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ABSTRACT The incidence of type 2 diabetes (T2D) has been increasing globally, and a
growing body of evidence links type 2 diabetes with altered microbiota composition.
Type 2 diabetes is preceded by a long prediabetic state characterized by changes in var-
ious metabolic parameters. We tested whether the gut microbiome could have predic-
tive potential for T2D development during the healthy and prediabetic disease stages.
We used prospective data of 608 well-phenotyped Finnish men collected from the pop-
ulation-based Metabolic Syndrome in Men (METSIM) study to build machine learning
models for predicting continuous glucose and insulin measures in a shorter (1.5 year)
and longer (4 year) period. Our results show that the inclusion of the gut microbiome
improves prediction accuracy for modeling T2D-associated parameters such as glycosyla-
ted hemoglobin and insulin measures. We identified novel microbial biomarkers and
described their effects on the predictions using interpretable machine learning techni-
ques, which revealed complex linear and nonlinear associations. Additionally, the model-
ing strategy carried out allowed us to compare the stability of model performance and
biomarker selection, also revealing differences in short-term and long-term predictions.
The identified microbiome biomarkers provide a predictive measure for various meta-
bolic traits related to T2D, thus providing an additional parameter for personal risk
assessment. Our work also highlights the need for robust modeling strategies and the
value of interpretable machine learning.

IMPORTANCE Recent studies have shown a clear link between gut microbiota and
type 2 diabetes. However, current results are based on cross-sectional studies that
aim to determine the microbial dysbiosis when the disease is already prevalent. In
order to consider the microbiome as a factor in disease risk assessment, prospective
studies are needed. Our study is the first study that assesses the gut microbiome as
a predictive measure for several type 2 diabetes-associated parameters in a longitu-
dinal study setting. Our results revealed a number of novel microbial biomarkers
that can improve the prediction accuracy for continuous insulin measures and glyco-
sylated hemoglobin levels. These results make the prospect of using the microbiome
in personalized medicine promising.

KEYWORDS T2D, gut microbiome, machine learning, prediction analysis, gut
microbiome, type 2 diabetes

The prevalence of type 2 diabetes (T2D) has more than doubled since 1980, result-
ing in a huge burden on the health care system worldwide (1). In order to fight the
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epidemic of T2D and improve public health, an understanding of the first stages of this
disease is necessary for preventive actions. Recently, the bacterial communities resid-
ing in our intestines have become a topic of interest as a potential way to prevent the
development of glucose dysregulation. The microbiome has been shown to modulate
a variety of physiological functions, such as gut permeability, inflammation, glucose
metabolism, and fatty acid oxidation, supporting an important role of the microbiome
in the pathophysiology of T2D (2).

Numerous studies have already reported changes in the gut microbiome in subjects
with T2D or prediabetes compared to healthy individuals (3–5). Although there is infor-
mation that the abundance of bacteria such as Roseburia and Bifidobacteria is altered
in subjects with T2D (2), compelling evidence that supports the use of gut microbiome
as a predictive tool for T2D is lacking, as a majority of the findings are based on cross-
sectional studies. However, in order to assess the microbiome as a prognostic tool for
T2D, prospective studies are needed.

T2D is a heterogeneous disease with multiple pathophysiological pathways
involved (6). Thus, in order to fully understand the role of the microbiome in the risk of
T2D, a case-control design might not be sufficient. As the progression of the disease is
a continuous process, detailed data about metabolic outcomes such as continuous glu-
cose and insulin measurements could help to unravel the disease mechanisms involv-
ing the microbiome.

Together with heterogeneity in the first stages of T2D, the gut microbiome itself is
known to be highly personalized (7, 8). Variability in continuous metabolic outcomes
and gut microbiome lead to difficulties in reproducing the results obtained and raises
the need for robust modeling strategies. Machine learning methods have been shown
to capture various complex association patterns from different data types. Although
machine learning has become popular in microbiome studies as well, the ability of the
algorithms to provide robust results remains unclear (9, 10).

We now report the application of a random forest algorithm on microbiome data to
predict multiple continuous metabolic outcomes that influence the development of
T2D in a longitudinal study setting. We identify microbial biomarkers for the metabolic
outcomes and describe their effects on the predictions using interpretable machine
learning techniques. In addition, we show that there are significant differences in the
identified biomarkers between long and short follow-up periods. We also show how
the modeling procedure significantly influences the results.

