedent of Sec translocon-mediated membrane insertion in

bacteria and other eukaryotes (Denks et al., 2014), PTEX appears to lack a lateral gate, as used by

other translocons to transfer cargo proteins into the adjacent lipid bilayer (Egea and Stroud, 2010;

Corey et al., 2019; Ho et al., 2018). We tend to favor membrane insertion after transfer into host

cytosol. In this scenario, the energetically demanding process of conformational rearrangement to

expose and insert specific a-helical domains into the host membrane may be facilitated by interac-

tions with parasite-derived chaperones and Maurer’s cleft organelles (Proellocks et al., 2016).

Although various studies support a role of the RhopH complex in PSAC formation and nutrient

uptake (Nguitragool et al., 2011; Mira-Martı́nez et al., 2019; Sharma et al., 2013; Ito et al.,

2017; Counihan et al., 2017), whether this ternary complex directly forms the aqueous pore in the

1

2
PTEX 

RBC PVM PPM 3

4

RhopH2
CLAG3

RhopH3

Figure 5. Model of RhopH synthesis and trafficking. The complex is produced in a soluble form and packaged

into rhoptries (1) before transfer via extracellular merozoites to the nascent parasitophorous vacuole of a new host

erythrocyte (2). The rhoptry may also contribute lipids to the nascent parasitophorous vacuole (Dluzewski et al.,

1995). The soluble RhopH complex then crosses the PVM and undergoes membrane insertion via a PTEX-

dependent mechanism (3). Finally, it is deposited on the host membrane with a small variant region on CLAG3

exposed to plasma, enabling channel-mediated nutrient uptake (4).
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host erythrocyte membrane remains debated. In vitro selection previously implicated a short, but

critical amphipathic CLAG3 motif in solute selectivity and PSAC single-channel gating (Lisk et al.,

2008; Sharma et al., 2015). Our de novo structure establishes that this motif indeed forms an a-

helix with hydrophobic and polar side chains segregated to opposite faces (helix 44, Figure 3), sup-

porting a pore-lining helix in the host membrane. While studies suggest that CLAG3 oligomerizes at

the host membrane and has an surface-exposed variant region (Figure 5; Gupta et al., 2018;

Nguitragool et al., 2014), RhopH2 and RhopH3 are not exposed based on protease susceptibility

studies (Ito et al., 2017).

The CLAG3 helix 44 and the individual predicted transmembrane domains on RhopH2 and

RhopH3 are separated from one another by 46–101 Å in the soluble structure (Figure 3G). If all

three helices come together to form the eventual nutrient pore, a remarkable rearrangement of the

complex will be required during its conversion from a soluble to a membrane-inserted form. While

our findings suggest interactions with PTEX or exported chaperone proteins, these rearrangements

may also be facilitated by post-translational modifications such as site-specific phosphorylation and

lysine acetylation (Cobbold et al., 2016; Pease et al., 2013).

Our findings provide a framework for understanding two unique and essential functions in blood-

stream malaria parasites. Structure-guided development of therapies can now be pursued against a

strictly conserved target exposed to plasma at two key points in the parasite cycle.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background
(Plasmodium falciparum)

KC5 . 10.1128/mBio.
02293–17

Wt control

Cell line
(Plasmodium falciparum)

CLAG3-tv2 This paper C-terminal
His10-FLAG-thrombin-
TEV-HA-twinstrept-BC2 tag

Cell line
(Plasmodium falciparum)

CLAG3-GFP This paper C-terminal His8-mGFP-
FLAG-Twin Strep tag

Cell line
(Plasmodium falciparum)

CLAG3-tv1 This paper C-terminal 3xFLAG-3xHA-
His8-Strept II tag

Cell line
(Plasmodium falciparum)

CLAG3-tv1+RhopH2-mV This paper CLAG3-tv1 with tandem
RhopH2 C-terminal mVenus tag

Cell line
(Plasmodium falciparum)

13F10 . 10.1038/
nature13574

TMP-dependent HSP101
conditional knockdown

Antibody Anti-CLAG3
(mouse polyclonal)

