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Cannabis is one of the most widely used illicit substance among users of stimulants such
as cocaine and amphetamines. Interestingly, increasing recent evidence points toward
the involvement of the endocannabinoid system (ECBS) in the neurobiological processes
related to stimulant addiction.This article presents an up-to-date review with deep insights
into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects
of its modulation on addictive behaviors.This article aims to: (1) review the role of cannabis
use and ECBS modulation in the neurobiological substrates of psychostimulant addiction
and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat
stimulant addiction. A growing number of studies support a critical role of the ECBS and
its modulation by synthetic or natural cannabinoids in various neurobiological and behav-
ioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems
closely involved in stimulants addiction, and provide further evidence that the cannabinoid
system could be explored as a potential drug discovery target for treating addiction across
different classes of stimulants.
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INTRODUCTION
Addiction to psychostimulants such as cocaine, ampheta-
mine, and its derivatives [i.e., methamphetamine, N -methyl-
3,4-methylenedioxymethamphetamine (MDMA)] is a significant
global public health problem which affects many aspects of social
and economic life. Worldwide, between 16 and 51 million peo-
ple are users of these types of substances (1). Amphetamines have
been identified as the second world’s most widely used illicit drug
after cannabis, with an annual prevalence ranging from 0.3 to
1.2% in the adult population. Methamphetamine consumption
has increased dramatically the last years, especially in the western
and mid-western parts of the United States, although there also
appears to be an eastward trend in use (2). Over 15 million peo-
ple worldwide are cocaine users and 5.9 million of them live in
North America (3, 4). Although the prevalence of cocaine con-
sumption has declined in the past decade, cocaine use increased in
2011; dependence to this drug remains a significant issue in North
America, Western and Central Europe, particularly in metropoli-
tan areas where crime and violence have increased (4). Given its
association with high rates of mental and physical problems as well
as premature mortality, cocaine abuse is still an unresolved med-
ical and socio-economic concern which carries a heavy burden for
abusers and their families alike (3, 5–7).

In recent decades, development of new treatments for psychos-
timulant addiction has been a major focus of multidisciplinary
research efforts and have included molecular approaches, pre-
clinical behavioral studies, and clinical trials. However, in spite
of these research endeavors, no specific pharmacological therapy
has been found to be truly effective in alleviating psychostimulant

cessation symptoms like craving and anxiety, or to prevent relapse
(8–11). Neuropharmacological agents such as antidepressants,
anticonvulsants, and antipsychotics have been tested as treat-
ments for cocaine dependence but these medications have yielded
negative clinical outcomes (12–14). Subsequent attempts at tar-
geting other neurotransmitters such as the dopaminergic and
γ-aminobutyric acid (GABA) systems (10, 15, 16), and devel-
oping a cocaine vaccine (17) to promote abstinence in cocaine-
dependent individuals, have shown promising results but still
require further investigation. Importantly, many clinical studies
have focused on cocaine addiction rather than other psychostim-
ulants such as amphetamines and methylphenidate. Whether the
outcomes related to cocaine addiction can be applied to other
psychostimulants remains unclear (18).

Given the need to better understand neurobiological mech-
anisms that underly psychostimulants addiction and to develop
innovative treatment strategies, researchers have explored the
involvement of specific neurotransmitter systems and brain struc-
tures in the motivational and addictive properties of this class
of drugs. Increasing evidence indicates that the endocannabi-
noid system (ECBS) - a group of neuromodulatory lipids and
receptors – plays a central role in various cognitive and physio-
logical processes associated with addiction such as reward, stress
responsiveness, and drug-related synaptic plasticity (19–21). The
potential of ECBS modulation in treating stimulant addiction has
recently been highlighted in human and animal studies investigat-
ing its effects on acquisition, maintenance, and relapse of drug-
taking behavior. Moreover, endogenous and exogenous cannabi-
noids such as plant-derived cannabinoid ligands (i.e., ∆9-THC,