RESULTS
Study design.We used prospective data of well-phenotyped Finnish men collected

from a population-based Metabolic Syndrome in Men (METSIM) study. A comprehen-
sive machine learning strategy was implemented to identify microbial biomarkers and
their effect on numerous metabolic traits. A graphical overview of the study design
and modeling procedure is shown in Fig. 1. Random forest models were trained to pre-
dict the metabolic outcomes of interest in the follow-up using the baseline micro-
biome (MB), metabolic outcomes (MO), and additional covariates (CoV) such as body
mass index and age as predictors. To evaluate the effect of the microbiome, models
including microbial predictors were compared to models excluding microbial predic-
tors. In order to assess the temporal changes in biomarker selection and predictive
performance, independent prospective models were trained for the 18-month and
48-month follow-up period. To evaluate the model generalizability and stability,
model training was repeated 200 times with a different train-test split made each
run. Permutation feature importance metrics were used to identify microbial bio-
markers. Finally, accumulated local effects methodology was used to plot the effect
of the microbial biomarkers for predicting the corresponding metabolic trait.

Model stability and generalizability. In the first step, we tested whether we could
improve the prediction of metabolic outcomes using microbiome data as an additional
predictor. The human gut microbiome is known to be highly variable and personalized
(7, 8). Thus, estimating the robustness of the predictive models is essential. The
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problem with microbiome data based on our experience is that the performance of
the model might be highly dependent on the initial data split for training and test sets.
The models were run 200 times with different initial splits to assess the impact of the
data split. Table 1 summarizes the obtained results.

These results highlight the variability in performance estimates occurring due to
the data split. Out of 200 data splits, the number of models that took advantage of
using microbial predictors varies around 100, which implies that the data split plays
an important role in the outcome. Our results suggest that for the 18-month time
frame, microbiome as a predictor can improve the prediction accuracy for secretion
index, glycosylated hemoglobin (HbA1c), and 2-h insulin levels. For secretion index,
models including microbial predictors outperformed simpler models in 61% of the
cases, for 2-h insulin in 70.5% of the cases, and for HbA1c in 64.5% of the cases. The

FIG 1 Study design and modeling procedure.

TABLE 1Model stability and generalizability

Trait

18-mo time frame 48-mo time frame

Mean (SD)
difference
in RMSEa

No. of models
including
microbiome
performing
better (%)

P (model including
microbial predictors
performs better)
Bonferroni adjusted

Mean (SD)
difference
in RMSEa

No. of models
including
microbiome
performing
better (%)

P (model including
microbial predictors
performs better)
BONFERRONI adjusted

Fasting glucose 0.001 (0.0594) 99 (49.5) 1.0000 –0.006 (0.0641) 112 (56) 0.8291
2-h glucose –0.02 (0.217) 118 (59) 0.1050 0.07 (0.332) 73 (36.5) 1.0000
Fasting insulin 0.20 (1.04) 73 (36.5) 1.0000 –0.29 (1.080) 137 (68.5) 1.432 · 1026b

2-h insulin –3.23 (10.840) 141 (70.5) 5.046 · 1028b –1.42 (12.304) 122 (61) 0.0182b

HbA1c –0.005 (0.0305) 129 (64.5) 0.0004b –0.002 (0.0360) 111 (55.5) 1.000
Secretion index –0.36 (4.949) 122 (61) 0.0182b –0.77 (3.254) 138 (69) 6.422 · 1027b

Matsuda index 0.07 (0.573) 90 (45) 1.0000 –0.01 (0.569) 103 (51.5) 1.0000
Disposition index 4.42 (26.590) 77 (38.5) 1.0000 2.01 (16.251) 86 (43) 1.0000
aMean differences in root-mean-square error (RMSE) between models including microbial predictors and models excluding microbial predictors. Negative value indicates a
model including microbial predictors outperforming the model excluding microbial predictors.

bStatistically significant results according to the binomial test after Bonferroni correction.
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Bonferroni-corrected P values for testing whether the model including microbial
predictors outperforms the model excluding microbial predictors based on a ran-
dom data split are 0.0182 for secretion index, 5.046 · 1028 for 2-h insulin, and 0.0004
for HbA1c. Average improvements in root-mean-square error (RMSE) were –0.36 for
secretion index, –3.23 mU/liter for 2-h insulin, and –0.005% for HbA1c. For a 48-
month time frame, the microbiome improves the prediction model for the secretion
index, fasting insulin, and 2-h insulin. For secretion index, models including micro-
bial predictors outperformed simpler models in 69% of the cases, for 2-h insulin in
61% of the cases, and for fasting insulin in 68.5% of the cases. The adjusted P values
for testing whether the model including microbial predictors outperforms the model
excluding microbial predictors based on a random data split are 6.422 · 1027 for
secretion index, 0.0182 for 2-h insulin, and 1.432 · 1026 for fasting insulin. Average
improvements in RMSE were –0.77 for secretion index, –1.42 mU/liter for 2-h insulin,
and –0.29 mU/liter for fasting insulin.

