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Abstract: Spinocerebellar ataxia type 3 (SCA3) is a genetic neurodegenerative disease for which a cure
is still needed. Growth hormone (GH) therapy has shown positive effects on the exercise behavior of
mice with cerebellar atrophy, retains more Purkinje cells, and exhibits less DNA damage after GH
intervention. Insulin-like growth factor 1 (IGF-1) is the downstream mediator of GH that participates
in signaling and metabolic regulation for cell growth and modulation pathways, including SCA3-
affected pathways. However, the underlying therapeutic mechanisms of GH or IGF-1 in SCA3 are
not fully understood. In the present study, tissue-specific genome-scale metabolic network models
for SCA3 transgenic mice were proposed based on RNA-seq. An integrative transcriptomic and
metabolic network analysis of a SCA3 transgenic mouse model revealed that metabolic signaling
pathways were activated to compensate for the metabolic remodeling caused by SCA3 genetic
modifications. The effect of IGF-1 intervention on the pathology and balance of SCA3 disease was
also explored. IGF-1 has been shown to invoke signaling pathways and improve mitochondrial
function and glycolysis pathways to restore cellular functions. As one of the downregulated factors
in SCA3 transgenic mice, IGF-1 could be a potential biomarker and therapeutic target.

Keywords: spinocerebellar ataxia type 3; insulin-like growth factor 1; RNA-seq; context-specific
metabolic networks

1. Introduction

Spinocerebellar ataxia (SCA) is a neurodegenerative genetic disease characterized by
common clinical features such as gait instability and affects motor coordination, resulting
in alterations in limb control, language, and eye movements. SCA has been classified into
dozens of different subtypes, among which spinocerebellar ataxia type 3 (SCA3) is one of
the most common in Asia. SCA3 is a polyglutamine neurodegenerative disease resulting
from abnormal CAG triplet repeats in the ATXN3 gene (14q21) that lead to the misfolding
and accumulation of a pathogenic protein, causing cerebellar dysfunction [1].

SCA3 is still considered a continuously progressing and irreversible disease with
no effective treatment. The current main principles of treatment are alleviating patient
symptoms, such as tremors and emotional sleep disturbances, and improving mobility.

Int. J. Mol. Sci. 2021, 22, 7974. https://doi.org/10.3390/ijms22157974 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6019-5319
https://orcid.org/0000-0001-7927-1636
https://doi.org/10.3390/ijms22157974
https://doi.org/10.3390/ijms22157974
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22157974
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22157974?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 7974 2 of 19

The clinical and experimental therapeutic strategies for SCA3 are now aimed at directly
targeting polyQ proteins or preventing their downstream toxic effects. Recent studies have
proposed gene suppression strategies to interfere with or suppress mRNA expression of the
abnormal SCA3 gene with RNA interference (RNAi) and antisense oligonucleotides (ASOs)
for SCA3 therapy [2–4]. Other potential therapeutic strategies include neurotransmitter
modulators, autophagy enhancers, ion channel inhibitors, growth factors, and stem cell
therapies [5]. Among these molecules, neuroprotective molecules, such as growth hormone
(GH), insulin-like growth factor-1 (IGF-1), and nerve growth factor, have been tested in
SCA3 animal models and in humans through clinical trials and have displayed potential
therapeutic effects in patients with SCA3 [6,7].

Our recent study showed that GH treatment in SCA3 84Q transgenic mice restored lo-
comotor functions, as indicated by the results of the rotarod test and box behavior analysis
after 9 months, while reduced DNA damage and increased preservation of Purkinje fibers
were also observed [8]. However, the underlying regulatory pathways and mechanisms
by which GH ameliorates SCA-associated behavioral and neuropathological abnormali-
ties are not fully understood. GH activates the JAK2 tyrosine kinase signaling pathway,
which continues to activate multiple downstream pathways to promote cellular growth
and regulate metabolism [9,10]. GH also promotes insulin-like growth factor-1 (IGF-I) to
further growth-stimulating effects as Igf1 is a main transcriptional target of GH in dif-
ferent tissues [11–13]. Because SCA3 patients exhibit low glucose utilization, perturbed
fatty acid and amino acid metabolism, and insulation signaling deficiency [5,14], GH or
IGF-1 therapy may modulate metabolism that is reprogrammed during the pathological
development of SCA3. However, the serum growth hormone concentrations determined
with radioimmunoassay did not show differences between SCA3 transgenic mice (Q71
homozygotes) and wild-type mice [15]. Altered serum levels of insulin and insulin-like
growth factor 1 system were reported in patients with SCA3, with lower concentrations of
insulin and insulin binding protein 1 (IGFBP1) and higher levels of insulin binding protein
3 (IGFBP3) [16]. Patients with late-onset cerebellar ataxia were reported to have lower
serum IGF-1 levels [17]. In addition, the assessment of rating of ataxia scores (SARAs)
was improved in patients with SCA3 in open-label trials of IGF-1 therapy for autosomal
dominant cerebellar ataxia patients [7,18]. These findings suggest that the IGF-1 system
is a potential player in SCA3 pathogenesis. We thus aimed to investigate the underlying
mechanisms and the biomarker profile in the IGF-1 system by computational analysis of
transgenic mice omics data.

