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Editorial on the Research Topic

Cardiac Fibrosis, From Lineage Tracing to Therapeutic Application

WHAT IS CARDIAC FIBROSIS?

Roughly 6% of healthy myocardium is composed of pure extracellular matrix (ECM) such as
collagen fibers and, to a lesser extent, elastic fibers. This interstitial extracellular mixture—mainly
synthesized by fibroblast and myofibroblasts—creates a three-dimensional cardiac skeleton which
allows the cardiomyocytes to perform their contractile functions (Ten Tusscher and Panfilov, 2007).
An excessive deposition of collagen fibers in the myocardium is commonly referred to as “fibrosis,”
which is regulated by ECM production, activity of matrix metalloproteinases (MMPs) and their
endogenous inhibitors (TIMPs) (De Boer et al., 2019; Frangogiannis, 2019). Various subsets of
leukocytes play an important modulatory role determining the characteristics of the fibrotic
response and cardiac remodeling post-injury (Frangogiannis, 2019). Disproportionate amounts of
ECM (either focal or diffuse, scar-like, thin around single or small groups of muscle cells) represents
an interstitial encumbrance which may lower myocardial compliance, decrease ventricular filling,
interfere with electrical coupling, predispose to rhythm disturbances and ultimately lead to
depressed cardiac function (Sharma and Kass, 2014; Nattel, 2017). Schematically, fibrosis may be
secondary to two different—but not mutually exclusive—pathogenic mechanisms: (1). “reparative”
fibrosis which replaces myocardial areas where cardiomyocytes have undergone cell death (i.e.,
ischemic events); and/or (2). “reactive” fibrosis which is driven by a series of stimuli (e.g., pressure
overload, inflammation, metabolic dysfunction, aging) and mediators (e.g., AngII, PDGF, TGF-β,
and CTGF) (Hanna et al., 2004; Corradi et al., 2008; De Boer et al., 2019; Frangogiannis, 2019)
(Figure 1).

WHICH CELL IS TO BLAME?

The process of cardiac fibrosis can be schematically divided into three phases based on the cell type
mainly involved: (i) resident quiescent cardiac fibroblasts inhabit myocardial tissue; (ii) during
myocardial injury (MI), fibroblasts differentiate into myofibroblasts, which actively proliferate
and secrete ECM until the injury is resolved; (iii) finally the site of injury is populated by not
proliferative and terminally differentiated matrifibrocytes secreting ECM in order to maintain the
integrity of the scar (Eschenhagen, 2018; Fu et al., 2018) (Figure 1).
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Fu et al. described state-of-the-art techniques to trace the
lineage of fibrogenic cells following cardiac injury, providing
tools to specifically trace the different stages of cardiac fibrosis.
Although the high grade of plasticity makes the lineage tracing
of cardiac fibroblasts quite challenging, some biomarkers are
known to uniquely identify fibroblasts (i.e., Tcf21), activated
myofibroblasts (i.e., Periostin), and matrifibrocytes (i.e., ACTA2)
(Fu et al., 2018). In terms of cellular signaling the activation
of TGF-β receptor Smad2-3 pathway seems to be the principal
mediator of myofibroblast activation and ECM accumulation.

Shi et al. demonstrated that Notch3 is involved in the
regulation of cardiac fibrosis influencing fibroblast proliferation
and myofibroblast transition/apoptosis via RhoA/ROCK/Hif1-α
signaling pathway inhibition.

Ni et al. discovered that diabetic cardiomyopathy might
benefit from icariin (a flavonoid monomer isolated from the
herb Epimedium) treatment, which reduced cardiac fibrosis and
ameliorated cardiomyocytes mitochondrial function through
Apelin/Sirt3 pathway. Zhao et al. described how muscarinic
acetylcholine receptor 3 (M3R) signaling after choline activation
represents another important axes that controls cardiac fibrosis
through TGF-β1/Smad2-3/p38 MAPK pathway.

Thomas and Grisanti reviewed the extensive crosstalk
between inflammation and cardiac fibrosis contributing to the
progression of heart failure (HF). Following myocardial injury
and cardiomyocytes death, local inflammatory cells (i.e., mast
cells, B and T cells and macrophages) infiltrate the site of
injury and secrete pro-inflammatory mediators (i.e., TNF-α,
IL-1-β, IL-6), which play an important regulatory role in the
transition from quiescent resident fibroblasts into active and
proliferative myofibroblasts, initiating the production of ECM
components. Narrowing the focus to one specific mediator in the
crosstalk between the inflammatory response and development
of fibrosis, Okyere and Tilley described the role of leukocytes in
the regulation of cardiac remodeling. Both innate and adaptive
leukocytes critically influence pathological fibrotic remodeling.

Interestingly, cardiac fibrosis is regulated over an organized
intercellular communication, where extracellular vehicles (EVs)
play a crucial role. The interplay amongmacrophages, fibroblasts,
and endothelial cells represents a major driving force of
myocardial fibrosis. Rogers et al. described a cell-free therapeutic
application based on EVs secreted from stem/progenitor
cells that can directly stimulate the trans-differentiation of
pro-inflammatory M1 macrophages to anti-inflammatory M2
macrophages(Silva et al., 2017), thereby reducing fibrosis in
preclinical models of heart failure.

