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Abstract: This article presents a mathematical model and theoretical analysis of coating of a thin film
of non-Newtonian polymers as they travel through a small space between two reverse-rotating rolls.
The dimensionless forms of the governing equations are simplified with the help of the lubrication
approximation theory (LAT). By using the perturbation technique, the analytical solutions for velocity,
flow rate and pressure gradient were obtained. From an engineering point of view, some significant
results such as thickness of the coated web, pressure distribution, separation points, separation force
and power input were computed numerically. The effect of velocities ratio k and Weissenberg number
We on these physical quantities is presented graphically; others are shown in tabular form. It is
noted that the involved material parameters provide a mechanism to control the flow rate, pressure
distribution, the thickness of coating, separation force and power input. Moreover, the separation
point is shifted toward the nip region by increasing velocities ratio k.

Keywords: non-Newtonian fluid; roll-coating analysis; lubrication approximation theory (LAT);
perturbation technique; approximate solution; numeric methods

1. Introduction

Roll coating is an engineering procedure in which a uniform thin liquid film is deposited onto
a substrate. The phenomenon of roll coating has gained a solid reputation in recent times due to its
wide applications in coating industries. In many industrial processes, thin uniform liquid coatings
are produced on surfaces with coating materials. Such procedures involve wrapping, wallpaper
and adhesive tapes, beautification, books and magazine, plastic films, protection of fabrics or metals,
X-ray films, photographic films, coated items, foils and coated paper and magnetic records, etc.
These activities rely on a wide range of apparatuses, among which roll coaters are popular. In the
roll-coating process, in which the radii of the rolls are much greater than nip distance between the two
rotating rolls, when a fluid flows through such a small gap, it comes out as a thin liquid film that can
be used to coat a surface. The flow of fluid in a small space between a pair of rotating rollers is the
key factor controlling the thickness and uniformity of the coated film. The coating thickness depends
primarily on the gap between the adjacent rollers and their relative speeds. According to the direction
of the rolls, roll coating is classified as reverse roll-coating (RRC), metering roll-coating and forward
roll-coating [1–4]. In the case of forward roll-coating, the two rolls at the nip go in the same direction.
The coating fluid forms a bath on the upstream side of the nip and, after leaving the nip, divides into
two liquid films that are transferred onto both sides of the roller—one of them is applied for industrial
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purposes to a web. In reverse roll-coating, the rollers move in the opposite direction and the metering
coating on the nip [5–7].

A pioneering work including experimental, analytical and computational analysis related to the
roll-coating process, can be found in [5,8,9]. In an earlier work, Coyle et al. [10] used a finite element
approach backed by experimental outcomes to explain the essential fluid dynamic characteristics
of the reverse roll-coating. They also clarified the existence of flow instabilities, including ribbing
and cascading. Taylor and Zettlemoyer et al. [11] used the lubrication theory to perceive ink flow
behavior in the process of printing press. They obtained the influences of pressure distribution
and force. The water flow between two rolls was discussed by Hinter Maier and White et al. [12].
They used the principle of lubrication and verified the findings which were compatible with their
experimental results. Greener and Middleman et al. [13] and Ho and Holland et al. [14] developed
mathematical models based on the lubrication theory to examine reverse roll-coating systems; however,
they ignored the influences of surface tension, existence of free surfaces and dynamics of contact
lines. Jang et al. [6] used the finite-volume method and volume of fluid (VoF)-free surface technique
to 3D model of non-Newtonian flow in reverse roll-coating. This related work was carried out on
inelastic non-Newtonian fluids. The power-law exponent was considered in the range of 0.95 to 1.05.
Mainly concentration was paid on the resulting thickness of the coating and the effect of roll-speed on
ribbing instabilities. The results show that with the increase of the power-law index, the thickness of
the coating film increases. Furthermore, considering dynamic of wetting lines, Shiode et al. [15] used
VoF to analyze reverse roll-coating numerically. Their results reveal that the wetting line approaches
the nip as the speed ratio increases. Recently, Zahid et al. [16] gave numerical results for second-grade
materials by utilizing the lubrication approximation theory. Engineering parameters such as the
thickness of the coating, pressure distribution, split location, strength, roll power consumption, stresses
and adiabatic temperature rise was achieved among coating roll and coated web. Zahid et al. [17]
discussed the Rabinowitz fluid numerically. They presented physical parameters of engineering
interest such as stresses, force, separation position, pressure distribution, power input, temperature to
rolls and thickness of the coating of the web.