To further dissect the pathological changes in SCA3 and potential therapeutic strate-
gies, in the present study, we performed RNA-seq to analyze the transcriptomic profile
of SCA3 84Q transgenic mice compared to control 15Q mice as well as SCA3 84Q mice
treated with IGF-1. Metabolic network models of mice with SCA3 were constructed based
on the genome-wide RNA-seq data to explore the metabolic alterations in SCA3. The SCA3
84Q group showed decreased glycolytic flux, fatty acid degradation, and ATP produc-
tion through OXPHOS (oxidative phosphorylation). The IGF-1-treated SCA3 84Q group
showed increases in OXPHOS ATP production and glucose metabolism. The changes in
differentially expressed (DE) genes in the IGF-1 groups indicated the activation of cell
growth and metabolism-related signaling pathways. The proposed SCA3 genome-scale
metabolic model provides novel ways to analyze the important biochemical pathways and
identify potential biomarkers in SCA3.

2. Results
2.1. Exploratory Data Analysis

Dimensional reduction was applied to analyze gene expression data to provide insight
into the association between samples. Principal component analysis (PCA) of the rlog-
normalized gene counts from mRNA gene expression data revealed clear differences
between the control group (15Q) and the SCA3 sham group (84Q), but the IGF-1 treatment
group (84Q+IGF-1) did not show clear differences from the 84Q group (Figure 1a). The
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respective genotype clusters were moderately separated along with the 1st principal
component (PC), which explained 39% of the variance in the genotype, and along with
the 2nd PC, which explained 31% of the variance. Similar trends were also observed
in t-distributed stochastic neighbor embedding (t-SNE) (Figure 1b), uniform manifold
approximation and projection (UMAP) (Figure 1c), and hierarchical clustering analysis
(Figure 1d) in transcripts per kilobase million (TPM).

Figure 1. Exploratory analysis of the RNA-seq data in the SCA3 transgenic mouse model. Raw counts were log-transformed
into the log2 scale and were analyzed with principal component analysis (PCA): (a) Transcript per kilobase million (TPM)
values were analyzed and visualized via t-SNE; (b) UMAP; (c) and hierarchical clustering; (d) according to the modified
log2 transformed TPM values, where standard deviations among the samples were greater than 3. The transformed values
were further transformed into z-scores (by column). Blue indicates the control group (15Q), red indicates the 84Q sham
group (84Q), and green indicates the IGF-1-treated 84Q group (84Q+ IGF-1).

2.2. Differential Gene Expression (DGE) Analysis

To further assess the pathological features of SCA3-84Q, we compared the global
gene expression profiles of the 15Q group and the SCA3-84Q group. Compared with
those in the 15Q group, 521 genes were differentially expressed in the 84Q group, with
an adjusted p-value < 0.05 (62 genes with upregulated expression and 459 genes with
downregulated expression); additionally, 588 genes were differentially expressed in SCA3-
84Q mice with IGF-1 treatment (45 genes with upregulated expression and 543 genes
with downregulated expression). Comparing SCA3-84Q with IGF-1 to SCA3-84Q, there
were only 6 differentially expressed genes, 5 of which (ribosomal proteins Rps8-ps1, Rps8-
ps4, and Rps8-ps2, and pseudogenes Gm14414 and Gm14438) were downregulated and
1 of which (calpain 11 protein, Capn11) was upregulated, as shown in the volcano plot
(Figure 2a). A subset of 350 genes was differentially expressed in both 84Q vs. 15Q and
84Q+IGF-1 vs. 15Q comparisons as shown in the Venn diagram (Figure 2b), including Suds3
(SIN3A corepressor complex component), which was upregulated in both comparisons;
and Aldob (Fructose-1,6-bisphosphate aldolase), Cps1 (carbamoyl-phosphate synthase 1),
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Fcgbp (Fc fragment of IgG binding protein), Krt14(keratin 14), Muc13(mucin 13, cell surface-
associated), and Gm2546(glyceraldehyde-3-phosphate dehydrogenase pseudogene), which
were downregulated in both comparisons.

Figure 2. Differential gene expression analysis: (a) A volcano plot using the average fold-change (FC) and adjusted p-value
to illustrate genes with significant differences. The red dots are upregulated genes with log2(FC) > log2(1.5); the blue dots
are downregulated genes with log2(FC) < −log2(1.5). (b) Venn diagrams of differentially expressed (DE) genes that are
altered (left), had downregulated expression (middle), or upregulated expression (right) between 15Q and 84Q, 15Q and
84Q+IGF-1, and 84Q and 84Q+IGF-1, respectively.

2.3. Functional Enrichment Analysis

In functional enrichment analysis, gene ontology (GO) annotates genes to biological
processes, molecular functions, and cellular components, while the Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Reactome annotate genes to pathways and reaction
networks. Two hundred and fifty-five significantly enriched GO terms in the 84Q group
compared with the 15Q group were identified (Table 1 and Table S1), with 22 related
to cellular components, 49 related to molecular functions, and 184 related to biological
processes with BH-adjusted p-value < 0.01. The molecular function category contained
glycosaminoglycan-binding, carboxylic acid-binding, heparin-binding, steroid hydroxy-
lase activity, and oxidoreductase activity. The biological process category contained fatty
acid metabolic process, steroid metabolic process, xenobiotic metabolic process, drug
metabolism, arachidonic acid metabolic process, extracellular structure organization, in-
termediate filament organization, and coagulation. Consistent with these findings, the
gene set enrichment analysis highlighted significantly altered biological processes in lipid
metabolism, xenobiotic metabolism, and cellular components in an extracellular matrix
organization (Figure 3C).

