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Abstract 

Background:  Vancomycin-resistant enterococci (VRE) is the cause of severe patient health and monetary burdens. 
Antibiotic use is a confounding effect to predict VRE in patients, but the antibiotic use of patients who may have fre‑
quented the same ward as the patient in question is often neglected. This study investigates how patient movements 
between hospital wards and their antibiotic use can explain the colonisation of patients with VRE.

Methods:  Intrahospital patient movements, antibiotic use and PCR screening data were used from a hospital in the 
Netherlands. The PageRank algorithm was used to calculate two daily centrality measures based on the spatiotem‑
poral graph to summarise the flow of patients and antibiotics at the ward level. A decision tree model was used to 
determine a simple set of rules to estimate the daily probability of patient VRE colonisation for each hospital ward. The 
model performance was improved using a random forest model and compared using 30% test sample.

Results:  Centrality covariates summarising the flow of patients and their antibiotic use between hospital wards can 
be used to predict the daily colonisation of VRE at the hospital ward level. The decision tree model produced a simple 
set of rules that can be used to determine the daily probability of patient VRE colonisation for each hospital ward. An 
acceptable area under the ROC curve (AUC) of 0.755 was achieved using the decision tree model and an excellent 
AUC of 0.883 by the random forest model on the test set. These results confirms that the random forest model per‑
forms better than a single decision tree for all levels of model sensitivity and specificity on data not used to estimate 
the models.

Conclusion:  This study showed how the movements of patients inside hospitals and their use of antibiotics could 
predict the colonisation of patients with VRE at the ward level. Two daily centrality measures were proposed to sum‑
marise the flow of patients and antibiotics at the ward level. An early warning system for VRE can be developed to test 
and further develop infection prevention plans and outbreak strategies using these results.

Keywords:  Vancomycin-resistant enterococci, Intrahospital patient movements, Spatiotemporal risk factors, Dynamic 
directed spatiotemporal graph, Centrality measure, Healthcare decision support
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Background
Vancomycin-resistant enterococci (VRE) was first 
reported in Europe in 1986 [1] and since then has been 
the cause of severe health and monetary burdens [2]. The 
prevalence of VRE and VRE outbreaks have increased 
over the past 20 years in Europe [3]. Enterococcus faeca-
lis and Enterococcus faecium are the Enterococci species 
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typically found in humans’ gastrointestinal tracts, which 
could lead to bacteraemia, endocarditis, intra-abdominal 
and pelvic infections and urinary tract infections [1]. 
Patients are more than twice as likely to die from blood-
stream infections caused by VRE as compared to a sus-
ceptible strain of Enterococcus [4]. Enterococci have 
properties that make them naturally resistant to the most 
used antimicrobial, and in particular, they can quickly 
become resistant to any new last-resort antimicrobials 
introduced.

Enterococci can survive on hospital surfaces and spread 
between patients and healthcare workers (HCW) using 
hands and surfaces as vectors [5]. In addition to direct 
patient-patient and HCW-HCW transmission pathways, 
there are five main transmission pathways for VRE inside 
a hospital: (1) patient to HCW; (2) patient to the environ-
ment; (3) HCW to patient; (4) environment to patient; 
(5) environment to HCW [6]. Since the VRE can survive 
on dry environmental surfaces for months, it could be a 
constant source for new outbreaks [7]. These reservoirs 
may persist despite routine cleaning procedures [8].

The immediate surroundings of a patient with VRE 
are likely to contain VRE reservoirs [9] and the odds of 
a patient being colonised with VRE increase when prior 
room occupants had VRE [10, 11]. The risk of colonisa-
tion increases as the number and proportion of patients 
with VRE in the same unit increases [12]. Patients also 
face increased odds of VRE colonisation the more days 
they spend hospitalised [13]. Antibiotic use and immuno-
suppressing comorbidities such as leukaemia have been 
identified as risk factors for VRE colonisation [4, 13].