Today, the occurrence of non-Newtonian fluids in mechanical, aeronautical and industrial
engineering is more important than Newtonian materials. Because of this reason many non-Newtonian
fluid models with different constitutive equations have been proposed [18–22]. The analysis of
pseudoplastic fluids has gained importance due to its main uses in the industry [23]. Numerous
non-Newtonian polymers are pseudoplastic and are being extensively studied. Pseudoplastic liquids
can be established in essential applications such as extruded polymer films, emulsion-coated films
such as polymer solutions, photographic films with a high molecular weight and melts. However,
less consideration has been paid to the Williamson fluid model, which describes the properties of
pseudoplastic fluids [24,25]. Nadeem et al. have debated the peristaltic flow of a Williamson fluid [26].
Cramer et al. [27] demonstrated with experimental evidence that this model is better suited to polymer
solutions and particle suspensions than other models.

In this article, we provide a theoretical analysis for the reverse roll-coating process of Williamson
fluid films, which is drawn through a small gap between two rolls rotating in opposite directions.
With the help of the lubrication approximation theory, the governing equations are simplified.
The analytical solutions for flow rate, velocity and pressure gradient are provided by using the
perturbation technique. From an engineering point of view, some significant results like pressure
distribution, thickness of coated web, separation points, separation force and power input are presented.
It was found that the involved material parameters provide a device to control the flow rate, the coating
thickness separation points, separation force and power input. Our results are presented both
graphically and in tabular form. The following sections describe the mathematical formulation and
analytical solution of the problem. At the end, results and discussion and conclusions are presented.
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2. Mathematical Formulation

We considered two dimensional steady, laminar flow of an incompressible Williamson fluid
between two rolls rotating in the opposite direction with velocities U f = Rω f Ur = Rωr, where R is
the radius of each roll and subscripts f and r stand for forward and reverse rotating rolls, respectively.
The velocities ratio k = Ur

U f
of both rolls is uniform, and the gap between rolls is 2H0. Moreover,

the x− axis and y− axis are taken along and transversal to the flow direction, respectively, as represented
in Figure 1.
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The governing equations for the Williamson fluid are:

∇.U = 0 (1)

ρ
DU
Dt

= −∇p +∇.τ (2)

where D
Dt (∗) =

∂
∂t (∗) + U · ∇(∗) denotes the material derivative, ρ presents the density, p is the pressure,

U is the velocity and the extra stress tensor τ for a Williamson fluid [28] is defined as:

τ =
[
µ∞ + (µ0 − µ∞)(1− Γγ)−1

]
A1 (3)

Here µ∞ and µ0 denote the infinite and zero shear rate viscosities, respectively, A1 = ∇U +
(
∇U

)t

denotes the first Rivlin–Erickson tensor, and the time constant is denoted by Γ. The shear rate γ [26] is
defined as:

γ =

√
1
2

∑
i j

∑
ji

γi jγ ji =

√
1
2
π (4)

where π = trace
(
A1

2
)

represents the second tensor of invariant strain. When η∞ = 0 and Γγ < 1,
then Equation (3) can be written as:

τ = µ0(1 + Γγ)A1 (5)

The above model reduces to Newtonian for Γ = 0. The two-dimensional velocity profile is taken
as:

U = [u(x, y), v(x, y)] (6)
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In view of the Equation (6), the component forms of the governing Equations (1) and (2) can be
written as:

∂u
∂x

+
∂v
∂y

= 0 (7)

ρ

(
u
∂u
∂x

+ v
∂u
∂y

)
=
∂τxy

∂y
+
∂τxx

∂x
−
∂p
∂x

(8)

ρ

(
u
∂v
∂x

+ v
∂v
∂y

)
=
∂τyx

∂y
+
∂τyy

∂x
−
∂p
∂y

(9)

where τxx, τyy, τyx and τxy are the stress components.