However, only one molecular function related to cysteine-type endopeptidase activity
was identified as enriched GO terms in SCA3-84Q with IGF-1 compared to SCA3-84Q,
which are involved in apoptotic signaling pathways.

Twenty-seven significantly enriched KEGG pathways and twenty-four Reactome
pathways in the 84Q group compared with the 15Q group were identified (Figure 3 and
Tables S2 and S3). These pathways involved fatty acid biosynthesis and metabolism (in-
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cluding steroid hormone biosynthesis, arachidonic acid metabolism, linoleic acid metabolism,
and triglyceride catabolism), glutathione metabolism, amino acid biosynthesis, biological
oxidation, carbohydrate metabolism (including carbohydrate digestion and absorption,
and ascorbate and aldarate metabolism), and retinol metabolism. Pathways associated
with immune system diseases, such as type 1 diabetes mellitus, drug metabolism, chemical
carcinogenesis, fibrin clot formation, serotonergic synapses, and infection and immune
response were also identified. In summary, functionality analyses showed that several
essential metabolic pathways, endopeptidase activity, and signaling pathways were de-
creased in the 84Q group compared to the 15Q group.

Table 1. Selected gene ontology (GO) annotation of downregulated genes in SCA-3 transgenic mice.
GO annotations were performed when the BH-adjusted p-values were lower than 0.05 and the q-
values were lower than 0.2 in the hypergeometric tests. Fold changes were calculated by determining
the ratio of the average normalized expression values between samples. The complete GO term list is
in Table S1.

GO Term Description adj p-Value Number of Genes

Cellular component
GO:0062023 collagen-containing extracellular matrix 2.41 × 10−11 31
GO:0016324 apical plasma membrane 1.34 × 10−6 22
GO:0005882 intermediate filament 7.64 × 10−7 14
GO:0031526 brush border membrane 1.34 × 10−6 11
GO:0045095 keratin filament 4.30 × 10−8 10

Biological process
GO:0006631 fatty acid metabolic process 2.81 × 10−9 29
GO:0042060 wound healing 2.81 × 10−9 27
GO:0008202 steroid metabolic process 4.43 × 10−7 22
GO:0043062 extracellular structure organization 1.09 × 10−6 21
GO:0006805 xenobiotic metabolic process 1.45 × 10−12 19
GO:0050817 coagulation 3.88 × 10−6 15
GO:0042737 drug catabolic process 1.09 × 10−6 10
GO:0045109 intermediate filament organization 4.18 × 10−9 10
GO:0019369 arachidonic acid metabolic process 3.62 × 10−4 8

Molecular function
GO:0005539 glycosaminoglycan binding 1.15 × 10−6 18

GO:0005201 extracellular matrix structural
constituent 8.00 × 10−8 17

GO:0031406 carboxylic acid binding 7.20 × 10−6 17
GO:0008201 heparin binding 8.03 × 10−6 14
GO:0008395 steroid hydroxylase activity 1.85 × 10−6 11

GO:0016712

oxidoreductase activity, acting on paired
donors, with incorporation or reduction
of molecular oxygen, reduced flavin or

flavoprotein as one donor, and
incorporation of one atom of oxygen

5.75 × 10−7 11

GO:0016725 oxidoreductase activity, acting on CH or
CH2 groups 6.20 × 10−5 5
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Figure 3. Scatter plot of enriched biological pathways comparing control-15Q to SCA3-84Q. The horizontal axis represents
the enriched: (A) KEGG and; (B) Reactome pathways. The vertical axis represents the gene ratio of each pathway. The gene
ratio refers to the ratio of the number of enriched DE genes to the number of annotated genes. The pathway was listed when
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set enrichment analysis (GSEA) based on GO term annotations of biological processes and cellular components.

In Ingenuity Pathway Analysis (IPA), 608 genes with upregulated expression and
1832 genes with downregulated expression in the 84Q group compared with the 15Q
group and 767 genes with upregulated expression and 830 genes with downregulated
expression in the 84Q–IGF-1 group compared with the 84Q group were used to identify
overrepresented canonical pathways. Core analysis using IPA software indicated that when
comparing the 84Q group to the 15Q group, the GP6 signaling pathway was strongly re-
duced and indirectly related to the decreased neurogenesis in the brain. In a comparison of
the 84Q–IGF-1-treated group to the 84Q sham group, the number of dopaminergic neurons
was decreased, and the inflammatory IFNG-STAT1 pathway was decreased (Figure 4A).
Downregulated networks were identified around the insulin-like growth factor-1 (IGF-1)
genes in the 84Q mice, where gene expression fold changes were mapped to the IGF-1
pathway (Figure 4B). A total of 34 and 16 enriched canonical pathways were identified by
applying −log (p-value) > 2 thresholds in comparing the 84Q group to the 15Q group and
the 84Q–IGF-1 group to the 84Q group, respectively. Most of the significantly enriched
pathways were found to be tightly associated with the signaling pathways as shown in
Figure 4C. Most of these signaling pathways, including the glycoprotein VI (GP6) signaling
pathway, acute phase response signaling, integrin-linked kinase (ILK) signaling, intrinsic
prothrombin activation pathway, growth hormone signaling, and apelin liver signaling
pathway, were enriched by downregulated genes in the SCA3-84Q group. The complete
list of enriched canonical pathways is included in Table S5.
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Figure 4. Ingenuity pathway analysis: (A) Graphical summary of the Ingenuity Pathway Analysis (IPA) core analysis for the
84Q and 84Q–IGF-1 groups. IPA core analysis, including canonical pathways, upstream regulators, and functions/diseases,
graphically shows that neurodegeneration and cell death of neural cells are major events in the 84Q group. Red: significantly
increased, green: significantly decreased, orange symbol and arrows: activation, blue symbol and arrows: inhibition, solid
line: direct effect, and dashed line: indirect effect; (B) In the network analysis of DE genes in the 84Q group, the GH¬–IGF
signaling pathway was identified as one of the significantly changed pathways in the 84Q group compared to those in the
15Q group by IPA. All the upregulated DE genes are mapped in red, while downregulated DE genes are shown in green.
Members of the GH–IGF signaling family are either up- or downregulated; (C) IPA comparison of canonical pathways, and
diseases and biofunctions between subgroups. For each function, z-scores were used to predict activation or inhibition.