When a VRE outbreak occurs in a hospital, colonised 
patients are isolated, the extent of the outbreak is esti-
mated and additional control measures are implemented 
if necessary [3]. Estimating the extent of an outbreak 
involves determining the contact group, usually at the 
ward level. The contact group consists of the patients 
who could potentially have been colonised during the 
outbreak. Contact tracing is typically used to determine 
the patients at risk. To verify which patients were indeed 
colonised, a screening process can be carried out, which 
can be expensive an uncomfortable for patients [14]. The 
benefits of improving the estimation accuracy of these 
contact groups are: (1) control measures are more effec-
tive, which translates into fewer transmissions and ulti-
mately less infections; (2) fewer patients are burdened by 
the screening process; (3) less testing reduces the finan-
cial burden.

Even though estimation of the extent of an outbreak 
plays a critical role in outbreak management, few stud-
ies have investigated the relationship between the patient 
movements between hospital wards and the spread of 
microorganisms. Reasons for patients to move from 

one department to the other include deterioration of 
health; surgery after which they are moved to intensive 
care and afterwards to general care or more specialised 
care department; hospital logistics due to limited capac-
ity. One study used centrality measures of intrahospital 
patient movements to predict the onset of clostridium 
difficile at the ward level [15]. The centrality of hospital 
antibiotic use, however, was not considered. Clostridium 
difficile can survive on hospital surfaces and patients 
are at risk from environmental vectors. Recent studies 
have shown that each intrahospital transfer increases a 
patient’s odds of contracting clostridium difficile by 7% 
(95% CI 1.02–1.13). To our knowledge, no similar studies 
exist for the VRE.

The effects of intrahospital patient movements and 
antibiotic usage in hospitals are usually studied sepa-
rately in antimicrobial resistance (AMR) research. The 
use of antibiotics is usually included as a possible con-
founding effect to predict VRE colonisation in patients, 
but the use of antibiotics of other patients who may 
have frequented the same ward as the patient in ques-
tion is often neglected. Hospitals are dynamic systems 
with many moving objects and each of those objects has 
a surface that can act as a vector for VRE. Furthermore, 
antibiotic use can increase the number of VRE in patients 
due to selection pressure which can then spread between 
patients [8, 16]. For these reasons, VRE should be stud-
ied using covariates which include spatiotemporal move-
ments of patients and antibiotics in the hospital.

This study investigates how patient movements 
between hospital wards and their antibiotic use can 
explain the colonisation of patients with VRE. We esti-
mate the probability of a patient being colonised with 
VRE at the ward level using intrahospital movement 
data and antibiotic usage data. We estimate this prob-
ability using a decision tree model and a random forest 
ensemble model and compare the model performance as 
a sub-objective. This study is important because it allows 
infection prevention and control specialists and outbreak 
management staff to determine which wards are at risk of 
a VRE outbreak using commonly available hospital data.

Methods

Patient movement and antibiotic data
We used retrospective patient movement data from the 
University Medical Center Groningen (UMCG), one 
of the largest hospitals in the Netherlands with more 
than 10,000 employees and almost 1400 beds. Antibi-
otic usage and patient movement data are stored in an 
electronic health record (EHR) database. The period 
under study is January 2018 until December 2019. The 
anonymised data consist of admission and discharge 
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dates for each department within the hospital and anti-
biotic administration times during admission. These 
data were used to calculate two covariates for each day 
during the period of study: (1) the number of patients 
in each ward (pat_num); (2) the number of patients 
using antibiotics in each ward (pat_num_ant).

Spatiotemporal graph
The intrahospital patient movements data can be used 
to construct a dynamic directed spatiotemporal graph 
(DG) [17]. The graph nodes are the wards and the edges 
between the nodes are the patients moving between the 
wards. The DG is spatiotemporal and dynamic since 
it presents the location of patients using a node struc-
ture over time. We created two DGs using the patient 
movement data and the antibiotics data. The first graph 
includes all patient movement between all wards. The 
second graph only includes the movements of patients 
using antibiotics.

PageRank algorithm
The PageRank (PR) algorithm aims to determine the 
centrality or “importance” of nodes given the number of 
other “important” nodes with vectors directed towards it 
[18]. In the context of this study, the PR algorithm esti-
mates the probability distribution of an arbitrary patient 
ending up in a particular ward. We calculated the daily 

PageRank probabilities for both DGs using a 30-day 
rolling time window: (1) PageRank of patient move-
ments between wards (PR_pat_num) and (2) PageRank 
of patient movements currently using antibiotics (PR_
pat_num_ant). The PR_pat_num and PR_pat_num_ant 
represent the centrality of wards in terms of patients and 
antibiotics, respectively.