. 10.7554/eLife.
23485

(1:1000)

Sequence-
based reagent

CLAG3 sgRNA This paper For CRISPR editing 50-TAAAAACACTAATAAGACCA-30

Recombinant
DNA reagent

pUF1-Cas9 . 10.1038/nbt.2925 Cas9 expression

Recombinant
DNA reagent

pL6 . 10.1038/nbt.2925 sgRNA expression and
homology cassette

Recombinant
DNA reagent

pL7- CLAG3-tv2 This study Modification of pL6 for
parasite transfection

Recombinant
DNA reagent

pL7-CLAG3-GFP This study Modification of pL6 for
parasite transfection

Recombinant
DNA reagent

pL7-CLAG3-tv1 This study Modification of pL6 for
parasite transfection

Chemical
compound, drug

DSM1 BEI Resources
Repository

Cat# MRA-1161

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Chemical
compound, drug

WR99210 David Jacobus

Commercial
assay or kit

Anti-FLAG M2 affinity
agarose resin

Sigma–Aldrich Cat# A2220

Commercial
assay or kit

3xFLAG peptide Sigma–Aldrich Cat# F4799

Commercial
assay or kit

Ni-NTA Agarose resin Qiagen Cat# 30210

Commercial
assay or kit

Zeba microspin
desalting columns,
40 kDa MWCO

Thermo Scientific Cat# 87764

Other Gold-coated quartz
emitter

This study Native mass MS study

Commercial
assay or kit

SYPRO Orange Thermo Scientific Cat# S6650 Protein stability
assay (1:5000)

Other Carbon film grids Electron
Microscopy
Sciences

Cat# CF200-Cu

Other Quantifoil Cu 300
mesh grids

Electron
Microscopy
Sciences

Cat# Q3310CR1.3

Other 4–15% Mini-PROTEAN
TGX gel

Bio-RAD Cat# 4561086

Software, algorithm Thermo Xcalibur
Qual Browser

Thermo Scientific versions 3.0.63
and 4.2.47

Software, algorithm UniDec . 10.1021/acs.
analchem.5b00140;
. 10.1007/s13361-
018-1951-9

versions 3.2 and 4.1 http://unidec.chem.ox.ac.uk/

Software, algorithm m/z Proteometrics LLC

Software, algorithm EPU ThermoFischer

Software, algorithm Latitude Gatan Inc

Software, algorithm RELION 2.0; RELION 3.0 . 10.1016/j.jsb.2012.
09.006

https://www3.mrc-lmb.cam.ac.uk/relion

Software, algorithm MotionCor2 . 10.1038/nmeth.
4193

https://emcore.ucsf.edu/ucsf-software

Software, algorithm Gctf . 10.1016/j.jsb.2015.
11.003

https://www2.mrc-lmb.cam.ac.uk/
research/locally-developed-software/
zhang-software/

Software, algorithm UCSF Chimera . 10.1002/jcc.20084 https://www.cgl.ucsf.edu/chimera/

Software, algorithm Coot . 10.1107/
S0907444910007493

https://www2.mrc-lmb.cam.ac.uk/
personal/pemsley/coot/

Software, algorithm PHENIX assign_sequence . 10.1107/
S2059798319011471

https://www.phenix-online.org/

Software, algorithm PHENIX real space refine . 10.1107/
S2059798318006551

https://www.phenix-online.org/
documentation/reference/
real_space_refine.html

Software, algorithm JPred . 10.1093/nar/
gkv332

http://www.compbio.
dundee.ac.uk/jpred/

Software, algorithm elNémo server . 10.1093/nar/
gkh368

http://www.sciences.univ-nantes.fr/elnemo/

Software, database PlasmoDB . 10.1093/nar/
gkn814

https://plasmodb.org/plasmo/

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Software, algorithm MAFFT server . 10.1093/bib/
bbx108