The IPA also revealed potential biomarkers. Among the identified biomarkers, 40 were
found in both the 84Q/15Q and 84Q–IGF-1/84Q comparisons, 27 of which had different
gene regulatory directionalities in these two-group comparisons. IGF-1 was identified as
one of the biomarkers in IPA with an expression log fold change of −0.671 along with
120 other molecules (Supplementary Table S6). A large portion of these differentially
expressed genes are microRNAs (e.g., mir-17, mir-25, mir-28, mir-103, mir-132, mir-150, mir-
154, mir-181, mir-345, etc.). microRNAs are associated with neurodegenerative diseases and
SCA3 [19–21] and are potential biomarkers for SCA3 due to their stability in blood. Other
differentially expressed genes were associated with cellular growth and differentiation
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(e.g., DLK1, FOS, and LTF), transcription (e.g., JUNB and NR4A1), and immune response
(e.g., CCL2), indicating perturbations of cell growth and differentiation and immune
response pathways in the 84Q group and the 84Q–IGF-1-treated group.

2.4. Metabolic Network Analysis

The constructed genome-scale metabolic network model based on iMM1415 and
reduced to the final SCA3 mouse brain-specific genome-scale metabolic (GEM) models
consisted of approximately 1600 reactions, 1200 metabolites, 950 unique metabolic genes,
5 compartments, and 10 subsystems (Figure 5a). There were more active genes specifically
in the control 15Q group and more inactive genes specifically in the 84Q and IGF-1-treated
groups. The numbers of active reactions and metabolites were also lower in the 84Q and
84Q–IGF-1 groups. The E-flux algorithm [22] was applied to constrain the flux lower and
upper bounds by directly mapping normalized gene expression levels.

Figure 5. Metabolic network analysis: (a) Statistics of components in the constructed genome-scale metabolic network
models (GEMs). The GEM was constructed individually from the RNA-seq data for each mouse from the 15Q, 84Q, and
84Q+IGF-1 groups; (b,c) Hierarchical clustering of fluxes from parsimonious flux balance analysis (pFBA), according to the
metabolic subsystem oxidative phosphorylation (OXPHOS) and glycolysis. The fluxes were sums of fluxes in the subsystem,
categorized according to their metabolic functions; (d) UMAP plot of predicted pFBA fluxes; (e) Heatmap of predicted
pFBA flux correlation coefficient values in cosine similarity between context-specific GEMs. The higher the values are, the
more consistent the two models’ fluxes are; (f) Heatmap of predicted pFBA fluxes in predefined biological subsystems in
the GEMs. Blue represents the 15Q group, red represents the 84Q group, and the green represents the 84Q+IGF-1 group.
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In the metabolic network analysis, pFBA was performed to simulate the flow of
metabolites in the metabolic network in the 15Q, 84Q, and 84Q+IGF-1 groups. pFBA
identified altered metabolic pathways and which components changed mitochondrial ATP
production. Fluxes simulated from the pFBA were categorized, normalized, and summed
to yield the total flux in each metabolic subsystem group. The overall metabolic flux profiles
were clustered into three groups (15Q, 84Q, and 84Q+IGF-1) by UMAP analysis (Figure 5d)
with a low correlation coefficient in cosine similarity (Figure 5e). The reactions were
classified into secondary metabolic pathways according to annotation in the mouse model,
and the flux heatmap of these reactions and clusters was plotted (Figure 5f), showing that
glycolysis, oxidative phosphorylation, fatty acid metabolism, sphingolipid metabolism,
triacylglycerol synthesis, cholesterol metabolism, the pentose phosphate pathway, urea
cycle/amino group metabolism, and some amino acid metabolic pathways (e.g., histidine
metabolism) were decreased in the 84Q group. Glycolysis, oxidative phosphorylation, the
citric acid cycle, nucleotides, and histidine metabolism were enhanced in the 84Q+IFG-1
group. The oxygen exchange flux was shown to decrease in the 84Q group compared
to the control group and was recovered in the 84Q+IGF-1 group, as validated by the
OCR measured by O2K high-resolution respirometry (Figure 6b). Fluxes in propanoate
metabolism, tryptophan metabolism, lysine metabolism, and urea cycle/amino group
metabolism were decreased in the 84Q+IGF-1 group.

