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ARTICLE INFO ABSTRACT

Keywords: Background: The assessment of methods for analyzing over-dispersed zero inflated count outcome has received

Cluster randomized trial very little or no attention in stratified cluster randomized trials. In this study, we performed sensitivity analy-

Stratification ses to empirically compare eight methods for analyzing zero inflated over-dispersed count outcome from the

;Zrin;nﬂate d Vitamin D and Osteoporosis Study (ViDOS) - originally designed to assess the feasibility of a knowledge trans-

Overdispersed lation intervention in long-term care home setting.

Sensitivity Method: Forty long-term care (LTC) homes were stratified and then randomized into knowledge translation
(KT) intervention (19 homes) and control (21 homes) groups. The homes/clusters were stratified by home size
(<250/> = 250) and profit status (profit/non-profit). The outcome of this study was number of falls mea-
sured at 6-month post-intervention. The following methods were used to assess the effect of KT intervention
on number of falls: i) standard Poisson and negative binomial regression; ii) mixed-effects method with Pois-
son and negative binomial distribution; iii) generalized estimating equation (GEE) with Poisson and negative
binomial; iv) zero inflated Poisson and negative binomial — with the latter used as a primary approach. All
these methods were compared with or without adjusting for stratification.
Results: A total of 5,478 older people from 40 LTC homes were included in this study. The mean (=1) of the
number of falls was smaller than the variance (=6). Also 72% and 46% of the number of falls were zero in the
control and intervention groups, respectively. The direction of the estimated incidence rate ratios (IRRs) was
similar for all methods. The zero inflated negative binomial yielded the lowest IRRs and narrowest 95% confi-
dence intervals when adjusted for stratification compared to GEE and mixed-effect methods. Further, the
widths of the 95% confidence intervals were narrower when the methods adjusted for stratification compared
to the same method not adjusted for stratification.
Conclusion: The overall conclusion from the GEE, mixed-effect and zero inflated methods were similar. How-
ever, these methods differ in terms of effect estimate and widths of the confidence interval.
Trial registration: ClinicalTrials.gov: NCT01398527. Registered: 19 July 2011.

1. Background domization trials is increasing [2]. Allocation units are diverse in such
studies, and can include families or households, classrooms or schools

Randomized trials involving allocation of intact groups or clusters [31], long-term care homes [4] or even entire communities [5].
of subjects, instead of independent individuals, are commonly referred Depending on the allocation of clusters, most cluster randomiza-
to as cluster randomized trials [1]. The rate of adopting cluster ran- tion trials can be classified as using one of three basic types of de-
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signs: (a) completely randomized, (b) matched-pair, or (c) stratified.
Completely randomized designs omit pre-stratification and matching
on baseline prognostic factors. This design is most suited for trials en-
rolling fairly large numbers of clusters [6]. Random assignment of one
of the two clusters in a stratum to each intervention group is termed a
matched-pair design [6]. The stratified design extends the matched-
pair design where more than two clusters are randomly allocated to
intervention groups within strata. For example, Vitamin D and Osteo-
porosis Study (ViDOS) [4,7] conducted a pilot stratified cluster ran-
domized trial — where long-term care (LTC) home were stratified by
size and profit status, to assess the effect of a multifaceted knowledge
translation (KT) intervention on prescribing vitamin D, calcium and
osteoporosis medication in long-term care home.

Random allocation of clusters may result in similarity among the
outcomes from the same cluster, which is measured using an intra-
cluster correlation coefficient (ICC) [1]. This correlation among the
responses from the same cluster invalidates the application of statisti-
cal techniques which assume independence of observations. Thus,
standard statistical methodology needs to be adjusted for this cluster-
ing effect, which can be quantified by the design effect, or variance
inflation factor, given by 1 + (7 — 1) ICC , where 7 is the average clus-
ter size [1].

Donner and Klar [1] discussed about several approaches to analyze
count data from cluster randomized trials including cluster-specific
and population-average extension of Poisson regression. They also dis-
cussed we can easily extend these approaches for stratified cluster
randomized trials. Similarly, Young et al. [8] compared the perfor-
mance of cluster-specific and population-average extension of Poisson
regression using data from a non-randomized study while Pacheco et
al. [9] investigated the performance of methods for analyzing over-
dispersed — variance is greater than the mean, count outcome from
completely randomized CRT. Further, to account the count outcome
with excess zeros we need to use the zero-inflated models. To the best
of our knowledge, no study examined the methods for analyzing over
dispersed and zero-inflated count data from stratified cluster random-
ized trials.