https://mafft.cbrc.jp/
alignment/server/

Software, algorithm MEGA X . 10.1093/molbev/
msy096;10.1093/
molbev/msz312

https://www.megasoftware.net/

Software, algorithm ConSurf server . 10.1093/nar/
gkw408

https://consurf.tau.ac.il/

Software, algorithm NCBI Protein BLAST . 10.1093/nar/25.17.
3389

https://blast.ncbi.nlm.nih.gov/
Blast.cgi

Software, algorithm Clustal Omega . 10.1093/nar/
gkz268

https://www.ebi.ac.uk/
Tools/msa/clustalo/

Software, algorithm Pymol Schrödinger, LLC https://pymol.org/2/

Software, algorithm Dali server . 10.1093/
bioinformatics/
btz536

http://ekhidna2.
biocenter.helsinki.fi/dali/

Software, algorithm ImageJ . 10.1186/s12859-
017-1934-z

https://imagej.nih.gov/
ij/index.html

Software, algorithm SigmaPlot 10.0 Systat

Software, algorithm Prism 8.2 GraphPad

Parasite culture
P. falciparum laboratory strains were grown in O+ human erythrocytes (Interstate Blood Bank) using

standard methods and maintained at 5% hematocrit under 5% O2, 5% CO2, 90% N2 at 37˚C.

Endogenous tagging
CRISPR-Cas9 gene editing was used to produce engineered P. falciparum lines using the KC5 labo-

ratory clone carrying a single clag3h gene to avoid epigenetic switching (Gupta et al., 2018). Trans-

fections were performed by electroporation of pUF1-Cas9 and modified pL6 plasmids for

homologous replacement of the genomic site as described (Ghorbal et al., 2014); 1.5 mM DSM1

and 2 nM WR99210 were used to select for integrants, which were detected by PCR. All experiments

were performed with limiting dilution clones that were confirmed with DNA sequencing.

Primary protein purifications used the edited CLAG3-tv2 clone, in which a C-terminal multiple

affinity tag consisting of His10-FLAG-thrombin-TEV-HA-twinstrept-BC2 nanobody binding site was

appended to an otherwise unmodified CLAG3h. The CLAG3-GFP incorporates a C-terminal His8-

monomeric GFP-FLAG-Twin strept tag on CLAG3h. The CLAG3-tv1+RhopH2-mV strain contains a

C-terminal 3xFLAG-3xHA-His8-Strept II tag on CLAG3 and a monomeric Venus tag at the RhopH2

C-terminus; this parasite was produced by sequential CRISPR-Cas9 editing of the two genomic loci

and used for negative stain imaging of mVenus-tagged RhopH2.

Protein purification
Up to 1 mL of enriched schizont-stage parasites were harvested by the percoll–sorbitol method and

frozen in liquid nitrogen at 20% v/v in 200 mM NaCl, 10 mM Tris, pH 7.5 with 1 mM

phenylmethylsulfonyl fluoride (PMSF). Frozen parasites were thawed at room temperature, and insol-

uble debris was pelleted at 20,000 � g for 10 min at 4˚C. NaCl was added to 500 mM before over-

night incubation of the clarified lysate with anti-FLAG M2 affinity agarose resin (Sigma–Aldrich) at 4˚

C with gentle agitation. The resin was subsequently washed with 1–5 mL of 10 mM Tris, pH 7.5 and

500 mM NaCl before elution in 10 mM Tris, pH 7.5, 200 mM NaCl and 0.15 mg/mL 3xFLAG peptide.

The eluate was concentrated for native mass spectrometry and cryo-EM studies via a second affinity

purification on Ni-NTA agarose resin (Qiagen) and small volume elution in 200 mM NaCl, 300 mM

imidazole, 10 mM Tris, pH 7.5. After overnight dialysis to remove imidazole, purified RhopH complex

was further concentrated by ultracentrifugation at 150,000 � g for 1 hr, yielding 0.8–2 mg/mL pro-

tein in 30 mL.
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Native mass spectrometry analysis
Purified RhopH complex was buffer-exchanged into native mass spectrometry (MS) solution (200

mM ammonium acetate, pH 7.5, 0.01% Tween-20) using Zeba microspin desalting columns with a 40

kDa cut-off (ThermoScientific; Olinares et al., 2016; Olinares and Chait, 2020). Buffer-exchanged

sample (3 mL) was loaded into a locally prepared gold-coated quartz emitter and electrosprayed into

an Exactive Plus EMR instrument (ThermoFisher Scientific) with a modified static nanospray source