3. The Dimensionless Form

Introducing the non-dimensional variables:

u∗ = u
U f

, v∗ = v
δU f

, x∗ = x

(RH0)
1
2

, y∗ = y
H0

p∗ = pH0
µ0U f

(H0
R

) 1
2 , γ

∗

= γH0
U f

, δ =
√

H0
R

 (10)

and dropping the steric (∗) for convenience, the dimensionless forms of the Equations (7)–(9) become:

∂u
∂x

+
∂v
∂y

= 0 (11)

Reδ
(
u
∂u
∂x

+ v
∂u
∂y

)
= δ

∂τxx

∂x
+
∂τxy

∂y
−
∂p
∂x

(12)

Reδ3
(
u
∂v
∂x

+ v
∂v
∂y

)
= δ

∂τyy

∂y
+ δ2 ∂τxy

∂y
−
∂p
∂y

(13)

The stresses components involved in Equations (12) and (13) are given by:

τyy = 2δ[1 + Weγ]
∂v
∂y

, τxx = 2δ[1 + Weγ]
∂u
∂x

, τxy = [1 + Weγ]
(
∂u
∂y

+ δ2 ∂v
∂x

)
(14)

where Re =
UρH0
µ0

, We = ΓU
H0

and

γ =

2δ2
(
∂v
∂y

)2

+

(
∂u
∂y

+ δ2 ∂v
∂x

)2

+ 2δ2
(
∂u
∂x

)2
1
2

(15)

Since δ is a square root of the ratio of H0 to R and is very small, therefore ignoring the term having
δ to get:

∂
∂y

{
∂u
∂y

[
We

∂u
∂y

+ 1
]}

=
∂p
∂x

(16)

∂p
∂y

= 0 (17)

It is obvious from Equation (17) that p is not a function of y, so it is the function of x only, i.e.,
p = p(x). Thus, the Equation (16) becomes:

∂2u
∂y2 + We

∂
∂y

(∂u
∂y

)2 = dp
dx

(18)
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The dimensionless boundary conditions subjected to the Equation (18) are given by:

u = 1 at y = −σ

u = −k at y = σ

}
(19)

where σ = 1 + x2

2 .

4. Solution of the Problem

The Equation (18) is a nonlinear differential equation; we will employ a regular perturbation
technique for We << 1 to obtain its analytic solution. Therefore:

u = u0 + Weu1 + We2u2 . . . , (20)

dp
dx

=
dp0

dx
+ We

dp1

dx
+ We2 dp2

dx
. . . , (21)

λ = λ0 + Weλ1 + We2λ2 . . . , (22)

where u0, dp0
dx and λ0 are the zeroth-order solutions, which represent the Newtonian case [13], while u1,

dp1
dx , λ1, u2, dp2

dx and λ2 are the corrections up to first-order and second-order terms, respectively and have
the contribution of non-Newtonian effects. By substituting Equations (20) and (21) into Equation (18)
and comparing the same power of We, we obtain a system of differential equations as follows:

For We0:
d2u0

dy2 =
dp0

dx
(23)

with boundary conditions:
u0 = 1 at y = −σ

u0 = −k at y = σ
(24)

For We1:
d2u1

dy2 +
d

dy

(
du0

dy

)2

=
dp1

dx
(25)

with boundary condition:
u1 = 0 at y = −σ

u1 = 0 at y = σ
(26)

4.1. Zeroth-Order Solution

The solution of zeroth-order boundary value problem (23) and (24) is given by

u0 =
1
2

(
y2
− σ2

)dp0

dx
−

1
2σ

(k + 1)y +
1
2
(1− k) (27)

Now, the zeroth-order dimensionless flow rate is defined as

λ0 =
1
2

σ∫
−σ

u0(y)dy (28)

In addition, from Equations (27) and (28), we get

dp0

dx
= −

3((k− 1)σ+ 2λ0)

2σ3 (29)
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The integration of Equation (29) with the condition p0 = 0 as x→ −∞ yields the zeroth-order
pressure given by:

p0(x) =
1

16(x2 + 2)2

 −18
√

2
(
λ0 +

2
3 (k− 1)

)(
x2 + 2

)2
arctan

(
x
√

2
2

)
− 9π

√
2
(
λ0 +

2
3 (k− 1)

)(
x2 + 2

)2
−

36
((
λ0 +

2
3 (k− 1)

)
x2 + 10

3 λ0 +
4
3 (k− 1)

)
x

 (30)