VRE screening data
The number of VRE tests fluctuated between 100 to 300 
per week during the study period. A polymerase chain 
reaction (PCR) test was performed on rectal swabs from 
patients. If the PCR was suspected for VRE, culturing 
was performed. A patient was considered to be colonised 
with VRE if VRE could be isolated from culturing. Next 
Generation Sequencing (NGS) was performed on the 
VRE isolates and a minimum spanning tree based on the 
cgMLST was used to analyse the NGS sequence data for 
molecular epidemiological investigation.

All patients directly transferring from other hospitals 
were tested for VRE on admission over the entire study 
period. In addition, intensive care units (ICU) were 
screened for VRE twice a week. A VRE outbreak occurred 
at UMCG during the second half of 2018 (Fig.  1). The 
outbreak ward was screened 2–3 times a week during 
the outbreak period. Additional tests for VRE colonisa-
tion were performed during this period based on contact 

Fig. 1  VRE tests and the number of positive VRE test results during 2018–2019
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patients and wards closely related to the outbreak ward. 
From January 2019 onwards, patients admitted to the 
ward for at least ten days were tested every two weeks for 
VRE colonisation.

Additional infection prevention measures were taken 
during the VRE outbreak period. These include:

•	 Creating a cohort of positive patients and patients at 
risk of VRE. Nurses that work on the VRE-cohort do 
not work on the non VRE-cohort. Additional HCWs 
were used for night shifts to prevent nurses from 
working on both cohorts.

•	 More attention was given to hand hygiene measures. 
However, no measurements on compliance rates 
were performed during the outbreak.

•	 Additional use protective equipment like gloves and 
aprons were used for all patients.

•	 Intensified screening on VRE. Patients in the out-
break ward were screened three times per week. 
Admission screening and discharge screening for all 
patients.

•	 During a short period during the outbreak, the 
admission of new patients was completely halted.

•	 Contact tracing and screening of discharged patients, 
including screening at home.

•	 Intensified cleaning and even closure of a ward and 
moving patient to a secondary ward to clean the orig-
inal ward.

•	 Environmental screening for VRE.

Between July–December 2018, 141 positive VRE tests 
were reported, with a peak of 25 positive tests in one 
week. In total, 48 patients tested positive for VRE over 
the study period.

Modelling
The binary outcome variable Y was defined (1) and calcu-
lated using the VRE screening data over the study period.

We estimated the conditional probability that there is 
at least one patient colonised with VRE in a specific ward 
(Y) given the covariates pat_num, pat_num_ant, PR_pat_
num and PR_pat_num_ant (2).

Decision trees
A decision tree was used to determine a simple set of 
rules based on the covariates to estimate the conditional 

(1)

Y =

{

1, number of patients colonised with VRE in ward > 0
0, otherwise

(2)P(Y = 1|pat_num, pat_num_ant,PR_pat_num,PM_pat_num_ant)

probability of Y [19]. The decision tree was grown using a 
70% random training sample of the complete set of data. 
The data were split incrementally by adding question 
nodes. The question nodes consider the ability of each 
covariate to discriminate between the observed binary 
outcomes and formulates the question using the one 
that can discriminate best [20]. We used the Gini index 
to quantify the discriminatory ability of each covariate 
at the question nodes [19]. Continuing in this way, a tree 
branch structure is created, leading to the final decision 
or leaves of the tree.

Random forest
The model performance of decision trees was improved 
by creating an ensemble of decision trees and using them 
in unison to predict the outcome variable [20]. We used 
the same 70% randomly sampled training samples used 
to train the decision tree model. To build the random for-
est (RF) model, 500 random samples with replacement 
(bootstrap sample) were drawn from the training data 
and two random outcome variables were used to build a 
decision tree for each of the bootstrap sample. The prob-
ability of Y was determined by calculating the proportion 
of the 500 trees that predicted Y = 1.