(Olinares and Chait, 2020). The MS parameters used include spray voltage, 1.2–1.3 kV; capillary

temperature, 150–250˚C; in-source dissociation, 10 V; S-lens RF level, 200; resolving power, 17,500

at m/z of 200; AGC target, 1 � 106; maximum injection time, 200 ms; number of microscans, 5; injec-

tion flatapole, 8 V; interflatapole, 4 V; bent flatapole, 4 V; high-energy collision dissociation, 200 V;

ultrahigh vacuum pressure, 7–8 � 10�10 mbar; total number of scans, �100. Mass calibration in posi-

tive extended mass range (EMR) mode was performed using cesium iodide.

The acquired MS spectra were visualized using Thermo Xcalibur Qual Browser (versions 3.0.63

and 4.2.47). Spectra deconvolution was performed either manually or using the software UniDec ver-

sions 3.2 and 4.1 (Marty et al., 2015; Reid et al., 2019). The resulting deconvolved spectrum from

UniDec was plotted using the m/z software (Proteometrics LLC). Experimental masses were reported

as the mean ± SD across all calculated mass values within the observed charge state series. Mass

accuracies were calculated as the % difference between the measured and expected masses relative

to the expected mass.

Protein thermostability
Thermal denaturation of the RhopH complex was evaluated with two methods. ThermoFluor assays

were performed with 20 mL of 0.4 mg/mL freeze–thaw extracted RhopH complex and a 1� dilution

of SYPRO Orange. Fluorescence intensity was continuously monitored during a thermal ramp from

25˚C to 95˚C in 0.5˚C/10 s increments. Raw fluorescence and first-derivative plots were used to

assess unfolding. RhopH complex aggregation was also evaluated using sizing with thermal ramp

application on Uncle (Unchained Labs) and duplicate samples of 8.9 mL of 0.1 mg/mL RhopH com-

plex. Aggregation was measured by monitoring static light scattering at 266 and 473 nm with a

ramp from 20˚C to 80˚C at a constant rate of 1.0˚C/min for 1 hr with measurements at 0.5˚C

increments.

Negative stain data acquisition
Purified RhopH protein (4.8 mL of a 0.05 mg/mL solution) was applied to carbon film grids (CF200-

Cu, Electron Microscopy) and stained with 4.8 mL of 0.75% uranyl formate for 30 s. After drying,

grids were loaded onto a ThermoFischer Tecnai 12 electron microscope with a Gatan Ultra Scan

camera operating at 120 kV. Images were collected using EPU software (ThermoFischer) at 67,000�

magnification for a pixel size of 1.77 Å. The datasets consisted of between 69 and 142 micrographs

(culture-media RhopH, 69 micrographs; complexes containing RhopH2-mV, 109; CLAG3-tv1, 124;

CLAG3-GFP, 142).

Negative stain image processing
All negative stain image processing was performed using RELION 2.0 (Scheres, 2012). Micrographs

were processed without CTF correction. Initial auto-picking was performed using a Gaussian blob.

Well-behaved classes from 2D classification of Gaussian blob-picked particles were used for tem-

plate-based auto-picking. Further 2D classification was performed to clean the particle set. For data-

sets with GFP derivative tagging, additional density for the bulky epitope was visible is several 2D

classes. For freeze–thawed solubilized and spend-media RhopH, an initial model was generated and

used for 3D auto-refinement in RELION. Three-dimensional models represent views in Chimera

(Pettersen et al., 2004).

