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Abstract

Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic
pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell
responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the
maturation, activation and expression of IL-10, IL-12p70 and TNF-a in human monocyte-derived dendritic cells. Additionally,
we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common
serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/
TNF-a cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have
consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on
innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant
numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in
the body.
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Introduction

Streptococcus suis is a major pathogen of swine, causing

considerable economic losses and animal health care problems

for the pig farming industry worldwide [1]. The natural habitat of

S. suis is the upper respiratory tract and the intestinal tract [2,3]. In

adult pigs carriage of S. suis is usually asymptomatic but colonized

sows can infect their piglets after nasal or oral contact [4].

Newborn pigs can also become infected during parturition when

they contact, swallow or aspirate S. suis from sow vaginal secretions

[5]. In young pigs S. suis infection causes a wide variety of diseases,

including meningitis, septicemia which are the main causes of

mortality. S. suis is also emerging as a serious zoonotic pathogen of

humans particularly in South East and East Asia where it is one of

the most common causes of human meningitis [6,7]. In 2005 a

large outbreak of 215 cases S. suis infections occurred in Sichuan,

China, resulting in 38 deaths [8]. There are 33 serotypes of S. suis

of which serotype 2 is most commonly associated with disease in

humans and pigs worldwide [9,10]. In addition serotypes 1 to 9

and 14 are responsible for infections in pigs [11] and serotypes 1,

4, 5, 14, 16 and 24 have caused severe disease in a limited number

of persons [12,13,14,15]. The capsule is known to be a very

important virulence factor in S. suis [16]although not all capsulated

isolates (including serotype 2) are virulent, highlighting the

importance of other virulence factors in the pathogenesis of

disease [3].

Dendritic cells (DCs) are important sentinels in the skin and

mucosal surfaces that contact the external environment and play a

key role in the homoeostatic control tolerance and immunity in the

mucosal tissues [17]. Stromal factors such as retinoic acid and

thymic stromal lymphopoietin imprint tolerogenic properties on

resident DC. However when invading microbes are encountered

the homeostatic mechanism are overridden by chemotactic

recruitment of DC and their activation by pattern recognition

receptor (PRR) binding to pathogen-associated molecular patterns

(PAMPs). Upon activation DCs express up to 100x more MHC

than monocytes, macrophages and neutrophils other antigen

presenting cells (APCs) and migrate to mucosal associated

lymphoid tissue to induce antigen-specific T cell responses

[18,19]. Thus DCs are instrumental in the orchestration of

adaptive immune responses. Cytokines produced by activated DC

have a major influence on T cell polarization, differentiation and

clonal expansion. Interleukin (IL)-12 and tumor necrosis factor

(TNF)-a, are pro-inflammatory cytokines that promote T helper

(Th) 1 cell responses, whereas IL-10 is an anti-inflammatory

cytokine that can promote induction of Th2 cells or regulatory T

cells depending on the expression of other tolerizing factors [20].

DCs recognize different types of PAMPs using pattern

recognition receptors (PRRs) of the Toll-like receptor (TLR),

nucleotide-binding oligomerisation domain receptor (NLR) and C-

type lectin receptor (CLR) protein families, [17,21,22]. PRR

signaling is critical to DC maturation and in recent years much
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emphasis has been given to dissecting the innate signaling

pathways involved in pathogen recognition. Each PRR recognizes

variants of a specific molecular pattern and can be expressed on

the cell surface, in intracellular compartments or in the cytosol.

TLR1, 2, 4, 5, 6 and 11 recognize mainly microbial envelope

components and are expressed on the cell surface, TLR3, 7, 8 and

9 recognize microbial nucleic acids and are expressed in

intracellular compartments such as the endoplasmic reticulum,

endosome and phagosome. TLR2 can form heterodimers with

TLR1 or TLR6 to detect different, but related ligands. TLR2/1

recognizes tri-acyl lipoproteins found predominantly in Gram-

negative bacteria and TLR2/6 the diacyl groups on lipoteichoic

acid and lipoproteins of Gram-positive bacteria. NOD1 and

NOD2 are cytoplasmic receptors that can detect peptidoglycan

fragments produced in the phagosome or phagolysosome of

antigen presenting cells although the nature of the transporters

involved in translocation to the cytoplasm remains unknown [23].