We compared the model performance of the decision 
tree and random forest models using the remaining 30% 
data as a test sample. The area under the receiver oper-
ating characteristic curve (ROC) was used to measure 
model performance as it provides a holistic view of how 
well the model predicts the outcome variable for different 
levels of sensitivity and specificity [21]. An AUC between 
0.7 and 0.8 is considered as acceptable and between 0.8 
and 0.9 excellent [123].

Software
The R statistical programming language was used to per-
form the analyses in this study [22]. Graphs were created 
and evaluated using igraph [23]. The decision trees and 
random forest models were built using the rpart and ran-
domForest packages [24, 25]. In addition, the tidyverse R 
package was used to clean and structure the data [26].

Results
In total, 48 distinct wards were occupied over the 
730 days in the study period (2018–2019). Of the possible 
35,040 observations, if all the wards were occupied every 

day, only 31,649 observations were collected, of which 
1377 (5.45%) had at least one patient with VRE.
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Covariates
The pat_num and pat_num_ant covariates are shown 
with the number of patients colonised with VRE during 
the VRE breakout period in 2018 in Fig. 2. We highlight 
the general care ward with many VRE colonised patients 

during this outbreak in Fig. 3. These results show a higher 
level of variation at the ward level, which conforms better 
to the number of patients colonised with VRE. The high-
est number of VRE colonised patients were observed in 
the last week of August 2018. At the hospital level, the 

Fig. 2  Number of patient and patients using antibiotics. pat_num_ant = the number of patients using antibiotics in each ward; pat_num = the 
number of patients in each ward

Fig. 3  Number of patient and patients using antibiotics in example general care ward. pat_num_ant = the number of patients using antibiotics in 
each ward; pat_num = the number of patients in each ward
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relationship between the pat_num_ant, pat_num and the 
number of VRE colonised patients is not evident. When 
the same data are shown at the ward level for the general 
care ward, these covariates are correlated with the num-
ber of VRE colonised patients.

Comparing the two PR_pat_num and PR_pat_num_
ant reveal that during this period, PR_pat_num_ant 
was higher than PR_pat_num (Fig.  4). This means that, 
on average, the probability of a patient using antibiot-
ics to visit a ward was higher than for the total patient 

Fig. 4  Average daily PageRank covariate and the number of VRE positive patients. PR_pat_num = PageRank of patient movements between wards; 
PR_pat_num_ant = PageRank of patient movements using antibiotics

Fig. 5  Average daily PageRank covariate and the number of VRE positive patients in example ward general care ward. PR_pat_num = PageRank of 
patient movements between wards; PR_pat_num_ant = PageRank of patient movements using antibiotics
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population. The same covariates are shown for the exam-
ple general care ward in Fig.  5. The general care ward 
experienced a significant increase in PR_pat_num_ant 
during July and October 2018, which lasted for four 
weeks and yet PR_pat_num did not show a similar pat-
tern. These results show that the two centrality covariates 
provide different information of the patient and antibiot-
ics flow in a hospital at the ward level.

Decision tree
The 70% training sample had a 4.3% observations for 
which Y = 1 at the root node (Fig. 6). The pat_num_ant 

covariate splits the first nodes. If the number of patients 
is less than six, which is the case for 40% of the training 
sample, then there is a 0.098% probability that the ward 
has a VRE colonised patient. If the number of patients in 
a ward is six or more, but less than 13, we continue to 

the next node to consider the PT_pat_num_ant covari-
ate. After dividing the training sample by the five nodes, 
we arrive at the seven leaves of the tree. The probabilities 
of the leave population range between 0.98% and 15.68%. 
According to the order in which the covariates were used 
in the model, the pat_num_ant is the most important 
covariate to estimate the probability of a hospital ward 
having at least one patient colonised with VRE. The PR 
covariates are next in the order of importance to deter-
mine the final leaves of the tree. The decision tree results 
can be written and executed as a simple set of rules pro-
vided in (3).