Cryo-EM data acquisition
2.5 mL of 0.8 mg/mL RhopH was applied to glow-discharged Quantifoil Cu 300 mesh grids (1.2/1.3),

blotted for 3 s, and plunge frozen in liquid ethane cooled by liquid nitrogen using a Vitrobot plunge

freezing instrument (FEI/ThermoFisher). The blotting chamber was maintained at 20˚C and 100%

humidity. One thousand three hundred and ten micrographs were collected on a Titan Krios
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(ThermoFisher) transmission electron microscope operated at 300 kV. Images were recorded on a

K2 Summit camera (Gatan Inc) operated in super-resolution counting mode and a physical pixel size

of 0.84 Å. The detector was placed at the end of a GIF Quantum energy filter (Gatan Inc), operated

in zero-energy-loss mode with a slit width of 20 eV. Each image was fractionated into 58 frames with

a frame exposure of 0.4 s and a dose rate of 3 e–/Å2/s, giving a total accumulated dose of 70 e–/Å2

over the 23.2 s exposure. All data was collected using the Latitude S software (Gatan Inc).

Cryo-EM image processing
All cryo-EM image processing was performed in RELION 3.0. Movies were motion corrected and

dose-weighted using MotionCor2 (Zheng et al., 2017). Contrast transfer function (CTF) parameters

were determined using the Gctf (Zhang, 2016) wrapper in RELION. Initial particle picking was per-

formed with the Laplacian-of-Gaussian (LoG) picker in RELION. Subsequent 2D classes from the

LoG-picked particles were used for template-based auto-picking performed in RELION resulting in

311,390 particles. After two rounds of 2D classification, the initial collection was cleaned to 214,233

particles and used to generate an initial 3D model. Three-dimensional classification using five classes

with regularization parameter T = 4 resulted in one well-resolved class of 68,216 particles. Three-

dimensional auto-refinement of these particles resulted in a 3.26 Å map. Two rounds of particle pol-

ishing and one round of CTF refinement further improved the resolution to 2.92 Å. Although the

large lobe was well-resolved and permitted de novo model building, the small lobe and C-terminal

bundle of CLAG3 were resolved to lower resolution inhibiting interpretation. Further 3D classifica-

tion did not improve small subunit interpretability. To better resolve RhopH2 and CLAG3 C-terminal

domain, multibody refinement was performed (Nakane et al., 2018). Multibody refinement using

masked region 1 of the large subunit and masked region two as the small subunit and the bridge

between the large and small subunit resulted in better EM density for mobile elements of the small

subunit although a lower overall resolution for the second masked region. Multibody analysis also

yielded the top components of motion.

Model building and refinement
Model building was performed in Coot (Emsley et al., 2010). EM density maps were generated in

RELION by post-processing with a constant B factor or locally sharpened regions of the maps in

Local Resolution. Initially, a poly-alanine model was built for well-ordered regions of the RhopH com-

plex in Coot. The sequence registry was determined by a combination of manual examination of

side-chain density and the PHENIX assign_sequence program (Liebschner et al., 2019), which pre-

dicts sequence registry based on side-chain density. Regions of the map with low resolution were

built through a combination EM density interpretation and secondary structure prediction performed

in JPred (Drozdetskiy et al., 2015). Real space refinement with secondary structure restraints was

performed in PHENIX real space refine (Afonine et al., 2018). Structural figures were generated in

PyMOL 2.1.0 (Schrödinger) or Chimera. Prediction of motion in the final model was performed using

the elNémo server (Suhre and Sanejouand, 2004).

Phylogenetic analysis
CLAG DNA sequences were downloaded from PlasmoDB (http://PlasmoDB.org) and aligned using

the MAFFT server (Katoh et al., 2019) with default parameters. Sequences shorter than 2000

nucleotides in length were removed to maximize sequence overlap. The multiple-sequence align-

ment was corrected manually to preserve the reading frame. Phylogenetic analysis of the remaining

147 sequences was performed using the MEGA X software (Kumar et al., 2018; Stecher et al.,

2020). A phylogenetic tree was inferred using the neighbor-joining method (Saitou and Nei, 1987)

based on pairwise distances computed using the maximum composite likelihood method

(Tamura et al., 2004), with the rate variation among sites modeled with a gamma distribution (shape

parameter = 1). To assess how well the data supported the groups in the tree, 250 bootstrap repli-

cates were performed (Felsenstein, 1985).