www.frontiersin.org September 2013 | Volume 4 | Article 109 | 1

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/about
http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol/10.3389/fpsyt.2013.00109/abstract
http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol/10.3389/fpsyt.2013.00109/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=StephanePotvin&UID=27411
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DidierJutras-Aswad&UID=74786
mailto:didier.jutras-aswad@umontreal.ca
http://www.frontiersin.org
http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Olière et al. Modulation of the endocannabinoid system in addiction to psychostimulants

cannabidiol, CBD) modulate specific neurotransmitter systems
which are also pharmacological targets for cocaine. Interestingly,
cannabis is widely used by psychostimulant-dependent individuals
(22); while it is recognized that components of the ECBS are impli-
cated in psychostimulants, more specifically in cocaine-seeking
behaviors, very few studies have focused on an understanding of
the neural and behavioral effects of cannabis on psychostimulants
use in humans.

The current review will focus on the neurobiological basis of the
addictive process from psychostimulant initiation to drug abuse
and addiction. The involvement of critical neurotransmitters and
neural circuits underlying the pathological modifications at each
of these stages will be highlighted with a specific attention given to
the ECBS. In turn, this overview will serve as foundations to look at
the ECBS as a specific target of pharmacotherapeutic interventions
to reduce the addictive effects of psychostimulants.

NEUROBIOLOGY OF PSYCHOSTIMULANTS
Occasional use of psychostimulants like cocaine, at low doses, pro-
vokes a so-called “rush” (i.e., euphoria) in humans, giving them
a sensation of vigilance and increased energy. Higher doses of
cocaine induces symptoms described as “cocaine high,” which
include enhancement of a euphoric sensation, an increase in
motor activity, amplification of sensory perception, talkativeness,
and suppression of appetite and thirst (23). Unfortunately, these
positive subjective effects (i.e., euphorigenic state) are often fol-
lowed by repetitive and frequent cocaine abuse which develops
into addiction. Drug addiction is a chronically relapsing disorder
characterized by loss of control over drug-seeking and the com-
pulsive desire (referred as craving) to use drugs in spite of negative
consequences (24). Drug cravings increase with exposure to drug
and drug-related-cues, and in the context of emotional stress or
negative moods (25, 26). Because addiction is a highly complex
disorder, numerous studies have attempted to determine the mol-
ecular and cellular factors implicated in the pleasurable effects
induced by drug consumption, and their role in the development
of addictive behaviors (27–31).

NEUROTRANSMITTERS INVOLVED IN PROCESSES LEADING TO
PSYCHOSTIMULANTS ADDICTION
Psychostimulants affect the central nervous system by modulating
the mesocorticolimbic dopamine (DA) system which is involved
in several physiological processes such as cognition, memory,
and reward-driven learning (32). The mesocorticolimbic system,
which has been found to play a role in drug reward and addiction,
includes DA projections from cell bodies in the ventral tegmen-
tal area (VTA) to limbic structures such as the nucleus accumbens
(NAc) (33), amygdala in the forebrain (34, 35), hippocampus (36),
and to cortical areas such as the prefontal cortex (PFC), includ-
ing the orbitofrontal cortex (OFC) and anterior cingulate (AC)
(37). Psychostimulants exert their effects on the CNS via a num-
ber of mechanisms; cocaine, amphetamines, methamphetamines,
and methylphenidate alter normal DA receptor functions by bind-
ing the dopamine transporter (DAT) and forming a complex
that blocks the transporter’s function. The psychostimulant/DAT
complex inhibits DA reuptake into the presynaptic nerve termi-
nal, leading to an excess of DA in the synaptic cleft within the