On the other hand, Thabane et al. [10] rightfully emphasized the
importance of performing a sensitivity analysis, which help us to as-
sess the robustness of the results. For cluster randomized trials we can
perform sensitivity analyses with or without taking clustering into ac-
count. We can also compare the methods with or without considering
the stratification. Borhan et al. [11] examined the sensitivity of meth-
ods for analyzing continuous outcome from stratified cluster random-
ized trials and found the overall conclusion from all the methods were
similar.

In this study, we performed sensitivity analyses to empirically
compare eight methods for analyzing zero inflated over-dispersed
count outcome from the ViDOS study [4].

2. Methods
2.1. Motivating example: ViDOS study

We used the data from an LTC-based pilot stratified cluster ran-
domized trial — details can be found elsewhere [4,7], for this study. A
total of 5,478 older people from 40 LTC homes (19 Intervention and
21 Control) were randomized into two groups KT intervention and
control groups. The LTC homes were stratified by size (<250
vs > 250 beds) and profit status (profit vs non-profit). Seven LTC
homes withdrew before the study began. The outcome, number of
falls were measured at 6- and 12-month post-randomization. For this
study, we used the number of falls measured at 12-month. The vari-
ance of the number of falls is greater than the mean number of falls
(variance = 6 > mean = 1). Similarly, for each cluster the mean
number of falls is smaller than the variance of the number of falls.
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Thus, the number of falls was over-dispersed. Further, the number of
falls was zero inflated as 72% and 46% of the number of falls were
zero in the control and intervention groups, respectively.

2.2. Statistical analysis methods

Both cluster-specific (mixed-effect method) and population-
average (generalized estimating equation) methods were used to ana-
lyze the number of falls from the ViDOS study. The mixed-effect zero-
inflated negative binomial model was considered as the primary
method since it can take into account both overdispersion and zero-
inflation as well as clustering. The adjustment for stratification covari-
ates — home size and profit status, were applicable for cluster- and in-
dividual-level methods, since these were cluster-level covariates. The
results from the analyses were reported in terms of the incidence rate
ratios (IRRs) along with 95% confidence intervals (CIs) and associated
p-values. All statistical tests were two-sided at the significance level of
0.05. The p-value less than 0.001 were reported as <0.001 The re-
porting of the results follows the CONSORT (Consolidated Standards
for Reporting Trials) guidelines for reporting cluster-randomized trials
[12].

Data were analyzed using Intention-to-treat (ITT) principles and
missing data analysis approach — where missing data were imputed
using multiple imputation technique assuming missing data follows a
missing at random (MAR) pattern. Overall, five datasets were gener-
ated, and pooled estimates were reported.

2.3. Standard Poisson/Negative binomial (NB) model

The standard Poisson and negative binomial model for count data
is given by

log(E(Yii) = piid) = Po + PrXy + PaSujnt + PaSajm + €

Where, Yy is the outcome, number of falls, of the i — th subject of the
j — th cluster in the k — th(k = 0,1) and [ — th(l = 0,1) stratum. Xijut is
the intervention (0: Control; 1: KT Intervention). Sy (0:<250;
1> = 250) is the home size and Sait (0: Non-profit; 1: Profit) is the
profit status of the cluster.

Here, 5 represents the treatment effect while $, and f; represents
the two strata effect corresponding to home size (0:<250; 1: >250)
and profit status (0: Non-profit; 1: Profit), respectively.

We considered two distributional assumptions for number of falls:

(a) Number of falls follows a Poisson distribution i.e. Yj~Poi(u),
with variance function V(Yj) = @v(ugm) = wuyj where ¢ is
assumed to be 1 i.e. mean and variance are equal.

(b) Number of falls follows a Negative Binomial (NB) distribution i.

e. . Yjq~NB(s, Hijids with variance function

V (Yr) = ov () = @ <;4,-jk, +W§k1>’ where ¢ is assumed to be
1 and s is the overdispersion parameter indicating that the NB
distribution models overdispersion implicitly by its parameter s.
The NB distribution is preferred when there is overdispersion in
the data i.e. mean < variance.

The standard Poisson and negative binomial model were fitted us-
ing glm() and glm.nb() in R [13].