Marek-Iannucci et al. established a minimally invasive and
cost-effective model of cooling pericardial perfusion in swine,
which highlights the potential therapeutic effects of hypothermia
post-ischemia/reperfusion injury in reducing cardiac fibrosis,
inflammation and immune cell recruitment.

Abbreviations: TIMPs, tissue inhibitors of metalloproteases; AngII, Angiotensin

type II; PDGF, Platelet derived grow factor; TGF-β, Transforming grow factor β;

CTGF, connective tissue grow factor; TNF-α, Tumor necrosis factor α; IL-1-β,

Interleukin 1 β; IL-6, Interleukin 6; Tcf21, transcription factor 21; Acta2, smooth

muscle actin alpha 2.

Farini et al. showed that cardiac expression of the
inflammatory mediator Pentraxin 3 (PTX3) influences
inflammatory/fibrotic pathways in an animal model of
Duchenne Muscular Dystrophy and may be an interesting
therapeutic target.

WHEN IS THE RIGHT TIME TO BLOCK
FIBROSIS?

Degradation of large areas of replacement fibrosis could be
catastrophic unless accompanied by robust cardiac regeneration,
due to the negligible endogenous regenerative potential of
the adult heart. Upon cardiac injury, the compensatory but
maladaptive fibrotic response mediated by cardiac fibroblast can
vary significantly among different injury types (Khalil et al.,
2019). While the beneficial effect of fibrotic tissue may outweigh
its deleterious effect after an acute injury that causes massive
cardiomyocyte death (i.e., reparative fibrosis in a myocardial
infarction), the effects of reactive interstitial fibrosis in chronic
conditions may be largely detrimental. The timing is of utmost
importance since a too early intervention can cause adverse
effects on wound healing, enhancing LV rupture and increasing
the mortality rate in HF patients. Based on this, any medical
and surgical treatment should be aimed at blocking/mitigating
the excessive ECM deposition between single cardiomyocytes
and/or the fine interstitial fibrosis around scar-like sclerotic areas
replacing significant cardiomyocytes necrotic cell losses.

Ma et al. described a preclinical model of left atria (LA)
fibrosis with increased arrhythmogenesis following isoproterenol
(ISO) injections for 5 weeks in rats. The anti-fibrotic and
anti-inflammatory agent pirfenidone administered 1 week after
completion of ISO decreased LA fibrosis and arrhythmia leading
to an improvement in cardiac function.

De Simone et al. showed that cardiac myofibroblast are
not excitable cells, electronically coupled to cardiomyocytes
and their function is not limited solely to ECM production
and protecting the architecture of the heart, but is also
important for regulating the cardiac electrical conduction. After
excessive collagen deposition, only scarce cellular structures
populate the sclerotic area, which likely is not capable of
creating electrically efficient fibroblast/cardiomyocyte couplings
and causing arrhythmogenesis(Callegari et al., 2020).

Shang et al. presented preclinical and clinical evidences
linking together elevated levels of β1AR autoantibodies,
circulating fibrosis markers and atrial remodeling in patients
with paroxysmal atrial fibrillation (AF). Overexpressing
β1AR antibodies, which act as βAR agonists, impacted
electrophysiological properties in terms of atrial effective
refractory period (AERP), AF inducibility, and electrical
conduction in rabbits.

CONCLUSIONS

The implication of early delivery of therapies post-MI will most
certainly differ from the treatment for non-ischemic diastolic
dysfunction with a stiff left ventricle and even more so from
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FIGURE 1 | Cartoon depicting two pathogenic mechanisms of cardiac fibrosis, “reparative” (replacing dead cardiomyocytes) and “reactive” (interstitial and

perivascular) cardiac fibrosis (blue color). Pro-fibrotic factors (TGF-β, AngII, PDGF, and CTGF) and cytokines released from inflammatory cells promote differentiation of

fibroblasts toward activated myofibroblasts and matrifibrocytes actively producing extracellular matrix (ECM). Specific biomarkers of different stages of cardiac

fibroblast differentiation are indicated on the bottom. TGF-β, transforming grow factor β; Ang II, angiotensin type II; PDGF, platelet derived grow factor; CTGF,

connective tissue grow factor; Tcf21, transcription factor 21(biomarker for cardiac fibroblasts); Periostin, (biomarker of activated myofibroblasts) Acta2, smooth muscle

actin alpha 2 (biomarker of matrifibrocytes); α-SMA, α smooth muscle actin.

the treatment of end-stage heart failure with more pronounced
fibrosis. While the fibrotic response following myocardial injury
may initially be compensatory, could eventually be maladaptive if
the large cardiac functional reserve is compromised. Therapeutic
intervention in this setting should aim to prevent the fine
sclerotic tissue deposition between the cardiomyocytes. This
could be implemented with personalized anti-fibrotic therapy
with specific timing of the intervention and tailoring it
to the type of injury rather than completely blocking the
fibrosis pathway.
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