To determine the thickness of the coating and the pressure distribution, we need to find the value
of λ0(k). To meet this situation, the Swift–Stieber boundary condition on pressure is applied. It is
claimed that at the transition point x = xt where a lubrication-type flow gives way to a transverse flow,
both the pressure gradient and the pressure disappear. Upon setting dp0

dx = 0 in the Equation (29),
we get:

σt = 1 +
x2

t
2

=
2λ0

1− k
(31)

Similarly, because of the Swift–Stieber boundary condition on pressure, replacing x with xt in
Equation (30), finding value of xt in terms of λ0 from the Equation (31) and substituting this value into
the resulting equation from Equation (30), the transcendental equation in λ0 is obtained. To handle
the complexity of this equation for finding the valve of λ0, we use the numeric technique, namely a
regular false position method with a predefined accuracy of 10−10 and setting different valves of k.

4.2. First-Order Solution

The first-order solution procedure resembles to the zeroth-order solution. Using the Equation (23)
into Equation (27) and employing boundary conditions (26) to obtain:

u1 = −
3(y + σ)(y− σ)

(
−

σ6

6
dp1
dx + σ3

4

(
k2
− 1

)
+ σ2

( y
4 (k− 1)2 + k+1

2 λ0
)
+ σ(k− 1)yλ0 + (λ0)

2y
)

σ6 (32)

The first-order dimensionless flow rate is defined as:

λ1 =
1
2

σ∫
−σ

u1(y)dy (33)

From Equations (30) and (31), we have:

dp1

dx
=

3
(
k2σ+ 2λ0(k + 1) − 2λ1σ− σ

)
2σ4

(34)

The first-order pressure is obtained by integrating Equation (34) with the condition p1 = 0 as
x→ −∞ we get:

p1(x) =
1

32(x2 + 2)3


30
√

2
(
x2 + 2

)3(
(k + 1)λ0 +

3
5

(
k2
− 2λ1 − 1

))
arctan

( √
2

2 x
)

+15
(
x2 + 2

)3(
(k + 1)λ0 +

3
5

(
k2
− 2λ1 − 1

))
π
√

2

+60x


(
(k + 1)λ0 +

3
5

(
k2
− 2λ1 − 1

))
x4

+
(

16
3 (k + 1)λ0 +

3
5

(
k2
− 2λ1 − 1

))
x2 + 44

5 (k + 1)λ0 + 4k2
− 8λ1 − 4



 (35)

To obtain the value for λ1(k), the Swift–Stieber boundary condition on pressure will also be
applied. It is claimed that the transition point x = xt where a lubrication-type flow provides a way to
a transverse flow, both the pressure gradient and the pressure disappears. Upon setting dp1

dx = 0 in
Equation (34), we get:

σ = 1 +
x2

t
2

=
2λ0(k + 1)
λ1 − 3k2 + 1

(36)
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Similarly, because of the Swift–Stieber boundary condition on pressure, replacing x with xt in
Equation (35), finding the value of xt in terms of λ1 from the Equation (36) and substituting this value
into the resulting equation from Equation (35), transcendental equation in λ1 is obtained. To handle
the complexity of this equation for finding the valve of λ1, we use numeric technique, namely a regular
false position method with a predefined accuracy of 10−10 for different valves of k. These results are
shown in Tables 1 and 2.

Table 1. Influence of k on flow rate λ, separation points xt and thickness of coating υ, separation force F
and power input pw.

k λ xt υ=
Hf

Hr
F pw

0.1 0.5554 0.7243 2.3216 0.2262 −1.0113

0.2 0.4978 0.7242 2.1912 0.1999 −1.0566

0.3 0.4325 0.7241 2.0300 0.1742 −1.1013

0.4 0.3709 0.7239 1.8836 0.1485 −1.1454

05 0.3093 0.7238 1.7372 0.1231 −1.1891

0.6 0.2476 0.7236 1.5904 0.0981 −1.2321

0.7 0.1859 0.7234 1.4436 0.0728 −1.2751

0.8 0.1240 0.7230 1.2960 0.0483 −1.3169

0.9 0.0619 0.7218 1.1476 0.0244 −1.3575

Table 2. Influence of We on flow rate λ, separation points xt and thickness of coating υ, separation force
F and power input pw.