2.4. Mixed-effect model (Poisson/Negative binomial)
The mixed-effect model for count data is given by

log(E(Yi) = wijd = Po + P + PaSuiia + BaSagm + Cije + ey

In this model, like the previous model, B; represents the treatment
effect while f§, and 3 represents the two stratum effect corresponding
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to home size (0:<250; 1: >250) and profit status (0: Non-profit; 1:
Profit), respectively, which are fixed. Random cluster effect is repre-
sented by Cy, which follows a normal distribution with mean 0 and
variance 0}27. The intra-cluster correlation that measures the correla-

2
%b

tion among the outcomes within cluster is given by assumed

2 27
6h+o'£,
equal for all clusters. f; is the log of the Rate Ratio (RR) of the inter-
vention Xijut (0 = Control, 1 = KT Intervention). We used glmer() and
glmer.nb() in R to fit mixed-effect with Poisson and negative bino-

mial, respectively.
2.5. Generalized estimating equation (GEE) (Poisson/Negative binomial)

The GEE model for count data is given by
log(E(Yyi) = piid) = Po + PrXiia + PaSuijut + P3Saiik

Like before, f§; represents the treatment effect while , and f3 rep-
resents the two stratum effect corresponding to home size (0: <250; 1:
>250) and profit status (0: Non-profit; 1: Profit), respectively. Similar
to mixed-effect method we considered two distributional assumption
for count data: Poisson and negative binomial. For GEE method we
considered exchangeable working correlation structure. GEE with
Poisson was fitted using geeglm() in R while GEE with negative bino-
mial was fitted using PROC GENMOD in SAS [14]. GEE with negative
binomial was the primary method of analysis.

2.6. Zero inflated models (Poisson/Negative binomial)

For zero inflated models the distribution of Yy is

v =10 with probability @
ik = Poisson or NB (ﬂi,-k,) ; with probability (1 - (pl./.k,)

The mixed-effect zero inflated Poisson or negative binomial model
is given by:

logit(py) = Po + Pr1Xija + P2Stim + PaSaim + Cye + €y
log(E(Yy) = py) = Po + PrXyia + PoSiju + PaSast + Cie + €

The zero inflated Poisson and negative binomial models were fit-
ted using the R package GLMMadaptive.

3. Results

Overall 40 clusters were randomized into KT intervention (19 clus-
ters) and control (21 clusters) groups. The clusters were stratified by
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two variables cluster size and profit status. The average cluster size in
the KT group was 115 (minimum = 43, maximum = 294) while the
average cluster size in the control group was 157 (minimum = 49,
maximum = 375). At the end of the follow-up there were 2,209 par-
ticipants in the intervention group and 3,382 participants in the con-
trol group. The average age of the participants in both groups were 84
years while approximately 70% were female.

We used the methods discussed above to assess the effect of KT in-
tervention on number of falls with mixed-effect zero-inflated with
negative binomial distribution as the primary method of analysis. The
results of the ITT analyses with or without adjusted for stratification
are given in Fig. 1. The direction of the effect estimate incidence rate
ratios were similar for all the methods. The standard Poisson and neg-
ative binomial regression methods yielded statistically significant re-
sults as p-values lower than the nominal level of 0.05 while the other
methods yielded non-significant results (Fig. 1). The estimated IRRs
varies from 1.11 to 1.37 when adjusted for stratification and 1.03 to
1.49 when not adjusted for stratification. The effect estimates IRRs
were slightly higher for mixed-effect methods compared to other
methods. The magnitude of the widths of the 95% confidence inter-
vals were higher for mixed-effect Poisson and negative binomial
methods compared to other methods when adjusted or not adjusted
for stratification (Fig. 1). The Akaike's Information Criteria (AIC) were
slightly lower when the methods adjusted for stratification compared
to without such adjustment. Further, the AIC values were lower for
negative binomial models (8391.00 and 8333.24 for mixed-effect and
zero-inflated negative binomial models respectively) compared to GEE
models (10858.00 and 9093.10 for mixed-effect and zero-inflated
Poisson models respectively).

The results of the missing data analysis were given in Fig. 2. Un-
like ITT approach, standard Poisson and negative binomial did not
yield statistically significant results (Fig. 2). Similar to ITT approach,
direction of effect estimate for all the methods were similar. The esti-
mated IRRs varies from 1.35 to 2.12, when adjusted for stratification
and 1.41 to 1.96 when not adjusted for stratification. The magnitudes
of the widths of the 95% confidence intervals were higher for all
methods compared to ITT approach. Similar to ITT 95% confidence
intervals were wider for mixed-methods, when not accounted for zero
inflation, compared to other methods (Fig. 2).