0.0098 if pat_num_ant < 6,
0.0326 if pat_num_ant ∈ [6, 13] AND PR_pat_num_ant	

	 ∈ [0.022, 0.029) AND PR_pat_num ≥ 0.025,
0.0340 if pat_num_ant ∈ [6, 13] AND PR_pat_num_ant	

	 < 0.22,

(3)P(Y = 1|pat_num, pat_num_ant, PR_pat_num, PM_pat_num_ant) =

Fig. 6  Decision tree for the daily VRE colonisation in a hospital ward using PageRank and traditional covariates. pat_num_ant = the number of 
patients using antibiotics in each ward; PR_pat_num_ant = PageRank of patient movements currently using antibiotics; PR_pat_num = PageRank 
of patient movements between wards. In each node, the percentage of wards with at least one patient colonised with VRE is shown above the 
sample distribution of the node
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0.0384 if pat_num_ant ∈ [6, 13] AND 
	  PR_pat_num_ant ≥ 0.29,

0.1030 if pat_num_ant ≥ 13,
0.1568 if pat_num_ant ∈ [6, 13] AND PR_pat_num_ant	

	  ∈ [0.022, 0.029) AND PR_pat_num < 0.025

Random forest
The minimal depth provides insight into where a covari-
ate occurs for the first time in the decision trees for 
the random forest and quantified variable importance. 
Covariates with lower minimal average depth are used to 
split larger proportions of the population due to higher 
discriminatory power. The results show that pat_num_
ant has the lowest average depth (0.61) and is most likely 
to be used in the root node. This result is consistent with 
our single decision tree model (Fig. 7). PR_pat_num was 
not used as a root node for any of the 500 decision trees. 
It has the largest average depth (1.93) in the trees, which 
means that it was generally used in nodes appearing 
lower in the decision trees.

We determined the covariate importance in the RF 
model by calculating the percentage increase in the mean 
square error (MSE) and the change in the residual sum of 
squares (RSS) of the model should random information 

replace the values of the model covariates. The results 
show that the PR covariates are the most important ones 
in terms of the MSE (Fig. 8) and RSS (Fig. 9) reductions.

Model performance
The performance of the models is compared to the Lor-
enz curves shown in Fig. 10. The Lorenz curve of the RF 
model is consistently higher than for the decision tree 
model. The RF model achieved an area under the curve of 
0.883 and the decision tree model 0.755 on the 30% test 
set. This result confirms that the random forest model 
performs better than a single decision tree for all levels of 
model sensitivity and specificity on data not used to esti-
mate the models. This is important to estimate the loss in 
model performance when choosing to use the simple set 
of rules produced by the decision tree model to calculate 
the probability of Y rather than using the RF model.

Discussion
This study showed how the movements of patients inside 
hospitals and their use of antibiotics could predict the 
VRE colonisation of patients at the hospital ward level. 
Two daily centrality measures were proposed to summa-
rise the flow of patients and antibiotics at the ward level. 

Fig. 7  Minimal depth for each covariate in the 500 random forest decision trees. pat_num_ant = the number of patients using antibiotics in each 
ward; PR_pat_num_ant = PageRank of patient movements currently using antibiotics; pat_num = the number of patients in each ward; PR_pat_
num = PageRank of patient movements between wards
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A simple set of rules were produced which can be used to 
monitor the risk of VRE colonisation in hospital wards. 
Using an ensemble method, a more accurate but more 
complicated model was developed, which can be applied 
to the same effect should resources allow for it.

The two PageRank covariates proposed offered new 
insight into the centrality of wards regarding patient and 

antibiotic movements and their interaction. This study 
used the covariates to predict VRE colonisation, but 
they can be used in many other studies concerning anti-
microbial resistance in hospitals. Institutional surveil-
lance monitors the usage of antibiotics but not the flow 
and concentration thereof. The proposed PR covariates 
can be used in conjunction with existing institutional 

Fig. 8  The change in mean squared error when covariate values are replaced with random values. PR_pat_num = PageRank of patient movements 
between wards; PR_pat_num_ant = PageRank of patient movements currently using antibiotics; pat_num = the number of patients in each ward; 
pat_num_ant = the number of patients using antibiotics in each ward

Fig. 9  The change in residual sum of squares when covariate values are replaced with random values. PR_pat_num_ant = PageRank of patient 
movements currently using antibiotics; PR_pat_num = PageRank of patient movements between wards; pat_num_ant = the number of patients 
using antibiotics in each ward; pat_num = the number of patients in each ward
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surveillance metrics to monitor the risks for VRE coloni-
sation and AMR colonisation in general.