We λ xt υ=
Hf

Hr
F pw

0.1 0.5554 0.7243 2.3216 0.2262 −1.0113

0.2 0.5593 0.7767 2.4372 0.2128 −0.9696

0.3 0.5632 0.8291 2.5528 0.1994 −0.9172

0.4 0.5670 0.8815 2.6680 0.1859 −0.8320

0.5 0.5708 0.9339 2.7832 0.1722 −0.7966

0.6 0.5747 0.9863 2.8988 0.1583 −0.7235

0.7 0.5785 1.0387 3.0140 0.1442 −0.6428

0.8 0.5824 1.0912 3.1296 0.1298 −0.5546

0.9 0.5863 1.1436 3.2452 0.1149 −0.4588

Second simple material balance relation for λ can be written as:

U f H f −UrHr = 2λH0U f (37)

which may lead to the form:

υ =
H f

Hr
= k + 2
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λ (38)

where υ =
H f
Hr

is the thickness of the coating, Hr and H f are the thickness of fluid films on the reverse

roll and forward roll, respectively. The ratio
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= H0
Hr

denotes half of the nip region H0 to incoming
fluid film Hr from the reverse roll. Thus, we see that to find the thickness of the coating, it is necessary
to know λ(k).
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Thus, the perturbation solution up to first order is given by:

u = u0 + Weu1

λ = λ0 + Weλ1
dp
dx =

dp0
dx + We dp1

dx

 (39)

where u0, u1, dp0
dx , dp1

dx are given in Equations (27), (29), (32) and (34), respectively.

5. Operating Variables

When pressure distribution, velocity profile and pressure gradient are achieved, it is simple to
find the operating variables such as separating force, power input, etc.

5.1. Separating Force

The separating force F in dimensionless form is given by:

F =
FH0

µ0URW
=

xt∫
−∞

p(x)dx (40)

where F is the non-dimensional separating force per unit width W.

5.2. Power Input

The power transferred by the roll to the fluid is obtained by the integral:

pw =
P

µ0WU2 =

xt∫
−∞

τ(x, 1)dx (41)

where Pw denotes the non-dimensional power. The non-dimensional shear stress is

τxy =

(
1 + We

∂u
∂y

)
∂u
∂y

(42)

6. Results and Discussion

This study examined the reverse roll-coating of an incompressible pseudoplastic material
(Williamson fluid). The lubrication approximation theory was applied to simplify the governing
equations of flow. The numeric results for flow rate λ, separation points xt, thickness of the coating

υ =
H f
Hr

, separation force F and power input pw transmitted to the roll are presented in Tables 1
and 2 for several values of velocities ratio (the ratio of the velocity of the reverse roll to forward
roll) k and Weissenberg number We. Figures 2–7 present the non-dimensionless velocities outcomes
at different positions x (0, 0.25, 0.75) in the reverse roll-coating process for the different values of
involved material parameters k and We. The velocity in Figure 2 is sketched at the nip against the
increasing value of k from 0.1 to 0.9. It was observed that the velocity profile decreases by increasing
velocities ratio k. The maximum speed was found at the roll surface of the reverse roll. Then it starts
decreasing while moving towards the forward roll and becomes zero when y ∈ [0.005, 0.872], beyond
this domain—depending upon the valve of k—one can see the reverse flow in the direction of the
coating web. From Figures 3 and 4, it is clear that, while moving toward the separation points at the
different position of the reverse roll-coating process, the domain for y, where the velocity becomes zero
is increasing. Beyond this domain, depending upon the ratio of velocities k while moving towards the
upper roll, the magnitude of the velocity increases and attain its maximum speed at the surface of the
roll. It is interesting to note that compatibility with the predictions of the model is quite suitable for
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small k, of course, deviations increases as k becomes large compared to unity. It is worth mentioning
that the data for elastic polymer solutions agree well with the Newtonian theory [13] under the identical
physical conditions. Figures 5–7 indicate the velocity representations for the different values of We at
various positions in the roll-coating process. These figures show that the velocity of the fluid increases
by increasing We. Physically it means that the viscous forces are dominant over the elastic forces
(because Weissenberg number is the ratio of viscous forces to elastic forces). It is interesting to remark
here that as fluid moves to the separation points of reverse roll-coating, the viscosity of the fluid
increases and the coating of the web is done after this position.Polymers 2020, 12, x FOR PEER REVIEW 11 of 18 
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The graphic results for pressure gradient dp
dx against the axial coordinate x for the several involved