Remarkably, the variation in differences in RMSE between the model including mi-
crobial predictors and the model excluding microbial predictors over the 200 runs is
large. Due to the high variability, the potential of improvement in prediction accuracy
when microbiome data are used remains largely unclear.

Novel predictive microbial biomarkers for metabolic outcomes. In order to find
microbial markers that are predictive for the metabolic outcomes, average feature im-
portance scores over 200 runs were compared. Figure 2 shows the average importance

FIG 2 Average feature importance scores for the top 50 microbial markers. The highlighted taxa are considered the most significant biomarkers. Blue
represents order-level taxonomy, and red represents family-level taxonomy. (A) Predictors for 18-month follow-up. (B) Predictors for 48-month follow-up.
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score of the top 50 microbial predictors for metabolic outcomes that took advantage
of using microbial predictors. It can be seen that certain microbial predictors signifi-
cantly stand out for each metabolic outcome and time frame combination.

For an 18-month time frame (Fig. 2A, Table S2), the most important microbial predic-
tors for 2-h insulin include genus Methanobrevibacter and numerous genera from the
phylum Firmicutes, such as [Ruminococcus] torques group, UC5-1-2E3, Subdoligranulum,
and Christensenellaceae R-7 group. Predictors for HbA1c are the genus Ruminiclostridium
5, the genus Paraprevotella, an unclassified member of the family Muribaculaceae, and
members of Clostridiales vadinBB60 group. An unclassified member of the family
Muribaculaceae together with Papillibacter and Oscillospira are significant predictors for
secretion index.

For the 48-month time frame (Fig. 2B, Table S3), top predictors for 2-h insulin
include uncultured Rhodospirillales and UC5-1-2E3. Distinguishable genera according to
the average importance score are also Family XIII AD3011 group, Shuttleworthia and
Odoribacter. Significant predictors for fasting insulin are uncultured Rhodospirillales,
uncultured Prevotellaceae, and the genus Alistipes. For secretion index, the genus
Enterorhabdus together with Asteroleplasma prove to be the most important predic-
tors, with Family XIII AD3011 group slightly standing out.

There is overlap in the most important microbial markers found for predicting differ-
ent metabolic outcomes. In the 18-month follow-up period, unclassified Muribaculaceae
is a significant predictor for secretion index and HbA1c. For the 48-month follow-up pe-
riod, Family XIII AD3011 group is a predictor for secretion index and 2-h insulin, and
uncultured Rhodospirillales is an important predictor for fasting insulin and 2-h insulin.
Additional overlap can be seen among the top 10 microbial predictors according to the
average permutation importance score (Tables S2 and S3).

Interpreting the effect of microbial biomarkers on the predictions. Together
with finding the relevant biomarkers, understanding how they influence the

FIG 3 Accumulated local effect (ALE) plots. (A) ALE plots for the found microbial biomarkers. (B) ALE plots for genus UC5-1-2E3 found to predict 2-h insulin
in 18-month and 48-month follow-ups. Blue lines represent effects for each run out of 200; orange lines represent aggregated effects. Aggregated effect is
displayed between the 2.5% and 97.5% quantiles of CLR-transformed abundance for the corresponding microbial marker.
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predictions is necessary. This task is complicated for most of the machine learning
algorithms, which is why they are considered “gray-box” or “black-box” methods.
Recently, much attention has been put into explaining the predictions of such models.
Here, we implemented accumulated local effect (ALE) plots that aim to describe the
effect of a certain predictor on the metabolic outcome independently of the remaining
predictors (11). Accumulated local effect plots for the previously highlighted most sig-
nificant microbial biomarkers are shown in Fig. 3. Accumulated local effect plots for
the top 10 microbial predictors are shown in Fig. S1 and S2. In most cases, ALE plots
show nonlinear associations between a microbial predictor and metabolic outcome of
interest. Although large variability in the effect estimates between the different data
splits can be seen, the shape of the effect stays relatively stable for all microbial
predictors.