For all methods, the estimated IRRs were very similar with or
without adjusting for stratification for both ITT and missing data
analysis approaches (Figs. 1-2). Further, it is noticeable, that the esti-
mated IRRs were slightly higher, for all methods, in missing data
analysis approach compared to ITT approach (Figs. 1-2). Also, for ITT
approach, the 95% confidence intervals were slightly narrower when

Adjusted for
Method stratification IRR [95%CI] p-value

Standard Poisson | 1.19[1.09, 1.29 <0.001
Standard Negative Binomial i 1.21[1.03, 1.41 0.021
GEE Poisson —.—— 1.10([0.79, 1.53 0.573
GEE Negative Binomial —-— 1.10[0.78, 1.56 0.583
Mixed-effect Poisson - 1.3710.50, 3.81 0.526
Mixed-effect Negative Binomial bt 1.37 [0.51, 3.52 0.521
Zero Inflated Poisson —_—— 1.25[0.67,2.34 0.479
Zero Inflated Negative Binomial il 1.11[0.94, 1.32 0.225

T T T 1

0 1 2 3 4

Not adjusted for
stratification

Standard Poisson - 1.17[1.08, 1.27 <0.001
Standard Negative Binomial - 1.17(1.01,1.37 0.044
GEE Poisson —— 1.11]0.79, 1.54 0.539
GEE Negative Binomial —— 1.11[0.80, 1.54 0.546
Mixed-effect Poisson - 1.4810.50, 4.52 0.459
Mixed-effect Negative Binomial i 1.49(0.49, 4.11 0.459
Zero Inflated Poisson —_— 1.21]0.63, 2.32 0.559
Zero Inflated Negative Binomial ——— 1.03[0.79, 1.35 0.801

T f T T T 1

0 1 2 3 4 5

Fig. 1. Results of ITT analysis using different methods with/without adjusted for stratification.
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Adjusted for
Method stratification IRR [95%CI] p-value

Standard Poisson — - 1.55[0.99, 2.44 0.126
Standard Negative binomial ———— 1.62[0.98,2.71 0.127
GEE Poisson —_— 1.53[0.81,2.89 0.168
GEE Negative binomial - 1.5710.71, 3.44 0.253
Mixed-effect Poisson - 2.11[0.89, 5.01 0.092
Mixed-effect Negative binomial L 2.12[0.97, 4.67 0.064
Zero Inflated Poisson —_ 1.59 [0.84, 3.05 0.151
Zero Inflated Negative Binomial — 1.35[0.78, 2.34] 0.254

T T T T 1

0 1 2 4 5 6

Not adjusted for
stratification

Standard Poisson —.— 1.45[0.90, 2.34 0.204
Standard Negative binomial —_— 1.45[0.89, 2.37 0.205
GEE Poisson —_—-——— 1.50[0.78, 2.90; 0.195
GEE Negative binomial B 1.51[0.78, 2.92 0.203
Mixed-effect Poisson - 1.96[0.79, 4.83 0.146
Mixed-effect Negative binomial = 1.96[0.79, 4.87 0.148
Zero Inflated Poisson — 1.51[0.80, 2.86 0.198
Zero Inflated Negative Binomial ——— 1.41[0.68, 2.92] 0.332

T T T 1

0 1 2 4 5

Fig. 2. Results of missing data analysis using different methods with/without adjusted for stratification.

adjusted for stratification (Fig. 1). The difference among the methods
in terms of p-values were smaller for missing data analysis approach
compared to ITT approach (Figs. 1 and 2).

4. Discussion

In this study, we empirically investigate the methods for analyzing
overdispersed zero inflated count outcome from stratified cluster ran-
domized trial using data from the ViDOS study — which was designed
to investigate the effect of a KT intervention. We compared eight
methods to assess the effect of KT intervention on number of falls. The
direction of effect of estimate incidence rate ratios (IRRs) were similar
for all methods for both adjusted and not adjusted for stratification.
The conclusions from both ITT and missing data analyses indicated
that, KT intervention had no effect on number of falls.

For ITT analyses, both standard Poisson and negative binomial
methods yielded statistically significant results that the RRs of number
of falls were slightly higher in the intervention group compared to
control group. However, these two methods were not appropriate for
analyzing count data from CRT as these methods do not take into ac-
count the degree of similarity among the outcomes from the same
cluster.