Figure 6. (a) IGF-1 concentration in plasma and mitochondrial DNA (mtDNA) copy number measured from the cerebellum
of SCA3 mice. (b) Respiratory profile of cerebellar tissue. Respiration of tissue homogenate was measured by high-
resolution respirometry (O2k; Oroboros Oxygraph-2k, Innsbruck, Austria) using substrate-uncoupler-inhibitor titration
(SUIT) protocols [23], with modifications. Respiratory flux was expressed per milligram of protein, and the oxygen
background fluxes were calibrated and subtracted from the total volume-specific oxygen flux (n = 2). (c) Validation of gene
expression with qPCR. RNA-seq results were validated on the same RNA samples using qPCR. The selected genes tested
were IGF-1, IGF-1r, GHR, AKT1, JAK2, PI3Kr1, AMPK, CREB1, NDUFA1, ATP5a1, and FAP. The mouse reference gene used
was beta-actin (Actb) (n = 3, * p < 0.05, ** p < 0.01).
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Sensitivity analysis, such as flux variability analysis and random sampling, evaluates
ranges of fluxes through individual reactions in a network and determines the flexibility
of metabolic networks to satisfy specific objective functions. Flux sampling results were
plotted with the gene expression count in the electron transport chain pathway, glycolysis,
and fatty acid metabolism. Glycolysis and ETC fluxes were decreased in the 84Q group and
enhanced by IGF-1 treatment (Figure 5b,c and Figure 7). Interestingly, while respiratory flux
through complex I in the mitochondrial electron transport chain was decreased in the 84Q
group, the fluxes through complex II respiration and glycerol-3-phosphate dehydrogenase
were enhanced possibly due to compensation to maximize ATP production. In glucose
metabolism, most of the fluxes were decreased in the 84Q group but with increasing fluxes
of phosphoglycerate kinase and phosphoglycerate mutase. When there was a difference
between the gene expression level and the calculated metabolic flux distribution, as shown
in Figure 7, it might be due to translational regulation, post-transcriptional control, or other
factors affecting protein expression levels or enzyme activities.

Figure 7. Flux sampling distributions of key reactions in the core metabolic pathways of the (a) electron transport chain
(ETC) and (b) glycolysis. In the random sampling flux plot, green represents the 15Q group, red represents the 84Q group,
and orange represents the 84Q+IGF-1 group. The upregulated DE genes are mapped to the metabolic pathways in red,
while downregulated DE genes are shown in green based on the fold change for 84Q/15Q.

3. Discussion

RNA-seq technologies have resulted in a rapid increase in available omics datasets.
RNA-seq data with global gene expression patterns can also account for all RNA transcripts
that are translated into enzymes for a given pathway. Large-scale metabolic networks using
these transcriptomic data can be constructed and analyzed. As a result, the current study
provides a comprehensive transcriptome and metabolic pathway analysis and presents a
novel metabolic network model for the SCA3 mouse model.

The RNA-seq and metabolic flux analyses revealed low mitochondrial oxidative phos-
phorylation (OXPHOS) activities and a metabolic shift from glycolysis to other metabolic
pathways. In addition to metabolic pathway alteration, other signaling and regulatory
pathways, such as inflammation, blood coagulation, and cell death, were also observed in
the SCA3 84Q group by IPA and GO term analysis, which is consistent with findings in the
literature [24–26].

Cellular metabolism is a cellular phenotype defined by a set of chemical reactions
under specific conditions, and alterations in metabolite concentrations and reaction fluxes
can be used to describe a cellular response to changing environmental or pathological
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situations. SCA3 84Q transgenic mice showed a metabolic signature of downregulated
fluxes in glycolysis, OXPHOS, and lipolysis, which might explain the hypometabolism ob-
served in the cerebellum from the [18F]-fluoro-deoxyglucose positron emission tomography
(FDG-PET) imaging of SCA3 patients [27]. The pathway analysis of the transcriptome also
identified that fatty acid, triacylglycerol and cholesterol metabolisms were altered in the
84Q group, which implies the potential use of lipid biomarkers for SCA3. Triacylglycerol,
ceramides, sulfatides, and glycerophosphoserine were proposed as potential biomarkers
of disease progression from a metabolomic study of SCA3 mice [28], and palmitoleic acid
(FFA 16:1) and linolenic acid (FFA 18:3) were identified from a metabolomic study of SCA3
patients’ serum samples [14].

Signaling pathways and transcriptional regulation are other aspects of alterations in
the SCA3 mouse model and might be the cause or the effects of metabolic changes. In
particular, the RNA-seq results showed that GH and IGF-1 signaling pathways were altered
in the SCA3 84Q group, with lower expression levels observed in related pathways, which
were confirmed by the IGF-1r qPCR results (Figure 6c). The IGF-1 concentration in the
plasma was decreased in the 84Q group (Figure 6a), revealing that IGF-1 is involved in the
pathological development of SCA3. GH exerts regulatory metabolic effects that increase
free fatty acid (FFA) release and oxidation, decrease glucose and protein oxidation, increase
protein synthesis, and decrease breakdown, leading to an increase in glycogen and lean
body mass [29]. While IGF-1 acts downstream of GH as a central player in the somatotropic
axis, IGF-1 activates mitogen-activated protein (MAP) kinase and PI3K signaling pathways
to promote tissue growth and maturation through the upregulation of anabolic processes.
The qPCR results quantitatively confirmed the expression changes in a few selected genes
involved in the signaling pathway in GH–IGF-1 regulation. Among these genes, IGF-1r,
PI3Kr1, and ATP5a1 levels were decreased in the pathogenic 84Q group, while GHR,
AKT1, JAK2, FAP, and NDUFa1 levels were not (Figure 6c). However, IGF-1 treatment
activated the expression of metabolic modulation-related genes, such as AMPK, and CREB,
to compensate for the metabolic rewiring in the SCA3 disease state. These results confirm
that the GH–IGF-1 pathway plays an important role in the development of SCA3. Therefore,
serum IGF-1 and IGF-1 binding proteins could be potential biomarkers for SCA3 diagnosis.