The CLR family is characterized by the presence of one or more

C-type lectin-like domains (CTLDs) and bind mainly sugars

including self-antigens. CLRs trigger distinct signaling pathways

that induce the expression of specific cytokines which determine T

cell polarization fates [24].

Recently the interactions of a virulent serotype 2 strain and its

unencapsulated derivative with porcine DC were studied in vitro.

The capsular polysaccharide was shown to interfere with

phagocytosis and consequently the level of DC maturation and

production of several cytokines was reduced compared to an

unencapsulated strain [25]. Given the emergence of S. suis as a

significant cause of meningitis in humans we investigated the effect

of different serotypes (SS1, SS2, SS4, SS7, SS9 and SS14) and the

unencapsulated mutant of S. suis serotype 2 (SS2 J28) on the

maturation and expression of IL-10, IL-12p70 TNF-a in human

monocyte-derived DC. Additionally, we compared the efficiency

of the different isolates in DC phagocytosis assays and studied the

intracellular survival of internalized S. suis serotype 2of internal-

ized S. suis serotype 2 S10 and its unencapsulated isogenic mutant.

The ability of the different serotype strains to induce TLR

signaling via human TLR2/6 was also investigated using a TLR2/

6 specific luciferase reporter cell line. To our knowledge this is the

first study concerning the interactions of S. suis with human DC

and it provides new knowledge of the role of different capsular

polysaccharide serotypes in the avoidance of host innate

immunity.

Materials and Methods

Bacterial strains
Six different serotypes (SS1, SS2, SS4, SS7, SS9 and SS14) and

the unencapsulated mutant of SS2 (SS2 J28) were obtained from

Central Veterinary Institute, Lelystad NL (Table 1). In table 1 for

each strain the expression of three virulence markers are indicated:

two secreted cell wall located proteins namely the muramidase-

released protein (MRP) and the extracellular factor (EF) [26,27],

and secreted hemolytic toxin suilysin (SLY) [28]. MRP and EF

variants have been designated as MRPS and EF*. All S. suis strains

were cultured overnight at 37uC in Todd Hewitt broth (Oxoid).

The bacteria were then recovered by centrifugation, washed twice

in phosphate buffered saline (PBS, pH = 7.4), resuspended at

approximately 16109 colony forming units (CFU)/mL in PBS

containing 20% glycerol, and stored in aliquots at 280uC prior to

use. The exact number of bacterial CFU in a thawed aliquot was

determined by plating serial dilutions on Columbia blood agar

plates (BD) containing 5% sheep blood in presence of 5% CO2.

Differentiation and maturation of dendritic cells
The study was approved by the Wageningen University Ethical

Committee and was performed according to the principles of the

Declaration of Helsinki. Buffy coats from four blood donors were

obtained from the Sanquin Blood bank Nijmegen, Netherlands. A

written informed consent was obtained before the sample

collection. Human monocytes were isolated from blood using a

combination of Ficoll density centrifugation and cell separation

using CD14-specific antibody coated magnetic microbeads

(Miltenyi Biotec). The purity of isolated CD14+ cell fraction was

greater than 90% and viability .95% in all experiments. To

generate immature DC (iDCs), the purified CD14+ cells were

cultured for 6 days in RPMI 1640 medium (Invitrogen),

supplemented with 100 units/mL penicillin G (Invitrogen),

100 mg/mL streptomycin (Invitrogen), IL-4 (R&D systems) and

granulocyte-macrophage colony-stimulating-factor (GM-CSF)

(R&D systems). GM-CSF and IL-4 were added to differentiate

the monocytes into myeloid DCs. At day 6 the iDCs (16106 /mL)

were stimulated with LPS (1 mg/mL) or the different S. suis

serotypes at multiplicities of infection (MOI) of 1 bacterium per

DC or 10 bacteria per DC for 48 hours. Unstimulated iDCs were

used as a negative control.

Table 1. List of strains used in this study.