NAc – recognized as the center of the rewarding process (38–
40). This phenomenon results in an increased and prolonged
post-synaptic effect of dopaminergic signaling at DA receptors
on the receiving neuron (30, 31). However, unlike cocaine, which
interferes mainly with plasma membrane transporters, other psy-
chostimulants modulate the CNS through a host of mechanisms.
First, methamphetamines and amphetamines act as substrate-
type releasers (41, 42) to enhance DA efflux. These substrate-type
releasers have two modes of action: (i) they reverse the process of
transporter-mediated exchange by interacting with specific trans-
porter proteins which are subsequently brought into the cytoplasm
of the nerve terminal; (ii) they also increase cytoplasmic levels of
DA by interfering with vesicular storage (43, 44). Moreover, these
drugs increase cytosolic DA levels by shutting-down the activ-
ity of the monoamine oxidase (MAO) – an important enzyme
for the catabolism of monoaminergic neurotransmitters. Finally,
psychostimulants also enhance the activity and expression of the
tyrosine hydroxylase (TH), the DA-synthesizing enzyme [reviewed
in Ref. (45)]. However, exactly how these high levels of DA in the
NAc mediates drug reward remains partially understood.

Even though DA has been identified as one of the primary
mechanisms involved in drug reinforcement initiation, studies
reveal that mice lacking the gene expressing the DAT continue
to self-administer cocaine (46, 47). Interestingly, several reports
have suggested the indirect implication of other neurotransmitter
systems [i.e., serotonin (5-HT), norepinephrine (NE), glutamate
(GLU),GABA,opioid peptides,and endocannabinoids (48–50)] in
the incentive sensitization and reinforcing effects of psychostim-
ulants (29, 51). Indeed, psychostimulants also reduce 5-HT and
norepinephrine NE reuptake, which in turn leads to an increase in
extracellular monoamines concentrations and contributes to the
rewarding subjective feelings mediated by these drugs (42, 52–54).
Surprisingly, knock-down of NET, or SERT, or NET/SERT genes
does not abolish but rather potentiates the rewarding or aversive
effects of cocaine (55, 56). Recently, further lines of evidence have
suggested that NE plays a role in the reinstatement of drug seeking,
although it does not influence the maintenance phase of cocaine
self-administration (SA) (57–59). Blockage of NE cognate recep-
tors – α1-adrenergic receptors (α1ARs) and β-adrenergic receptors
(βARs) – in a mice model of addiction diminishes cocaine-primed
and foot shock-induced reinstatement respectively, whereas inhi-
bition of both receptors reduces cue-induced reinstatement (60,
61).

Long-term use of psychostimulants leads to homeostatic dys-
regulation of normal (i.e., without cocaine) dopaminergic signal-
ing. This hypo-dopaminergic state contributes to the appearance
of some withdrawal symptoms (i.e., depressive mood disorders),
often observed in abstinent psychostimulant addicts, and, also the
maintenance of drug-use behaviors. Similarly, withdrawal symp-
toms from chronic cocaine use have been also associated with
cocaine-induced alterations in 5-HT neurotransmission. Inter-
estingly, rodent studies show that enhancement of serotonergic
transmission in the NAc through administration of exogenous 5-
HT served to offset the DA deficit caused by cocaine withdrawal
(62); indeed, accumulating studies suggest that increasing brain
5-HT activity could reduce the behavioral-stimulant and reinforc-
ing properties of psychostimulants (reviewed in Ref. (44)]. Thus,
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modulation of 5-HT and DA levels might sensitize an important
brain reward circuit to the reinforcing effects of psychostimulants
contributing to the intractable nature of addiction and relapse.

The glutamatergic system is another important neuronal sub-
strate of behaviors induced by drugs of abuse (63,64). Indeed,GLU
is an excitatory neurotransmitter essential to numerous processes
including neuroplasticity, linked to long-term potentiation (LTP),
long-term depression (LTD), extinction, and reward-related learn-
ing (65–68). Like DA, GLU levels in the NAc core decrease during
the early phase of cocaine abstinence (69, 70), whereas both stress
and drug-induced reinstatement of cocaine-seeking are associated
with an increase of extracellular GLU levels in the NAc in rodents
(63, 64, 70–73). Thus, the data suggests that both a decrease in
basal GLU transmission and an enhanced GLU response may con-
stitute a neurobiological substrate of cocaine-, cocaine-associated
cue-triggered relapse.