Our previous study showed that GH has a benign effect on the SCA3 mouse model [8].
In the present study, the therapeutic effect of IGF-1 on SCA3 was explored by examining
the transcriptomic and metabolic flux profiles in these transgenic mice. Regarding RNA
expression and the calculated metabolic fluxes, the IGF-1 treatment group showed a trend
toward recovery back to the control level, including mitochondrial oxidative phosphory-
lation and glycolysis flux. Although the IGF-1 neuromotor function correction to SCA3
84Q mice (unpublished data) was not as dramatic as that of 84Q mice with GH treatment
(Figure S1), the metabolic features of the IGF-1-treated group became closer to those of the
control 15Q group than to those of the pathological 84Q group, indicating IGF-1 affects
cellular metabolism in SCA3. The expression levels of signaling molecules AMPK, JAK2,
and CREB1 were even higher in the IGF-1-treated 84Q group. Figure 8 summarizes the
gene expression fold changes from the qPCR analysis based on mapping to the major sig-
naling pathway molecules involved in the GH–IGF-1 pathway. Notably, brain regions and
age (disease stage) are factors affecting SCA3 gene expression and metabolic profiles [28].
Our RNA-seq sample was taken from the cerebellum with mixed regions, and IGF-1 was
administered through intraperitoneal injections, which might reduce the treatment effect
of IGF-1 in 84Q mice.
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Figure 8. Summary of the IGF-1 and GH regulatory pathway downstream effects on brain metabolism and energetics. IGF-1
activates the PI3K pathway and AMPK and affects Akt1 pathways through mTORC and PDK1. Then pathways including
cellular metabolism, mitochondrial function, and apoptosis are further regulated. Red: increase by IGF, green: decrease by
IGF. The upper box shows the fold change for 84Q/15Q, and the lower box shows the fold change for 84Q+IGF-1/84Q.

In summary, we describe the generation of tissue-specific diseases via an in silico
metabolic model as an in vitro disease modeling platform. Transcriptional and metabolic
profiling of SCA3 transgenic mice showed alterations in signature biochemical pathways
and changes in biomarker molecules. Low glucose and fatty acid utilization, altered amino
acid metabolism, and deficient IGF-1 signaling were revealed as pathological features of
SCA3. Our study provides not only interaction networks between the genes and metabolic
fluxes for understanding the biological properties but also useful pathway maps for future
understanding of the disease and the identification of new therapeutic targets.

4. Materials and Methods
4.1. SCA3 Transgenic Mouse Model

Control mice with the YAC transgene expressing the human ATXN3 gene containing a
polyglutamine tract with 15 CAG repeats (15Q) were donated by Dr. Henry L. Paulson’s lab-
oratory [30]. SCA3 transgenic mice with an allele containing a pathological polyglutamine
tract with 84 expanded CAG (84Q) repeats were obtained from The Jackson Laboratory
(stock number 012705, Bar Harbor, ME, USA). The 15Q and 84Q transgenic mice were
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administered intraperitoneal injections of PBS (0.01 M) or IGF-1 (50 mg/kg) weekly from
the postnatal age of 9 months to 18 months [8] and are denoted as 15Q (control group),
84Q (SCA3 sham group), and 84Q+IGF-1 (IGF-1 treatment group). All animal experiments
were approved and followed the guidelines of the Animal Care and Use Committee of
Changhua Christian Hospital (CCH-AE-106-017).

Mouse tail tissue genotyping was performed after weaning newborn mice, and PCR
primers were designed to amplify human ATXN3 gene fragments (forward primer 5′ TGGC-
CTTTCACATGGATGTGAA and reverse primer 5′CCAGTGACTACTTTGATTCG). The en-
dogenous housekeeping gene beta-globin was used as the internal control (forward prime,
5′GTGCAACCATTGCCCTAAGT, and reverse primer 5′CAGCCAGCATCTCAGGTGTA).
Blood samples were collected into microtubes containing EDTA and centrifuged at 2500
rpm for 15 min at room temperature. The concentrations of growth hormone and IGF-1
in the plasma were determined by enzyme-linked immunosorbent assays (ELISAs) using
a Rat/Mouse Growth Hormone ELISA Kit (Merck Millipore, Billerica, MA, USA) and a
Mouse/Rat IGF-I/IGF-1 Quantikine ELISA Kit (MG100, R&D Systems, Minneapolis, MN,
USA), respectively. Fluorescence-based quantitative PCR (qPCR) was used to determine the
mitochondrial DNA (mtDNA) copy number and gene expression levels in mouse cerebral
tissue using the LightCycler-FastStart DNA Master SYBR Green I Kit (Roche Molecular
Biochemicals, Pleasanton, CA, USA) as described previously [31].