Serotype Strain Virulence for pigs MRP EF Suilysin CPS Reference

SS1 6388 HV MRPs EF+ SLY+ Cps1+ [47,48]

SS2 S10 V MRP+ EF+ SLY+ Cps2+ [16]

SS2 J28 10cpsDEFa AV MRP+ EF+ SLY+ Cps22 [16]

SS4 5213 ND MRPs – ND Cps4+ [49]

SS7 8039 ND – – – Cps7+ [48,50]

SS9 8067 AV – – SLY+ Cps9+ [48,51]

SS14 13730 ND – EF* ND Cps14+ –

aThe isogenic unencapsulated mutant strain 10 cpsDEF parts of the cps2E and cps2F gene were replaced by an antibiotic resistance gene. HV high virulent V virulent AV
avirulent. MRP muraminidase-released protein. EF extracellular factor. SLY suilysin. CPS capsular polysaccharide synthesis *, higher MW protein expressed; s, smaller MW
protein expressed.
doi:10.1371/journal.pone.0035849.t001
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Analysis of cell surface markers and measurement of cell
death by flow cytometry

During the 8 day culture period of the CD14+ cells (6 days of

differentiation of monocytes into immature dendritic cells and two

days of stimulation), cells were stained on days 3, 6 and 8 with

fluorescence-conjugated monoclonal antibodies specific for CD83,

CD86 or their isotype-matched controls (BD biosciences, San

Diego, USA) and analyzed by flow cytometry (FACSCanto II, BD,

San Diego, USA) to check the maturation and activation status of

the cells. CD86 and CD83 were not expressed on immature

dendritic cells (d 3 and 6) but were highly expressed on DCs after

activation with known maturation factors (e.g. LPS). The

magnitude of the response from different human donors can vary

considerably so for comparison the data was normalized to the

LPS control sample data (100%) for each donor.

On days 3, 6 and 8 the percentage of viable cells was measured

by flow cytometry (FACSCanto II, BD, San Diego, USA). Live,

apoptotic and necrotic cells were discriminated by staining with

Annexin V and propidium iodide on days 3, 6 and 8 according to

the manufacturer’s protocol. The cells were analyzed on a flow

cytometer (FACSCanto II, BD, San Diego, USA). Cells that are

negative for both Annexin V and PI are not apoptotic or necrotic

as translocation of the membrane phospholipid phosphatidylserine

has not occurred and the plasma membrane is still intact.

Therefore, Annexin V and PI double negative cells were

considered as viable cells, whereas both single and double positive

cells were regarded as non-viable [29]. The flow cytometry data

was analyzed using the BD FACSDiva software. On days 3 to 8

the viability of the cells was between 60 and 95%. There were no

significant differences in cell death between S. suis co-cultures or

compared to the medium and LPS controls.

Cytokine assay
Supernatants from the DC stimulation assays were collected

after stimulation for 48 hours, and analyzed for the presence of

cytokines (IL-10, IL-12p70 and TNF-a) using a cytometric bead-

based immunoassay that enables multiplex measurements of

soluble cytokines in the same sample [30], according to the

manufacturer’s protocol (BD biosciences). The limits of sensitivity

for detection were as follows: 0.13 pg/mL, 0.6 pg/mL and

0.7 pg/mL. The flow cytometry data were analyzed using the

BD FCAP software.

Phagocytosis assay
The iDCs (106 cells) were inoculated with the different S. suis

serotypes (MOI 10) and incubated for one hour in antibiotic-free

RPMI 1640 at 37uC and the presence of 5% CO2. The DCs were

further incubated for one hour in RPMI 1640 containing

56.2 mg/mL penicillin G and 100 mg/mL gentamicin. Subse-

quently the DCs were collected and the centrifuged for 5 minutes

at 845 g. The pellet was washed with PBS to remove the

antibiotics and the DCs lysed and vigorously vortex in ice-cold

milliQ water. The cell lysate was then serial plated on Columbia

blood agar plates (BD) containing 5% sheep blood to enumerate

the CFU of S. suis.

Adhesion and Phagocytosis Assay. The iDCs (106 cells)

were inoculated with SS2 and SS2 J28 (MOI10) and incubated for

1 hour in antibiotic-free RPMI1640. To count the adherent and

phagocytosed bacteria DCs were washed after one hour twice with

PBS to remove the unbound bacteria, lysed with ice-cold milliQ

water and plated on Columbia blood agar plates (BD) containing

5% sheep blood.

Kill Curve
Phagocytosis of S. suis was performed as described above and

then the DCs were incubated in RPMI 1640 containing 56.2 mg/

mL penicillin G and 100 mg/mL gentamicin to kill extracellular

bacteria. The killing of phagocytosed S. suis was determined after

1, 2, 3 and 4 h by removing the antibiotics with PBS washes, lysis

in ice-cold milliQ water and serial plating on Columbia blood agar

plates (BD) containing 5% sheep blood.