Considering the 18-month time frame (Fig. 3A, Fig. S1), higher centered log-ratio (CLR)-
transformed abundances of genera from the Lachnospiraceae family—[Ruminococcus]
torques group and UC5-1-2E3—lead to higher predictions for 2-h insulin. High CLR-
transformed abundances of the genera Subdoligranulum, Methanobrevibacter, and
Christensenellaceae R-7 group lower the predictions for 2-h insulin. For HbA1c, higher
CLR-transformed abundance of Ruminiclostridium 5 leads to higher predictions. In con-
trast, high CLR-transformed abundances of bacteria from the family Muribaculaceae,
members of Clostridiales vadinBB60 group, and Paraprevotella reduce the levels of HbA1c.
For secretion index, the prediction might depend on the presence-absence of the
unclassified genus from the family Muribaculaceae, because the ALE plot stays relatively
stable after an initial decrease from the minimum values of CLR-transformed abundan-
ces. High CLR-transformed abundances of Oscillospira and Papillibacter decrease the pre-
dictions for secretion index.

Considering the 48-month follow-up period (Fig. 3A, Fig. S2), high CLR-transformed
abundances of the genera Firmicutes Family XIII AD3011 group, Odoribacter, and unclassi-
fied Rhodospirillales lead to lower predictions for 2-h insulin. In contrast, extremely high
CLR-transformed values of the genus UC5-1-2E3 lead to higher predictions. Shuttleworthia
seems to show a presence-absence effect, as the drop from the lowest CLR-transformed
values lowers the predictions for 2-h insulin. For fasting insulin, higher CLR-transformed
abundances of unclassified Rhodospirillales and Alistipes lower the predictions. In contrast,
high CLR-transformed abundances of an unclassified genus from the Prevotellaceae family
leads to higher predictions for fasting insulin. Interestingly, extremely low values of
Alistipes lead to higher predictions for fasting insulin than when Alistipes levels are within
2.5% and 97.5% quantiles. A similar effect for the genus Asteroleplasma on secretion index
can be seen as extremely high CLR-transformed abundance of Asteroleplasma leads
to drastically higher predictions. The genus Enterorhabdus might show presence-ab-
sence effects, with the presence of Enterorhabdus leading to decreased predictions.
Lastly, high CLR-transformed abundance of the genus Family XIII AD3011 group leads
to higher predictions.

Comparison of microbial predictors in different time points. Independently
modeling the two scenarios with various follow-up times allowed us to compare the
most relevant predictors to see if the effect and choice of microbial biomarkers remains
the same. Considering metabolic outcomes that the microbiome data helped to predict,
only one microbial predictor for the same metabolic outcome was shared (Fig. 3B). The
genus UC5-1-2E3 from the Lachnospiraceae family was found to be among the top pre-
dictors for 2-h insulin in the 18-month and 48-month time frame. Among the top 10 pre-
dictors for each target variable, Escherichia-Shigella was also shared for 2-h insulin
(Fig. S1 and S2).

The shape of the effect for UC5-1-2E3 stays relatively stable, with extreme values
for the genus showing higher predictions for both follow-up periods. This suggests
that the genus UC5-1-2E3 could be considered a robust biomarker for predicting 2-h in-
sulin. Nevertheless, all other genera from the top microbial predictors were specific for
a certain time frame.
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DISCUSSION

We used machine learning to predict multiple metabolic outcomes (continuous glu-
cose and insulin measures, HbA1c) over time periods of various lengths using the gut
microbiome as a predictive measure. Furthermore, the modeling strategy carried out
allowed us to understand the variability in performance estimates and biomarker selec-
tion. We described how high variability and personalization of the human gut micro-
biome leads to large variations in the performance estimates. We showed that microbial
predictors can improve the prediction accuracy for continuous insulin measures and gly-
cosylated hemoglobin in addition to conventional risk factors, additionally highlighting
differences in short- and long-term cases. Finally, we identified microbial biomarkers that
contribute to the improved performance and described their effect on the outcome.