In this study, we considered mixed-effect with zero-inflated nega-
tive binomial as the primary method of analysis to assess the effect of
KT intervention on over dispersed number of falls. We performed sen-
sitivity analyses to examine the robustness of the findings of the pri-
mary method. The overall conclusion from all the methods were simi-
lar. These findings match with the findings of the Borhan et al. [11]
when they investigated the sensitivity of several methods for analyz-
ing continuous outcome from the stratified CRT.

Overall, for all methods, the estimated IRRs and the corresponding
widths of the 95% confidence intervals were slightly lower for ITT
analyses compared to missing data analyses. GEE and mixed-effect
with Poisson and negative binomial distributions, respectively,
yielded approximately similar IRRs. The estimated IRRs and widths of
the 95% confidence intervals were lower for zero inflated models
compared to mixed-effect methods with Poisson and negative bino-
mial distribution. The widths of the 95% confidence intervals were
lower for GEE methods compared to mixed-effect methods for both
ITT and missing data analyses. This is consistent with the findings of
Pacheco et al. [9]. The authors reported that, GEE yielded the highest
power and narrow CIs when the authors investigated the performance
of methods for analyzing overdispersed count data from CRT. How-
ever, GEE underestimate the covariance among observations yielding
downward biased standard errors when the number of clusters is
small [15]. Also, we need to be cautious that, GEE method yields ele-
vated type I error rates in small sample situations (<40 clusters) [9].

We also compared the methods with or without adjusting for strat-
ification. Zero inflated negative binomial yielded the lowest IRRs and
narrowest 95% confidence intervals when adjusted for stratification
among the valid methods. For ITT approach, the estimated IRRs and
the widths of the 95% confidence intervals were almost similar or
lower for both GEE methods. Similarly, for mixed-effect methods the
estimated RRs and the magnitude of the widths of the 95% confidence
intervals were slightly lower when we adjusted for stratification.
These findings matched with the findings of Borhan et al. [11], Ma et
al. [16] and Kahan et al. [17], where the authors compared several
methods for analyzing continuous and binary data from stratified CRT
and continuous data from stratified randomized controlled trial on in-
dividual, respectively. Similarly, for missing data approach, GEE
yielded the similar results with or without adjusted for stratification.
For all methods, the p-values were lower when adjusted for stratifica-
tion compared to same method when not adjusted for stratification
and matched with the findings of Kahan et al. [17].

The major strength of this study that, we empirically examined
eight methods, including both cluster-specific and population-average
methods, for analyzing count outcome from a stratified CRT - ViDOS
study, under different scenarios including accounting for clustering
and adjusting for stratification. We also compared the methods
through ITT approach and imputing the missing data. In addition, we
used appropriate method such as negative binomial to account for
overdispersion and zero inflated models to account for excess zeros.
Thus, this study will guide researchers about the sensitivity of these
methods since there is no study, to the best of our knowledge, investi-
gate the performance of these methods for analyzing count data from
stratified CRT.

The major limitation of this study, that ViDOS study was a pilot
trial designed to investigate the feasibility of the KT intervention.
However, ViDOS was stratified by two cluster-level covariates cluster
size and profit status, which is very rare in real life. It is possible that,
we might have missed some falls data as it is difficult to measure the
number of falls and varies between LTCs.

Data from 7 clusters were missing in the intervention group as 6
clusters declined to actively participate after randomization and 1
cluster withdrew after baseline measurement. Further study on miss-
ing data imputation techniques when the whole cluster is missing
would be an important addition. Furthermore, a well-designed simula-
tion study is warranted to examine the performance of these methods
under different scenarios. It requires large number of clusters (>30)
to get valid estimate using GEE and mixed-effect methods [18-21].
Researchers have suggested some corrections to address the require-
ment of large number of clusters [22-26] which can be extended to
stratified CRT, especially when the outcome is count.
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5. Conclusion

In this study, we empirically compared the eight methods for ana-
lyzing count outcome using the data from ViDOS study - a pilot strati-
fied cluster randomized trial. The overall conclusion from all the
methods were similar that the KT intervention had no effect on num-
ber of falls. The zero inflated negative binomial model yielded the
lowest IRR and narrowest 95% confidence interval, when adjusted for
stratification, compared to GEE and mixed-effect methods. A well-
designed simulation study is warranted to assess the performance of
these methods.
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