Survival of S. suis inside DCs after 2 and 24 hours
The iDCs (106 cells) were inoculated with SS2 and SS2 J28

(MOI10) and incubated for one hour in antibiotic-free RPMI1640.

After one hour of incubation antibiotics (100 mg/mL gentamicin and

56.2 mg/mL of penicillin G) were added to kill all the extracellular

bacteria. After a further one hour incubation in the presence of the

antibiotics DCs samples were collected and plated in the same way as

described in the phagocytosis assay (2 h time point). After a further

4 hours, the medium was replaced by RPMI lacking antibiotics to

prevent the antibiotics from entering the DCs and killing intracellular

bacteria. After a total of 23 hours incubation the DCs were incubated

for one hour in RPMI with or without antibiotics washed twice with

PBS, lysed with ice-cold milliQ water and plated on Columbia blood

agar plates (BD) containing 5% sheep blood (24 h time point).

TLR2/6 assay
The TLR2/6 signaling assay was performed essentially as

previously described [31]. Briefly, HEK293 cells (Invivogen,

Toulouse, France) were transformed with human TLR2/6 and

pNIFTY, a NF-kB luciferase reporter construct (Invivogen). The

cells were plated a concentration of 66104 cells per well in

DMEM medium. Cells were then stimulated with the different S.

suis strains, Pam2CSK as a positive control and with medium

alone (negative control) and incubated at 37uC and 5% CO2 for

24 hours. After this incubation period the medium was replaced

with Bright glow (Promega), the plate was vortexed and the

luminescence was measured using a Spectramax M5 (Molecular

Devices). Human embryonic kidney (HEK)293 cells not expressing

TLR receptors but harbouring pNIFTY, a NF-kB luciferase

reporter construct (Invivogen, Toulouse, France) were used as the

negative control in the NF-kB assays.

Electron microscopy
For morphological analysis of the capsule structure, samples of

exponential phase (,0.5 OD600) bacteria were fixed according to

the lysine-acetate-based formaldehyde/glutaraldehyde ruthenium

red-osmium (LRR) fixation procedure, as described previously

[32] and studied by JEOL JEM 2100 transmission electron

microscope at magnifications of 25.000 X.

Statistical analysis
Dixon’s Q test was applied for the evaluation of differences in the

values of the immune- and cytokine assays. Datasets contained values

of six different donors. P values of ,0.05 were considered significant.

Independent sample t-test was applied for the evaluation of

differences between SS2 and SS2J28 in the phagocytosis assay and

the kill curve. P,0.05 were considered significant.

Results

S. suis capsule serotype differentially affects DC
maturation and activation

Immature monocyte-derived DCs derived from six different

human donors were used as in vitro model to investigate

Immunomodulatory Effects of S. suis Capsule
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Figure 1. Mean Fluorescence Intensity (MFI) of dendritic cells normalized with LPS. The MFI of stained cell surface markers by monocyte
derived dendritic cells with 6 different S. suis strains and SS2J28 mutant, with immature DCs as the negative control and LPS as the positive control.
A. MFI of CD83 B. MFI of CD86. Bars showing unequal letters significantly differ in their surface marker expression (P,0.05). C. Histograms for
expression of surface markers CD83 and CD86. Dotted lines represent the isotype controls and black lines the stimulated samples. In case of bacteria
a black line represents a MOI 1 and a dashed line a MOI 10.
doi:10.1371/journal.pone.0035849.g001
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interactions with S. suis. The DCs were stimulated for 48 hours

with 6 different S. suis serotypes and SS2J28 at MOI 1 and MOI

10 (Fig. 1). Expression of the surface expressed co-stimulatory

molecule CD86 and maturation marker CD83 were measured to

determine the activation and maturation status of the DCs

respectively (Fig. 1A and B for mean fluorescence intensity and 1C

for histograms). For all encapsulated strains stimulation of DC

with S. suis at a MOI 10 resulted in higher maturation and

activation marker expression than at MOI 1. The induction of the

surface expression CD86 and CD83 differed markedly among the

capsule serotypes tested. Significantly higher levels of CD83 and

CD86 were observed following DC stimulation with serotypes

SS1, SS7 and SS9 and the unencapsulated SS2 mutant than with

serotype SS2. Interestingly, serotype SS2 was the least effective at

maturating DC although its unencapsulated variant, SS2J28 was

the most effective indicating the importance of the capsule in the

avoidance of host innate immunity.