Most of the current studies describing the role of bacteria in diabetes have been
case-control studies, with diabetes being a binary trait defined by setting a cutoff to
some continuous glucose measure (3, 4, 12). Type 2 diabetes, however, is a disease pre-
ceded by a long-lasting prediabetic state, and the development of the disease is a con-
tinuous process (13). Detailed phenotyping is definitely a strength of this study, as it
allows us to study the first stages of disease progression. Our results suggest that bac-
teria provide a means for predicting changes in insulin secretion and insulin response
to glucose intake. A causal effect of microbiome-produced short-chain fatty acids
(SCFA) has been confirmed with respect to various insulin measures, primarily insulin
secretion (14). Figure S3 shows that 2-h insulin levels first increase in subjects with pre-
diabetes, defined by the WHO classification, as a compensatory mechanism to keep
glucose levels in the normal range. Thus, 2-h insulin values are among the first indica-
tors for the development of diabetes. Therefore, our results provide valuable insight
into the potential application of the microbiome as a predictive measure for T2D and
highlight the need for detailed phenotyping in order to fully understand the role of
the microbiome in this disease.

Recently, Gou et al. (12) used a similar interpretable machine learning strategy and
found bacteria that effectively differentiated type 2 diabetes cases from healthy
controls in the Chinese population. Additionally, they built a microbiome risk score
(MRS) and showed the causal role of identified bacteria on diabetes development
after fecal microbiota transplantation to mice. The microbial predictors found do
not show significant overlap with our findings. Only Alphaproteobacteria found by
Gou et al. can be considered overlapping. We found one taxon from the class
Alphaproteobacteria—an uncultured genus from the order Rhodospirillales—to pre-
dict fasting insulin and 2-h insulin in a 48-month time frame. We found a higher
CLR-transformed abundance of an unclassified Rhodospirillales genus decreasing
type 2 diabetes risk, which is consistent with the findings of Gou et al. Multiple rea-
sons might explain the observed inconsistencies. Importantly, our study was specif-
ically designed to find prospective predictors for continuous measures. Another
possible difference is the cohort structure. Our study included men exclusively,
compared to 33.1% in Gou et al. The effect of sex on the gut microbiome is not
clear but cannot be ruled out (15, 16). Also, the metagenomic analyses of European
women and Chinese subjects have shown differences, which is why geographic dif-
ferences in microbiome are also a possibility (3, 4).

Rhodospirillales, one of the strongest predictors in the current study, was found
to be predictive for fasting and 2-h insulin in a 48-month follow-up. The order
Rhodospirillales consists of bacteria that are known to produce acetic acid (17),
which has been shown to improve insulin sensitivity (18, 19). Several other
detected microbial predictors have been previously described elsewhere as being
associated with T2D or glucose regulation. Zhou et al. (20) showed that the genus
Odoribacter was negatively associated with steady-state plasma glucose, which is
consistent with our results for predicting 2-h insulin. Krych et al. carried out a study
on mice and identified Muribaculaceae (previously classified as S24-7) to be
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protective against T2D (21), which corresponds to the protective effect for HbA1c
seen in our study.

Previously inconsistent associations have also been reported. We found a higher
CLR-transformed abundance of Alistipes to predict lower values for fasting insulin,
which is not consistent with the results obtained by Wu et al. (22), who showed posi-
tive associations with type 2 diabetes. Subdoligranulum has been found to be enriched
in type 2 diabetes cases (23), which is inconsistent with our results, as higher CLR-trans-
formed abundance predicts lower values for 2-h insulin. Similar to the work by Gou et al.
(12), the main reasons behind these inconsistencies are likely study design and popula-
tion structure. We note that microbiome composition has been shown to be associated
with numerous factors not considered confounders in our study due to data availability
(24, 25). Thus, inconsistencies with previously reported results and added predictive
value for metabolic traits could be explained by uncontrolled covariates.

We are not aware of any population with a similar follow-up period and where
microbiome data are available and an oral glucose tolerance test has been carried out
at the baseline and at the follow-up. Therefore, we could not replicate our findings in
other populations using similar study design.

How machine learning techniques can best utilize microbiome data is still an open
question (26). Therefore, the true potential of the gut microbiome for predicting T2D
remains unknown. Additionally, taking the compositional nature of microbiome data
into account is crucial for all types of analysis and machine learning applications (26).
Previous studies have shown the advantage of using log-ratio transformations for over-
coming the limitations of working with compositional data. For example, Quinn and Erb
(27) and Tolosana-Delgado et al. (28) showed how centered log-ratio (CLR)-transformed
data can outperform raw proportions. Moreover, Tolosana-Delgado et al. (28) showed
how pairwise log-ratio transformation can greatly outperform CLR transformation when
a random forest algorithm is used. Thus, novel methods and strategies for handling com-
positionality might substantially improve the prediction accuracy for continuous meta-
bolic outcomes. Also, shotgun metagenomics can provide more accurate taxonomic re-
solution than 16S sequencing (29).