While discovery of numerous neurotransmitter systems have
yielded significant advances in defining psychostimulants’ effects
on the brain neurochemistry, the precise mechanisms underly-
ing their role in addictive behaviors are not as straightforward.
While DA and GLU appear to be critical in the development
and persistence of stimulant addictive behaviors, a growing body
of evidence points toward the impact of other neurotransmis-
sion systems, including the ECBS, in various physiological and
behavioral processes associated with psychostimulant addiction,
through both DA/GLU related and unrelated mechanisms. An
overview of this evidence will be presented in Section “The
Endocannabinoid System,” with a particular focus on the poten-
tial exogenous and endogenous cannabinoids influence on psy-
chostimulant reinforcement, drug-related synaptic plasticity, and
drug-seeking behavior.

NEURAL REGIONS INVOLVED IN ADDICTION PROCESS TO
PSYCHOSTIMULANTS
A central challenge in addiction research is understanding the neu-
robiological substrates involved in drug-taking behavior. Over the
last two decades, neuroimaging has provided substantial insight
into that question by: (i) allowing researchers to investigate
the roles of different neural regions in drug-induced euphoria
and subsequent craving; (ii) enabling the gathering of tremen-
dous information regarding the neurochemical and physiological
adaptations of the brain during the addiction process.

Brain imaging studies of subjects addicted to psychostimu-
lants indicate that the NAc – known to play a fundamental role
in goal-directed behaviors (74) – is organized into two function-
ally distinct sub-compartments termed the shell and core (33). The
shell and the VTA are critical in inducing motivational salience and
responding to novel rewarding stimuli (75). The core mediates
the expression of learned behaviors, and receives glutamatergic
afferents from the PFC (33, 75). DA release into the core occurs
in response to cues predicting a motivating event (76, 77). The
NAc receives information regarding motivationally relevant events
from the VTA, amygdala, hippocampus, and PFC, and responds
by providing output to brain circuits which modulate the expres-
sion of the behavioral response (e.g., to seek the drug or not) (78).
Chronic exposure to psychostimulants leads to the dysregulation
of the mesolimbic circuitry, which in turn enhances the motivation

to take drugs and decreases the ability to regulate the behavioral
response to drug cues (33, 74).

The numerous neuroimaging methods used to study the
chronic effects of psychostimulants on the brains of drug-addicted
individuals have consistently found abnormalities in both cor-
tical and subcortical neural areas (37, 79). More specifically,
chronic exposure to psychostimulants causes functional alter-
ations within frontal brain areas, including the dorsolateral pre-
frontal cortex (DLPFC), the OFC, and the anterior cingulate
cortex (ACC) involved in goal identification; selection (80); deci-
sion making; impulsivity; behavioral inhibition (81), and assess-
ment of consequences (82), respectively. It has been proposed
that abnormalities within these three PFC-striatothalamic cir-
cuits play a central role in emotional response to drug cues,
craving, compulsive drug-seeking, and relapse (26, 35, 83–85).
Moreover, structural magnetic resonance imaging (structural
MRI) studies associate chronic use of psychostimulants with
alterations in white-matter integrity and gray-matter volume,
which are strongly correlated with lower abstinence-based out-
comes (86) and drug-induced compulsivity, decision making, and
attention impairments in cocaine-dependent subjects, respectively
(85). Furthermore, exposure to emotional distress and aversive
stimuli also activates the cortico-limbic circuits, including pre-
frontal, AC, middle frontal, and orbitofrontal regions, limbic
and paralimbic structures such as the amygdala, hippocampus,
parahippocampal gyrus, fusiform gyrus, and other midbrain areas,
but not the ventral striatum (87, 88). Overall, the data shows
that chronic use of psychostimulants modulates a set of neural
regions implicated in stress, emotions, impulsivity, and reward
processing control which precipitate relapse in drug-abstinent
individuals.