The capsule of S. suis serotype 2 differentially modulates
the IL-10 to IL-12 ratio

The amounts of IL-10, IL-12 and TNF-a measured in the

supernatants of DC co-cultured with the different serotypes was

highly variable (Fig. 2). The amounts of IL-10 ranged from 5 pg/

mL to 56 pg/mL, IL-12p70 from 7 pg/mL to 6948 pg/mL and

TNF-a from 5 pg/mL to 3744 pg/mL (Fig. 2A–C). As expected,

stimulation with an MOI 10 resulted in higher amounts of secreted

cytokine than stimulation with an MOI 1. In keeping with the data

on maturation markers (Fig. 1) serotypes SS1, SS7 and SS9 were

the highest inducers of cytokines, whereas serotype SS2 induced

the lowest amounts of cytokines (all cytokine ,10 pg/mL). In

contrast the unencapsulated derivative SS2J28 stimulated the

highest amounts of IL-10 and IL-12 and high amounts of TNF-a.

The ratio of IL-10 to IL-12 is often used as an indicator of the

potential to polarize T cell responses towards Th1 or Th2/Treg

[17]. Interestingly all of the S suis serotypes except SS2 induce low

IL-10 to IL12 ratios (less than 0.08). For SS2 the IL-10 to IL-12

ratio was 0.34 at MOI 10 and almost 1.0 (0.98) at MOI 1.

Strikingly, the unencapsulated derivative of SS2 designated

SS2J28 has a much lower IL-10 to IL-12 ratio than SS2 (0.03 at

MOI 1 and 0.008 at MOI 10) suggesting that the type 2 capsule

can down-regulate the host cell-mediated response to S. suis

(Fig. 2D). Similar trend of ratio’s were observed for the IL-10 to

TNF-a ratio (Fig. 2E).

Effect of capsular polysaccharide on the capacity of DCs
to internalize S. suis

The percentage of S. suis phagocytosed by DCs varied

considerably among the different serotypes tested. After one hour

of incubation of the DCs with the bacteria, SS4 and SS9 were

more efficiently taken up by the DCs (respectively 23% and 20%

of original inoculum (107 bacteria) compared to the other strains

(Fig. 3). In contrast capsule types SS1 and SS2 were relatively

resistant to phagocytosis by DCs (0.04% and 2.16% respectively

the original inoculum). The unencapsulated mutant was internal-

ized at significantly higher amounts than its wild type SS2

progenitor (5.29% vs 2.16%; P = 0.0001). Surprisingly however,

the unencapsulated strain was less efficiently internalized than

serotype strains SS4 and SS9 (Fig. 3).

Figure 2. Cytokine secretion by dendritic cells. Cytokine production by monocyte derived dendritic cells with 6 different S. suis strains and
SS2J28, with immature DCs as the negative control and LPS as the positive control. A. IL-10 B. IL-12p70 C. TNF-a. D. IL-10/IL-12 ratio. E. IL-10/TNF-a.
doi:10.1371/journal.pone.0035849.g002
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Capsular type 2 does not affect intracellular survival of
internalized S. suis

To rule out the possibility that differences in internalization of

SS2 and SSJ28 by DC might be due to strain variation in

intracellular survival we measured the survival of these two strains

in DC over time. After one hour of incubation with iDC

antibiotics were added for 1 hour to ensure that only internalized

bacteria were counted after lysis of the DCs. After a total 2 hours

of incubation the number of viable bacteria inside the DCs

decreased considerably, to 39% of the original inoculum for SS2

and 43% of the inoculum for SS2J28 (Fig. 4A). Over the first

4 hours the number of viable S. suis decreased at a similar rate for

both strains indicating that the higher level of internalization

measured for SS2 J28 (Fig. 4A) could not be due to less rapid

killing.

Viable S. suis reside within DC 24 hours after
phagocytosis

To examine the survival of the wild type SS2 and its mutant

SS2J28 inside the DCs after 24 hours, the DCs (106 cells) and

bacteria (MOI 10) were incubated for 2 and 24 hours (Fig. 4B).