The decision tree model resulted in six simple ques-
tions and provided the probability that a ward has at 
least one patient colonised with VRE as an answer. This 
model enables hospitals to use passive data collected in 
their electronic health records to calculate this prob-
ability. To improve the accuracy of this model, a random 
forest model was built, which outperforms the decision 
tree model. The random forest model results were not as 
easily interpretable as that of the decision tree as it uses 
500 smaller decision trees every time a probability is cal-
culated. In practice, the model used will depend on the 
skills and resources of the hospital and its infection pre-
vention and control specialists.

Future work
The results of this study can be used to develop an early 
warning system for VRE colonisation and other micro-
organisms with similar transmission mechanisms. The 
probabilities produced by the models presented can be 
used to classify the predicted VRE colonisation outcome 
according to the desired level of sensitivity and specific-
ity for such a system. The results can then be updated 
daily or as frequently as the covariates can be calculated 
and evaluated by the infection prevention specialists to 
decide on the best course of action.

Our results showed that the value of the patient move-
ment and antibiotic PR covariates sometimes move in the 
opposite direction over time. This divergence suggests 

that the proportion of patients using antibiotics changes 
over time. These covariates can be used together to 
determine if emerging divergences increase the risk of 
VRE colonisation.

Limitation
The study period was limited by the amount of data 
available for intrahospital patient movement, antibiotic 
use and VRE colonisation screening. UMCG migrated 
to a new electronic healthcare system in 2017, result-
ing in the antibiotic data not being available at the time 
of publication. There was a VRE outbreak in 2017, which 
would have allowed us to build these models on the 
2017 outbreak and validate them on the 2018 outbreak. 
Once these data become available, this could be a future 
research opportunity.

Even though this study can determine if a patient were 
using antibiotics at a particular time, we could not dis-
tinguish between the types of antibiotics used. Some 
antibiotics target specific bacteria and can have a more 
significant effect on the risk of being colonised with VRE. 
A future research opportunity is to create antibiotics cen-
trality measure for antibiotics targeting different bacteria.

The risk of VRE colonisation may differ between the 
types of hospital wards. For instance, patients admit-
ted to an ICU may be more likely to be colonised with 
VRE than for general wards. We assumed that the differ-
ence in risk of VRE colonisation at the ward level could 
be explained by the number of patients, their antibiot-
ics usage, and how patients in general and patients using 

Fig. 10  Lorenz curves of the decision tree and random forest models
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antibiotics transition towards each ward using the cen-
trality measures proposed in this study. For instance, 
the probability that at least one patient is colonised 
with VRE for a ward having a large number of patients 
using antibiotics and a relatively high probability that a 
patient using antibiotics may end up there compared to 
a general ward with low antibiotics usage. Even though 
the proposed models could predict VRE colonisation 
at the ward level, they may be further expanded to the 
patient level to test this assumption. This expansion will 
require additional patient data regarding demograph-
ics and comorbidities affecting the risk of VRE coloni-
sation. A prediction model for VRE colonisation at the 
patient level using the proposed spatiotemporal central-
ity measures and patient-level data will also improve the 
efficiency of infection prevention specialists to control 
AMR in hospitals.

Even though the models focussed on predicting VRE 
colonisation at the ward level, the proposed spatiotem-
poral centrality measures may be used to generalise the 
models for other transmittable microbes in hospital envi-
ronments. Future research may validate the relevance 
of these measures in a multicentre study using other 
outcome variables based upon, for example, carbape-
nem-resistant Enterobacteriaceae (CRE) or Clostridium 
difficile.

Conclusion
This study showed how the movements of patients inside 
hospitals and their use of antibiotics could predict the 
VRE colonisation of patients at the ward level. Two daily 
centrality measures were proposed to summarise the flow 
of patients and antibiotics at the ward level. A simple set 
of rules was produced which can be used to monitor the 
risk of VRE colonisation in hospital wards. A random for-
est ensemble model was compared with a decision tree 
model to improve the prediction performance at the cost 
of simplicity. An early warning system for VRE colonisa-
tion can be developed to test and further develop infec-
tion prevention plans and outbreak strategies using these 
results.
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