It needs to be highlighted that even in the best scenario, when predicting 2-h insulin
values in the 18-month scenario, incorporating microbial predictors did not improve pre-
diction accuracy in 29.5% of the data splits. The high variability in performance estimates
shows the necessity for robust modeling strategies to achieve reliable and generalizable
performance. Our data clearly indicate that conventionally used 10-fold cross-validation
might not be sufficient to obtain generalizable models when sample sizes stay relatively
small compared to the number of microbial features. Taken together, the variability of
model performance estimates in microbiome studies can be large and needs to be given
attention in order to gain a proper understanding of the predictive ability of the micro-
biome. To reduce the variability in performance estimates and increase prediction accu-
racy, future studies can take advantage of combining shotgun sequencing with the best-
performing modeling strategies, including additional microbiome-associated covariates,
and integrating clinical and microbiome data from multiple time points as predictors.

Conclusions. In summary, our findings provide a clear indication that the micro-
biome, together with conventional risk factors, can be used to predict multiple meta-
bolic outcomes. The detailed clinical characterization and longitudinal study design of
the METSIM cohort make it particularly useful for understanding host-microbiome rela-
tionships. We have identified a number of novel microbial biomarkers which could pre-
dict metabolic traits associated with the prediabetic state. Our data provide a signifi-
cant resource for further studies to determine the causal relationship of the identified
biomarkers to the progression of T2D. Therefore, the prospect of using the microbiome
in personalized medicine is promising.

MATERIALS ANDMETHODS
Study population and characterization. METSIM (Metabolic Syndrome in Men) is a randomly

selected cohort of men from eastern Finland, aged 45 to 73 years, who have been carefully phenotyped
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for different metabolic traits such as T2D, hypertension, and obesity. We investigated a subset of the
METSIM cohort that took part in the METSIM follow-up study and from whom stool samples were col-
lected (n=608). The data resource consists of samples taken from three time points—at baseline (base-
line of METSIM 5-year follow-up study), at 18-month follow-up, and at 48-month follow-up. At each time
point, the subjects went through a 1-day outpatient visit, during which they provided blood samples af-
ter an overnight fast, and various parameters such as height, weight, and blood pressure were measured
and an oral glucose tolerance test (OGTT) was performed. Additionally, at the baseline visit, the subjects
were interviewed about their history of diseases and drug usage. The full study protocol and data
resources are described in Laakso et al. (30). All subjects have given written informed consent, and the
study was approved by the Ethics Committee of the University of Kuopio and was in accordance with
the Helsinki Declaration.

In contrast to case-control studies, continuous “metabolic outcomes” (MO) were used as target
variables in the modeling framework. The advantage of using continuous metabolic outcomes is that
the phenotype is more distinct and there are no borderline cases with similar abilities of handling glu-
cose as there likely are in the case-control setting (6). In total, two glucose measures, two insulin meas-
ures, glycosylated hemoglobin, and three calculated glucose regulation indices were considered
(Fig. 1). Glycosylated hemoglobin (HbA1c), fasting insulin, 2-h insulin, fasting glucose, and 2-h glucose
were measured according to the study protocol (30). The Matsuda insulin sensitivity index was calcu-
lated according to reference 31. The insulin secretion index was calculated as Secretion index =
AUCInsulin(0–30min)/AUCGlucose(0–30 min), where the area under curve (AUC) was calculated using the trapezoi-
dal formula. The disposition index was calculated as Disposition index = Secretion index · Matsuda.
The Matsuda insulin sensitivity index and the insulin secretion index have been previously shown to
be best estimates for insulin sensitivity and insulin secretion in the METSIM cohort (32). Summary sta-
tistics for metabolic outcomes and additional covariates considered predictors in the machine learning
models are shown in Table S1.