After 1 hour of incubation antibiotics were added to the medium

kill extracellular and adhered bacteria. After 5 hours, the medium

was replaced by RPMI without antibiotics, to prevent the

antibiotics from entering the DCs. After 24 hours around

103 CFU/mL of live S. suis were recovered from the lysed DC

suggesting that a small proportion of the bacteria could survive

intracellularly. To rule out that these phagocytosed bacteria were

released from DC after 5 hours of co-incubation and were

growing in the medium the experiment was repeated using an

additional antibiotic treatment at 23 hours to kill any extracellu-

lar/adherent bacteria that might be present. The results (Fig. 4B)

showed that the CFU/mL counts present after 24 hour could be

attributed to the presence of intracellular S. suis.

Involvement of TLR2 and TLR6 in innate immune
signaling by S. suis

TLR2/6- mediated activation of NF-kB could be one of the

major pathways for DC activation via LTA or lipoproteins in the

cell envelope of S. suis. Therefore we tested the TLR2/6 signaling

capacities of all the serotypes in a reporter assay using HEK293

cells expressing human TLR2 and TLR6 heterodimer that

recognizes lipoteichoic acid (LTA) and lipoprotein lipid anchors

in Gram-positive bacteria (Fig. 5). HEK293 cells transformed with

only the pNIFTY, a NF-kB luciferase reporter construct did not

respond to Pam2CSK demonstrating the dependency of NF-kB

activation on co-expression of hTLR2/6 receptor. Medium was

used as a negative control and Pam2CSK (synthetic agonist of

TLR2/6) as a positive control. The results shown in Fig 5

demonstrate that indeed all strains are capable of triggering NF-

kB activation via TLR2/6 signaling but there was no correlation

between the capacity of the strains to induce TLR2/6 signaling

and activate DC (Fig. 2). Interestingly the unencapsulated mutant

of SS2 induced significantly (P,0.05) higher levels of NF-kB than

SS2 indicating that the capsule has a shielding effect on TLR

activation.

Morphological analysis of SS2 and SS2J28
For morphological analysis of the capsule structure, samples of

exponential phase (,0.5 OD600) SS2 and SS2J28 were studied by

electron microscope at magnifications of 25.000 X. As expected

SS2 showed a thick capsule whereas no capsular material can be

observed in the isogenic mutant strain SS2J28 (Fig. 6).

Figure 3. Phagocytosis assay. Phagocytosis by immature DCs with 6
different S. suis strains and an unencapsulated mutant at an MOI 10.
This is a representative figure from 1 donor, out of 5 donors. *P,0.05.
doi:10.1371/journal.pone.0035849.g003

Figure 4. Survival of S. suis inside dendritic cells. A. Kinetics of
adhesion and phagocytosis Immature DCs were inoculated with SS2 and
SS2 J28 at a MOI of 10 bacteria/DC for subsequently 2, 3, 4, 5 and
24 hours of incubation. B. Survival of S. suis inside DCs after 2 and
24 hours Immature DCs were inoculated with SS2 and SS2J28 at a
MOI10 for 2 and 24 hours of incubation. The last hour the DCs were
incubated with (24+) or without (24) antibiotics.
doi:10.1371/journal.pone.0035849.g004
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Discussion

Apart from its major economic impact on the mortality and

morbidity of young pigs in agro-food production S. suis is emerging

as a one of the major causes of meningitis in South East Asia. To

gain further knowledge on the role of S. suis capsule and capsule

serotype on the immune response of the human host we compared

phagocytosis and immune responses of human immature DC to

different serotypes of S. suis. DCs are professional antigen

presenting cells that play a key role in the induction of adaptive

immune responses. Once activated by contact with invading

pathogens CD103+ DC can traffic from the sites of mucosal

infection to the draining lymph nodes to induce T cell responses.

Additionally they play a crucial role in induction of adaptive

immune responses in the Peyer’s patches of the nasal mucosa and

small intestine. Many pathogens have evolved mechanisms to

avoid phagocytosis including production of leukotoxins, the

inhibition of complement activation and masking of binding sites

for endocytic receptors by polysaccharide capsules [33].