4.2. RNA Extraction and qPCR

Total cerebellar RNA was extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). The
quantity and purity of RNA were determined through spectrophotometry by using a
Nanodrop ND-1000 (Nanodrop Technologies, Wilmington, DE, USA). One microgram of
total RNA was reverse transcribed using a Transcriptor First Strand cDNA Synthesis Kit
(Roche Diagnostics, IN, USA) according to the manufacturer’s instructions and then stored
at −80 ◦C.

Gene expression assays were designed using Roche Universal Probe Library (UPL)
online application (https://lifescience.roche.com/en_tw/brands/universal-probe-library.
html#assay-design-center, accessed on 10 November 2020). Primer sequences were verified
using BLAST and Primer-BLAST analysis (NCBI) to ensure specificity (Table S8). β-actin
was used as a reference gene (internal control) [21]. qPCR was performed in a total volume
of 20 µL containing 10 µL of 2 × LightCycler 480 Probes Master mix, custom-designed
forward and reverse primers (0.5 µM), unique UPL probe (0.1 µM, UPL set, Roche), and 2 µL
of properly diluted cDNA and PCR grade distilled water. Thermal cycling was performed
using a LightCycler 480 instrument (Roche) with the following cycling conditions: 95 ◦C
for 10 min, followed by 45 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. qPCR was performed
in duplicate. A blank control consisting of no template (in distilled water) was performed.
The relative gene expression was calculated using the 2−∆Ct method: ∆Ct (sample) = (target
gene Ct) − (β-actin Ct).

4.3. High-Resolution Respirometry

After sacrifice, approximately 10 mg of mouse cerebellum was immediately homoge-
nized and suspended in 0.5 mL of miR05 buffer. The homogenized mouse cerebella were
injected into a sealed Oroboros® Oxygen-2K chamber (Oroboros Instruments, Innsbruck,
Austria) at a final concentration of 2 mg/mL, and mitochondrial respiration was measured
at 37 ◦C. This device can record the oxygen concentration in two parallel 2-mL chambers at
the same time. According to the rate of change in the oxygen concentration, the oxygen
flux of mitochondrial respiration was quantified. Subsequent titrations of substrates and
inhibitors were sequentially added to the chambers to estimate mitochondrial oxygen
consumption [32]. Malate (0.5 mM) and L-glutamate (10 mM) were evaluated to deter-
mine non-ATP-linked respiration (Routine). ADP (2.5 mM) was added to determine the
oxidative phosphorylation capacity (OxPhos). The maximum oxidative capacity (Max-

https://lifescience.roche.com/en_tw/brands/universal-probe-library.html#assay-design-center
https://lifescience.roche.com/en_tw/brands/universal-probe-library.html#assay-design-center
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Ox) was determined by adding succinate (10 mM). Oligomycin (5 µM) was then added
to inhibit ATP synthase to determine proton leak respiration (ATP-link). The uncoupler
protonophore FCCP (1.5 µM) induced maximum uncoupled respiration (Max-U). The
experiment was terminated by administering rotenone (10 µM) and antimycin A (6.25 µM)
to inhibit complexes I and III, respectively, to obtain the residual oxygen respiration (ROX)
to correct the respiratory oxidative capacity results.

4.4. RNA Sequencing of Mouse Cerebellar RNA

RNA libraries were constructed using an Agilent SureSelect Strand-Specific RNA
Library Preparation Kit followed by size selection with AMPure XP beads (Beckman
Coulter, Indianapolis, IN, USA). Libraries were sequenced as paired-end 150 bp reads
on an Illumina sequencing platform (Illumina, San Diego, CA, USA) with a depth of
~20 million reads each. Sequencing data (FASTQ reads) were generated based on Illumina’s
base-calling program bcl2fastq v2.20.

4.5. Preprocessing RNA-Seq Data

After the samples were sequenced, a pipeline was used to analyze RNA sequences
(Figure 9).

FastQC was first used for quality control of RNA-seq reads. Trimmomatic v0.36 [33]
with the sliding-window approach was used for adaptor clipping and sequence quality
trimming. HISAT2 [34] was used to map trimmed and filtered reads to the reference
genome GRCm38.p6 (mm10) (https://www.ncbi.nlm.nih.gov/assembly/GCF_00000163
5.20/, accessed on 25 May 2020). The quality of the reads was reassessed with RSeQC
after this step to confirm quality improvements. RNA-seq raw counts for each gene were
generated using featureCounts [35], and the read counts were normalized to transcripts
per kilobase million (TPM) by gene length and sequencing depth.

4.6. Expression Profile

Exploratory data analysis (EDA) summarizes the main characteristics of omics data
and identifies potential batch effects and outliers. Dimension reduction analysis and
clustering analysis are often performed in EDA.

Dimensionality reductions by principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE) [36], and uniform manifold approximation and
projection (UMAP) [37,38] were used to visualize the RNA expression and metabolic flux
profiles to evaluate component interactions. Briefly, PCA presents variations in the data
with few variables using linear orthogonal transformation. t-SNE uses a Gaussian distance
in high-dimensional space to analyze the similarity of points and projects these data into
a low-dimensional space. UMAP estimates the topology of high-dimensional data and
constructs a low-dimensional representation with preserved relationships. Clustering
analysis uses the gene expression dimension to group different genes based on their
similarities to discover hidden patterns at the systems level. The read counts and TPM
values of each sample were analyzed and visualized by dimensional reduction analysis,
hierarchical clustering, and heatmap production. Regularized log-transformation and PCA
applied to read count data were conducted using the R package DESeq2 v1.12.3 [39]. The
t-SNE and UMAP used on TPM data were implemented by Python package scikit-learn
v0.24.2 [40]. Hierarchical clustering was performed and the heatmap was plotted using
Seaborn v0.11.1 [41].