THE ENDOCANNABINOID SYSTEM
Though the significant role played by various neurotransmitters,
genetic factors and specific brain structures in reinforcing the
properties of psychostimulants has been established, the common
mechanisms underlying the development of addictive behaviors
have yet to be fully elucidated. A growing body of evidence
points to the involvement of the ECBS in the acquisition and
maintenance of drug-taking behaviors and in various physiolog-
ical, as well as behavioral processes associated with addiction.
Interestingly, a characteristic of psychostimulants abuse is the
concurrent consumption of other substances including delta-9-
tetrahydrocannabinol (∆9-THC) – the main cannabinoid found
in cannabis [reviewed in Ref. (89)]. This poly-substance pattern
of use has prompted researchers to investigate the potential inter-
action with, and effect of, these drug on neuropsycho-biological
processes related to addiction. For example, some studies reveal
that cannabis consumption enhances the incentive to use cocaine
in individuals dependent on both, while others suggested that
cannabis reduced withdrawal symptoms in abstinent cocaine-
addicted subjects (22, 90, 91). Although it is recognized that
components of the ECBS are involved in cocaine-seeking behav-
iors, very few studies have focused on understanding the neural
and behavioral effects of endogenous and exogenous cannabi-
noids on psychostimulant use. In this section, we will first provide
an overview of the ECBS, and then focus on recent findings
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pointing toward a role of the ECBS in the circuitry underlying
psychostimulant addiction.

OVERVIEW
The ECBS consists of a family of lipid signaling molecules referred
to as endocannabinoids, their cognate receptors and specific meta-
bolic enzymes which are responsible for degradation of the endo-
cannabinoids – anandamide (AEA) and 2-arachidonoylglycerol
(2-AG). The neurobiological properties of endocannabinoids are
complex, but it is now well established that they modulate a wide
diversity of physiological processes including pain and inflam-
mation, immune responses, food intake, synaptic transmission,
cognition, reward, and motor activity (92). Endocannabinoids also
influence mechanisms involved in addiction and relapse.

RECEPTORS
There are currently two well described subtypes of cannabinoid
receptors, termed CB1 and CB2, which differ in their signaling
mechanisms and tissue distribution. Even though CB1 recep-
tors are considered the most abundant and widely distributed
G-protein-coupled receptors found in the CNS, they are also
present in peripheral organs and tissues (i.e., endocrine glands,
leukocytes, spleen, heart, and gastrointestinal tracts, etc.) (93–97).
CB1 receptors are localized in TH-expressing neurons, probably
dopaminergic neurons of the NAc, VTA, striatum, and pyriform
cortex, suggesting that the ECBS may directly influence dopamin-
ergic reward mechanisms. In addition, CB1 receptors are expressed
in other neural regions related to reward, motivation and memory
processing (i.e., basolateral amygdala, hippocampus, and cerebral
cortex), movement (i.e., basal ganglia, cerebellum), pain modu-
lation (i.e., certain parts of the spinal cord, periaqueductal gray).
Endocannabinoids induce LTD of the inhibitory synapses in the
hippocampus, contributing to the synaptic plasticity involved in
the learning processes related to addictive behaviors. CB1 recep-
tors are confined at the terminals of central and peripheral nerves,
where they inhibit the release of excitatory and inhibitory neu-
rotransmitters (release on command, retrograde signaling) (98–
100). Thus, the activation of CB1 receptors protects the nervous
system from over-activation or over-inhibition by neurotransmit-
ters and thereby promotes the latter’s prominent role in anxiety,
depression, cognition, addiction, motor function, feeding behav-
ior, and pain (101). CB2 receptors are mainly found in immune
cells (i.e., spleen, tonsils, and thymus gland) (102–104), although
recent experimental data indicate CB2 receptors expression in the
cerebellum, brainstem, and cortex (105–107) as well as activated
microglial within the CNS (108–110). Simulation of CB2 recep-
tors on microglia modulates the neuro-inflammatory response by
regulating cytokines release in the brain (111–113).