The serotypes of S. suis differed significantly in their ability to

activate DCs and induce cytokine responses. Serotypes SS1, SS7

and SS9 induced expression of significantly higher levels of DC

activation and maturation markers than serotypes SS2, SS4 and

SS14 (Fig. 1). Interestingly SS2, the strain that was the least

effective at activating and maturating DC was serotype 2, which is

the serotype most commonly associated with invasive disease in

pigs and humans [34]. In contrast the unencapsulated variant of

SS2 (SS2J28) was the most effective strain in maturating and

activating DC, indicating the important role of the capsule in

shielding cell wall components that activate DC and induce

cytokine responses (Fig. 1). The thickness of the capsule may also

influence the activation by influencing the release of MAMPs such

as lipoproteins and LTA. Capsule serotype 1 has been reported to

have a thinner capsule than other serotypes [51] and interestingly

this was the most effective of all capsulated strains in activating and

maturating DC. The anti-phagocytic effects of SS2 capsule were

apparent from the significantly higher phagocytosis of the

unencapsulated mutant SS2J28 (5.29% vs 2.16%; P = 0.0001)

(Fig. 3). To rule out the possibility that differences in internali-

zation of SS2 and SS2J28 by DC might be due to strain variation

in intracellular survival we measured survival over period of

4 hours after phagocytosis. The number of viable S. suis decreased

at a similar rate for both strains indicating that the higher level of

internalization measured for the unencapsulated mutant SS2J28

(Fig. 3) was not due to less rapid killing (Fig. 4A). Similar results

were recently described using porcine DCs and a capsulated and

unencapsulated serotype 2 strain [25]. As in our own study an

unencapsulated mutant of a serotype 2 strain was phagocytosed at

significantly higher levels and once internalized, both the wild-type

strain and its non-encapsulated mutant were killed at similar rates.

To investigate the effect of other capsule types on phagocytosis

the internalization of several other serotypes were compared to

serotype 2 and its unencapsulated mutant SS2J28 (Fig. 3). The

serotypes differed considerably in their ability to be phagocytosed

with around 20% of the inoculum being internalized in the case of

SS4 and SS9 but only 2% in the case of SS2 (Fig. 3). This might be

explained by the difference in composition of the capsulesand their

charge which is known to be important in the avoidance of

phagocytosis. A recent genetic analysis of the capsular polysac-

charide synthesis locus of 15 S. suis serotypes predicted that

capsules of serotypes 1, 2, and 14 may contain sialic acid [35]. In

Streptococcus agalactiae capsule sialic acid has been shown to increase

the hydrophilic surface properties of the bacteria and have an

inhibitory effect on phagocytosis [36]. This might be an

explanation for the fact that phagocytosis of serotype strains 1, 2

and 14 was significantly lower than for serotype strains 4 and 9.

The sialylated capsule of Streptococcus agalactiae also inhibits C3

deposition on the bacterial cell surface [37], probably via

recruitment of factor H, an anti-activator of the complement

alternative pathway [38]. However it is not evident that C3

deposition is inhibited by sialic acid in the serotype 2 capsule of S.

Figure 5. hTLR2/6 assay. HEK293 cells were incubated with 6
different S. suis strains and an unencapsulated mutant at a MOI10,
PAM2CSK as a positive control and medium as a negative control. This
figure is representative out of three hTLR2/6 assays. *P,0.05.
doi:10.1371/journal.pone.0035849.g005

Figure 6. Detection of encapsulation of S. suis strains by LRR staining and transmission electron microscopy. S. suis 2 strain 10 shows a
thick capsule, whereas no capsular material can be seen in isogenic mutant strain S. suis 2 10DcpsEF.
doi:10.1371/journal.pone.0035849.g006
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suis because phagocytosis levels are not significantly different in the

presence or absence of serum factors [25].

Interestingly the unencapsulated SS2J28 strain was less

efficiently phagocytosed than serotype strains SS4 and SS9

(Fig. 3). Thus it is possible that SS2 has other mechanisms that

inhibit phagocytosis. A two-component regulatory system (TCS)

designated SalK/SalR has been shown to have a protective role in

the killing of S. suis by granulocytes [16,39,40] but this locus is

absent in the genome of SS2 strain and thus cannot be responsible

for the lower levels of phagocytosis observed for SS2 compared to

SS4, SS7, SS9 and SS14.