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/
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Figure 9. Overview of the transcriptomics analysis of the SCA3 transgenic mouse model.

4.7. Differential Gene Expression (DGE) Analysis and Functional Enrichment Analysis

The package DESeq2 was used to detect DE genes from RNA-seq data. The Wald
significance test was applied to identify the most significantly enriched pathways among
the DE genes. A p-value adjustment method, the Benjamini and Hochberg (BH) procedure,
was used to lower the false discovery rate (FDR) and to obtain the adjusted p-value of the
test. Genes with ≥log2 (1.5) absolute log2-fold changes and adjusted p-values < 0.1 were
considered significantly differentially expressed.

The DE genes of each experimental design were analyzed using clusterProfiler v3.6 [42]:
Gene Ontology (GO) enrichment analysis [43], Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis [44], ReactomePA [45] for Reactome pathway en-
richment analysis, and clusterProfiler for gene set enrichment analysis. KEGG pathways
were visualized with RNA-seq data integrated using an R package, Pathview v1.30.1 [46].
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A hypergeometric test was used in the analyses, and the pathways with a BH-adjusted
p-value < 0.05 and a q-value < 0.1 were considered enriched pathways.

In addition to pathway enrichment analysis, gene set enrichment analysis (GSEA)
was performed on the results obtained in the differential gene expression (DGE) analysis
by leveraging gene sets provided by the GO, KEGG, and Reactome databases. In GSEA,
the ranked list of genes was ordered by their log2-fold changes calculated by DESeq2.
The permutation time was set to 1000 to generate the normalized enrichment score and
calculate the FDR q value of each gene set. The FDR values of the selected results were less
than 0.05.

Pathway analysis was performed to explore the canonical pathways, regulatory net-
works, and biomarkers, and the results were compared using the Ingenuity Pathway
Analysis (IPA) system (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis as of 4 January 2021; version 60467501). Mean TPM (within-
group) > 1 and |log2(FC)| > 0.5 were used to identify DE genes in IPA.

4.8. Metabolic Network Model Reconstruction and Flux Analysis

An SCA3 genome-scale metabolic (GEM) model was constructed based on the mouse
model iMM1415 (http://bigg.ucsd.edu/models/iMM1415, accessed on 20 September
2020) [47], which contains thousands of reactions, metabolites, and transport processes
derived from the human metabolic model Recon 1. The context-specific reconstruction
algorithm FASTCORMICS RNA-seq workflow (rFASTCORMICS) was used to integrate
RNA-seq data and construct the metabolic network [48]. rFASTCORMICS uses the gene
expression intensity distribution across all genes to discretize the genes using Gaussian
curves (expression curves) into three categories: expressed, unknown expression status, and
unexpressed. The classified genes were then mapped to 3 sets of reactions, core reactions,
noncore reactions, and inactive reactions, following the gene-protein-reaction rules (GPR
rules). rFASTCORMICS is therefore specifically useful for analyzing sample-specific and
tissue/cell-specific RNA-seq data without using arbitrary thresholds.

The functionality of the model was evaluated using 210 metabolic objective functions
and tasks as the protection method as described by Richelle et al. [49]. E-Flux translates
gene expression to maximum metabolic flux constraints for individual reactions [22]. The
model fluxes were also constrained by the high-resolution respiration data from O2K
respirometry (Figure 6b).

The metabolic fluxes of the mitochondrial networks were analyzed and simulated
using parsimonious flux balance analysis (pFBA), flux variability analysis (FVA), and flux
sampling. The optimization of the reaction fluxes was set to maximal production of the
objective reaction. The biomass function and growth medium for the objective function
were taken from the mouse metabolic model iMM1415 with no modifications. Metabolic
network analysis was performed using COBRApy [50] and the linear programming solver
Gurobi [51] in the Python environment. Other packages, including matplotlib, seaborn,
scikit-learn, pandas, and NumPy, were also used to process and plot the results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22157974/s1, Figure S1: IPA comparison analysis of canonical pathways between the 84Q
treated with GH, 84Q sham, and 15Q control subgroups. Z-scores were used to predict activation
(orange) or inhibition (blue). The 15Q and 84Q transgenic mice were administered intraperitoneal
injections of PBS (0.01 M) or GH (0.05 mg/kg) weekly from the postnatal age of 9 months to 18 months
(n = 2), Table S1: complete list from gene ontology annotation of upregulated and downregulated
genes in SCA3-84Q transgenic mice compared to those in control-15Q mice, Table S2: DE genes in
KEGG pathways, Table S3: Reactome analysis, Table S4: gene set enrichment analysis, Table S5: IPA
canonical pathway analysis, Table S6: IPA biomarker discovery, Table S7: metabolic network model
analysis, Table S8: Primer sequences used for qPCR.
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KEGG Kyoto Encyclopedia of Genes and Genomes
OXPHOS oxidative phosphorylation
PCA principal component analysis
pFBA parsimonious flux balance analysis
SCA Spinocerebellar ataxia
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