Microbiome data collection, sequencing, and data processing. Stool samples were collected at
the baseline visit during the evaluation at the University of Kuopio Hospital and immediately stored at
280°C. Microbial DNA was extracted using the PowerSoil DNA isolation kit (MoBio Laboratories,
Carlsbad, CA, USA) following the manufacturer’s instructions. The fecal microbiota composition was pro-
filed by amplifying the V4 region of the 16S rRNA gene with 515F and 806R primers as previously
described (33). PCR products were quantified with a Quant-iTTM PicoGreen double-stranded DNA
(dsDNA) assay kit (Thermo Fisher). Samples were combined in equal amounts (;250 ng per sample) into
pools and purified with the UltraClean PCR clean-up kit (MoBio). Sequencing was performed on an
Illumina HiSeq 3000 instrument.

Raw demultiplexed data were imported into the open-source software QIIME2 version 2019.7 using
the q2-tools-import script with the CasavaOneEightSingleLanePerSampleDirFmt input format (34).
DADA2 software was used for denoising (35). DADA2 uses a quality-aware model of Illumina amplicon
errors to attain an abundance distribution of sequence variance, which has a difference of a single nucle-
otide. The q2-dada2-denoise-single script was used to truncate the reads at position 123; trimming was
not applied. Chimera removal was done with the “consensus” filter, in which chimeras are detected in
each sample individually, and sequences established as chimeric in a certain fraction of samples are
removed. After the denoising step, amplicon sequence variants (ASVs), equivalent to operational taxo-
nomic units (OTUs), were aligned using MAFFT (36), and the phylogeny was constructed with FastTree
(37). Taxonomy assignment was done using the q2-feature-classifier with the pretrained naive Bayes
classifier based on reference reads from the SILVA 16S V3-V4 v132_99 database with a similarity thresh-
old of 99%. Seven samples did not pass quality control during the sequencing process and were
removed from further analysis.

The average number of reads per sample was 1,351,289, and samples with less than 100,000 reads
were excluded from further analysis. The rest of the samples were aggregated to the genus level, which
resulted in 553 genera. An additional filtering procedure was carried out to include only the most com-
mon genera for the prediction task. Genera that appeared in at least 50% of the samples were included
in the final modeling task, 172 in total.

Due to the nature of sequencing, read counts are uninformative and must be considered relative to
the total sum of reads for a given sample (38). In order to compensate for the compositional nature of
the data, centered log-ratio (CLR) transformation was used as first proposed by Aitchison (39):

CLRð x!Þ ¼ ln
x1

g x!ð Þ ;
x2

g x!ð Þ ; . . . ;
xD

gð x!Þ
� �

where g x!ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � . . . � xDD

p
.

Zero replacement was carried out using the R package zCompositions (40).
Random forest implementation and statistical analysis. For modeling, we used samples with

microbiome data available at the study baseline that did not include missing values on any of the meta-
bolic parameters considered. In addition, subjects who had reimbursement for drug treatment of diabe-
tes were excluded. This resulted in 529 participants for the 18-month follow-up visit and 482 participants
for the 48-month follow-up visit.

All random forest models were implemented in R using the caret package and fast implementation
of the random forest algorithm named ranger (41). Data sets were repeatedly split in a 75/25 ratio to train-
ing/test data sets, respectively, using a different seed each time. Models were tuned on training data using
10-fold cross-validation and random hyperparameter search with 100 hyperparameter combinations.
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Performance of the models was evaluated on the test data set using root-mean-square error (RMSE). In the
case of random forest models, out-of-bag (OOB) error is also widely used to evaluate model performance.
Although using out-of-bag error for evaluation can increase the sample size for model training, it has been
shown that in some cases the OOB error is largely overestimated and unreliable (42). Thus, for robust esti-
mates, test data were used for evaluation. Permutation feature importance was used for selecting the mi-
crobial biomarkers. For explaining the obtained random forest models, accumulated local effects (ALE)
plots were implemented using the R package DALEX (43). ALE plots aim to describe the effect of a certain
predictor on the metabolic outcome independently of the remaining predictors (11).

A one-tailed binomial test was carried out to test whether the probability of the model including micro-
bial predictors outperforming the model excluding microbial predictors is greater than 0.5. The Bonferroni
correction was applied to assess significance (eight metabolic outcomes and two time points; P, 0.05/16).

Data availability. Individual-level 16S RNA sequencing data are available in the Sequence Read
Archive (SRA) under BioProject number PRJNA644655. All remaining phenotype data in this study are
available upon request through application to the METSIM data access committee. R codes used for
the analysis are available at https://doi.org/10.5281/zenodo.4422486.
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