Conservation analysis
The ConSurf server (https://consurf.tau.ac.il/; Ashkenazy et al., 2016) was used to generate per-res-

idue conservation scores and map conservation values on the 3D RhopH complex structure. Non-
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redundant sequences of RhopH subunits from Plasmodium spp. were identified through the use of

PlasmoDB and NCBI Protein BLAST. The sequences were aligned using Clustal Omega. ConSurf was

then used to evaluate evolutionary conservation of amino acid residues; the resulting conservation

scores were used for color-coding residues in PyMOL.

Structural similarity searches
The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali/; Holm, 2019) was used to search for pro-

teins with 3D structures like that of the RhopH complex. Exhaustive PDB database searches revealed

significant matches to specific domains from individual RhopH subunits, as defined by Dali

Z-scores � 3.0. PyMOL alignments of RhopH domains and PDB structures of corresponding hits

were used to evaluate biological significance.

Membrane fractionation
Synchronization for stage-dependent membrane fractionation assays utilized two 5% sorbitol

treatments ~6 hr apart. Ring-stage infected cells were harvested immediately without enrichment.

Trophozoite- and schizont-stage-infected cells were then harvested 18 hr and 40 hr after sorbitol

treatment, respectively, and enriched through the percoll–sorbitol method. Cells infected with

13F10 growth with or without TMP were harvested without enrichment as these cells lack PSAC

activity (Beck et al., 2014; Ito et al., 2017).

Freed merozoite studies were performed with 3D7 parasites using synchronous schizonts

enriched using the percoll–sorbitol method. Purified schizonts were cultured with 25 mM E64D at 7.5

� 107 cells/mL and closely monitored for 4–5 hr for the development of segmenters containing fully

formed merozoites. Cells were then washed, adjusted to 2.5 � 107 cells/mL in complete media, and

allowed to recover at 37˚C for 15 min. Freed merozoites (2.5 � 108 cells/mL) were obtained by

sequential passage through two 1.2 mm syringe filters to rupture the mature segmenters. A hemocy-

tometer was used to confirm that merozoites were free of contaminating intact erythrocytes before

pelleting (4500 � g, 5 min) and freezing along with matched intact schizonts.

Fractionation studies were performed using matched cell pellets resuspended in lysis buffer (7.5

mM Na2HPO4, 1 mM EDTA, pH 7.5) at 3.5% hematocrit; this cell lysate corresponded to the ‘total’

input. Cellular debris and membranes were pelleted by ultracentrifugation at 100,000 � g for 1 hr at

4˚C. The supernatant was kept as the ‘soluble’ fraction. Membranes were resuspended and incu-

bated in 200 mL of 100 mM Na2CO3, pH 11 at 4˚C for 30 min before ultracentrifugation (100,000 �

g, 1 hr, 4˚C) to separate peripheral from integral membrane proteins. Samples were neutralized with

1 M HCl and solubilized in a modified Laemmli buffer with a final 6% sodium dodecyl sulfate (SDS)

concentration.

Protease susceptibility experiments used percoll–sorbitol-enriched cells. Infected cells were

treated with Pronase E in phosphate-buffered saline (PBS) supplemented with 0.6 mM CaCl2 and 1

mM MgCl2 for up to 1 hr at 37˚C. They were then extensively washed in PBS with 1 mM PMSF prior

to membrane fractionation.

Immunoblotting
Samples were prepared in a modified Laemmli buffer with a final 6% SDS concentration. Proteins

were separated on a 4–15% Mini-PROTEAN TGX gel (Bio-RAD) and transferred to nitrocellulose.

After blocking, antibodies against CLAG3 (Nguitragool et al., 2011), Band3 (Santa Cruz), HA epi-

tope tag (Sigma–Aldrich), EXP2 (European Malaria Reagent Repository), or aldolase (Abcam) were

applied and visualized as described (Ito et al., 2017). Band intensities were quantified using ImageJ

and analyzed in Prism (GraphPad).

Statistical analysis
Statistical significance for numerical data was calculated by unpaired Student’s t-test or one-way

ANOVA. Significance was accepted at p < 0.05 or indicated values.
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