A shielding effect of SS2 capsule was investigated using a

reporter cell line for TLR2/6 signaling. The TLR2/6 heterodimer

is formed by binding of the di-acyl groups present on lipoproteins

of Gram-positive bacteria and lipoteichoic acids present in the cell

wall [22,41]. This triggers NF-kB activation via a signal kinase

cascade involving the adapter protein MyD88 and was detected in

our assay by production of luciferase under control of an NF-kB

promoter. The unencapsulated mutant of SS2 induced signifi-

cantly (P,0.05) higher levels of NF-kB than SS2 suggesting that

the capsule has a shielding effect on the exposure of TLR agonists

that can activate DCs (Fig. 5). Notably, the level of NF-kB

activation obtained with the unencapsulated mutant was signifi-

cantly lower than for SS9 (P,0.0001), SS14 (P,0.0001) and SS4

(P,0.0001). The highest level of TLR2/6 activation was observed

for SS9, something observed in a previous study using the same

strains SS2 and SS9 (Fig. 5) [42]. Interestingly we found that SS9

was phagocytized more efficiently than the other strains and was

highly effective at activating DC. However efficiency of phagocy-

tosis did not correlate with activation of DC as evident for strain

SS1 which was phagocytized at relatively low levels compared to

the other serotypes but nevertheless strongly activated DC in co-

culture.

The amounts of IL-10, IL-12, and TNF-a measured in the

supernatants of DC co-cultured with the different serotypes was

highly variable (Fig. 2). The amounts of IL-10 ranged from 5 pg/

mL to 56 pg/mL, IL-12p70 from 7 pg/mL to 6948 pg/mL and

TNF-a from 5 pg/mL to 3744 pg/mL (Fig. 2A–C). In agreement

with the data on maturation and activation markers (Fig. 1) the

serotypes SS1, SS7 and SS9 were the highest inducers of cytokines,

whereas serotype SS2 induced the lowest amounts of cytokines (all

cytokine ,10 pg/mL). Interestingly all of the S suis serotypes

except SS2 induce low ratios of IL-10 to IL12 ratios (less than

0.08). For SS2 the IL-10 to IL-12 ratio was 0.34 at MOI 1 and

almost 1.0 (0.98) at MOI 10. This qualitative effect on the cytokine

response was due to the serotype 2 capsule because the

unencapsulated mutant of SS2 induced cytokines with a low IL-

10 to IL-12 ratio (0.03 at MOI 1 and 0.008 at MOI 10) as

observed for the other serotypes (Fig. 2D). A similar trend was seen

for the IL-10/TNF-a cytokine ratio (Fig. 2E). Although induced

levels of IL-10 were relatively low for both strains the

unencapsulated mutant induced more than 100 fold higher levels

of the pro-inflammatory IL-12 and TNF-a than the capsulated

strain. It is not known whether the immunomodulatory effect of

SS2 capsule is also observed with porcine DC as the recent study

did not measure IL-10 production by DC [25]. A consequence of

increased IL-10 production may be the polarization of T helper

cell responses towards Th2 or Treg [43]. In pathogenic species of

Yersinia for example, the secreted V antigen protein induces IL-10

in macrophages to evade the host’s inflammatory response during

infection [44]. Pathogens such as Mycobacterium tuberculosis and HIV

target DC-SIGN on DC to escape immunity. Binding to DC-

SIGN cause internalization but not subsequent antigen processing

and induces IL-10 expression resulting in suppression of Th1

responses [45]. DC-SIGN binds glycans containing high mannose

structures appear not to be present in the published structure of

the serotype 2 capsular polysaccharide [46]. However, it is possible

that the involvement of other C –type lectin receptors on DC or

other glycan structures may be involved in the immunomodulatory

effects of the SS2 capsule.

Over a period of 5 hours after internalization in DC the

number of viable S. suis were reduced about 100 fold. The rate of

killing and overall levels of intracellular survival of S. suis after

5 hours was higher than that reported previously using porcine

DC [25]. This may have been due the use of a different serotype 2

strain and/or differences in killing capacity of human and pig DCs

and warrants further study. Despite the fact that a high proportion

of phagocytized S. suis were killed by DC in the first 5 hours of

incubation we were able to recover around 103 CFU of SS2 and

the unencapsulated mutant after 24 hours incubation (Fig. 4B). In

these experiments antibiotics were added to the medium for

5 hours to kill extracellular and adhered bacteria then the medium

was replaced by RPMI without antibiotics, to prevent the

antibiotics from entering the DCs. Prior to lysis antibiotics were

added a second time to some of the samples to kill any

extracellular bacteria that might have been released from DC.

The results (Fig. 4B) showed that the CFU counts present after

24 hour could indeed be attributed to the presence of viable

intracellular S. suis. This has important consequences for

pathogenesis because activated DCs eventually undergo apoptosis

and may release viable S. suis. As DC traffic from the mucosa

travel via the bloodstream to lymphoid tissue such a mechanism

may enable S. suis to rapidly disseminate in the body during

invasive disease.
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