parameters are presented in Figures 8 and 9. From Figures 8 and 9, it was observed that the symmetric
profiles about the nip region x = 0 are found. At nip region, the pressure gradient is negative and
increases symmetrically, reaches the maximum value, then decreases exponentially and reaches zero
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at separation points. One can observe that for a particular value of k and We, the pressure gradient
distribution increases. In addition, these material parameters have a significant effect on the pressure
gradient at the nip region because the absolute value of the pressure gradient is maximum at this point.
In Figures 8 and 9 Newtonian results [13] are obtained as We→ 0 .Polymers 2020, 12, x FOR PEER REVIEW 14 of 18 
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The graphic representation of pressure distribution for the increasing values of k and We is
sketched in Figures 10 and 11, respectively. From Figure 10, it is observed that when one starts moving
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toward the negative x-axis, the value of pressure increases and the maximum pressure occurs at the
critical point x = −0.6; then the pressure starts decreasing. The concavity changes in the interval
(−1.321, 0) and (0, 1.321) (not shown in the graph). Similar behaviors can be found in Figure 11.Polymers 2020, 12, x FOR PEER REVIEW 15 of 18 
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The numeric results for flow rate, separation points, the thickness of the coating, separating force
and power input are presented in Tables 1 and 2 for the different valves of k and We. From Table 1,
it is observed that the maximum thickness of the coating is 2.3216 for k = 0.1. The coating thickness
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decreases with an increase in k. The minimum thickness of coating 1.1476 was found at k = 0.9. The flow
rate, separation points and thickness of coating are decreasing functions of k. The roll-separation force
decreases, whereas the magnitude of power input increases with an increase in k. It can be seen from
Table 2 that the thickness of the coating to the maximum can be as high as 3.2452 against the separation
point 1.1436. The minimum thickness of the coating was observed as 2.3216. The flow rate, separation
points and thickness of coating are increasing functions of We. It can be seen that the magnitude of
roll-separation force and power input decreases by increasing the value We. We found that when
We→ 0 all the results of Middleman [13] are retrieved. The graphic relation between the thickness
of the coating and the ratio of half of the nip region to incoming fluid film against various values of
velocities ratio k is presented in Figure 12. It can be seen that thickness of the coating is decreasing
function of velocities ratio.
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for different valve of k.

7. Conclusions

In this paper, we present the theoretical assessment of reverse roll-coating with the principle of
lubrication approximation theory for an incompressible Williamson fluid. The analytical solutions
for velocity profiles, pressure gradients and flow rates are obtained by using regular perturbation
techniques. The separation points, thickness of the coating, separation force and power input are
tabulated in numeric form. The key deductions of the present study are as follows:

â Flow velocity increases as We increases.
â Maximum velocity occurs at the roll surface of the reverse roll.
â Absolute pressure gradient is maximum at the nip point.
â Viscous forces are dominant over the elastic forces.
â Concavity of the pressure distribution changes in the interval (−1.321, 1.321).
â The velocity ratio parameters and Weissenberg number play important roles in controlling the

pressure gradient and pressure distribution.
â The Weissenberg number provides an economical mechanism to control the magnitude of

separation force and power input.
â The Weissenberg number also plays fundamental role to have flow rate, separation points and

coating thickness as per desirous.
â Pressure distribution, power input and the viscous forces play a significant role in coating thickness.
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â As a fluid moves to the separation point of reverse roll-coating, the viscosity of the fluid increases
and the coating of the web is done after this position.

â If We→ 0 , the results of [13] are recovered.

8. Future Work

The effects of heat and the porous medium were not considered in this study. In the future, the effect
of heat and porous media will be explored for more complicated rheological non-Newtonian models.
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Abbreviations

Ur Peripheral velocity of the reverse roll
U f Peripheral velocity of forwarding roll
R Radius of the roll
k = Ur

U f
Velocities ratio

τ Extra stress tensor
ρ Density
γ Share rate
π Second invariant strain tensor
We Weissenberg number
H0 Half the nip separation
Hr Thickness of the coating on reverse roll
H f Thickness of the coating on the forwarding roll

υ =
H f
Hr

Coating Thickness
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= H0
Hr

Ratio of the half of the nip region to the
coating thickness on the reverse roll

λ Dimensionless flow rate
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