Increasing evidence points toward the existence of additional
cannabinoid receptors subtypes in the CNS. Indeed, recent pre-
clinical studies suggest the persistence of cannabinoid-like prop-
erties after cannabinoid agonists have been administered to mice
lacking CB1 and CB2 receptors (CB1−/− and CB2−/−) in neuronal
subpopulations. This indicates that these agonists recognize non-
CB1/CB2 cannabinoid receptors (114–117). Among these recep-
tors, the orphan G-protein-coupled receptors modulate the ECBS.
GPR55 specifically is found in the striatum and to a lesser extent in

the hippocampus, the thalamus and the cerebellum (118). GPR55
is phylogenetically different from CB1 and CB2 receptors, in that it
is activated by the CB1 antagonists – rimonabant and AM251 – but
blocked by the cannabinoid agonist CP55, 940 (119–121). Thus,
GPR55 is considered as a non-CB receptor with a binding site for
cannabinoid ligands [reviewed in Ref. (122)]. Though a recent
study from Rusakov’s group suggests that GPR55 enhances neuro-
transmitters release at central synapses (123), further studies are
required to confirm its neurophysiological function.

The actions of endocannabinoids are not only restricted to the
CB1, CB2, and GPR receptors. Transient receptor potential (TRP)
receptors have also been identified as sites of endocannabinoid
interaction. Exogenous and endogenous cannabinoids interact
with at least five TRP receptors (124); AEA binds to the transient
receptor vanilloid potential 1 (TRVP1) with low affinity. TRVP1
is found on sensory neurons, where they are partly coexpressed
with CB1 receptor, but also in several central nuclei including the
hypothalamus and basal ganglia, the hippocampus and cerebellum
(125). The efficacy and potency of AEA at TRVP1 is increased when
the AEA degrading enzyme FAAH (fatty acid amide hydrolase) is
suppressed (126–128). Surprisingly, pharmacological or genetic
inhibition of FAAH enhances AEA, but decreases 2-AG levels
via TRVP1 receptors (129). Interestingly, both endocannabinoids
AEA and 2-AG decrease the excitatory GLU and the inhibitory
GABAergic inputs to striatal neurons (130, 131). Therefore, it is
likely that the potential of AEA to reduce 2-AG levels by activat-
ing TRVP1 receptors might represent a mechanism to integrate
excitatory and inhibitory inputs in the basal ganglia.

ENDOCANNABINOIDS AND THEIR METABOLIZING ENZYMES
In the CNS, endocannabinoids mediate forms of short-term
synaptic plasticity known as depolarization-induced suppression
of inhibition (DSI) (132, 133) and depolarization-induced sup-
pression of excitation (DSE) (134). Thus, endocannabinoids are
considered as retrograde messengers that neuromodulate diverse
physiological processes. AEA and 2-AG are the two most char-
acterized endocannabinoids (135, 136), although other stud-
ies have identified of additional endocannabinoids such as 2-
arachidonylglyceryl ether (noladin ether) (137), N -arachidonoyl-
dopamine (NADA) (128), and O-arachidonoyl-ethanolamine
(virodhamine) (138). However, the physiological functions of
these endocannabinoids are still being investigated. While 2-AG
acts as a full agonist at CB1 and CB2 receptors, AEA behaves as
a partial agonist at both receptors subtypes and can also interact
with GPR55 and TRVP1 receptors.

Unlike other neurotransmitters, AEA and 2-AG are not syn-
thesized and stored in the nerve cells. Rather, they are pro-
duced on an “as needed” basis by their membrane lipid precur-
sors in a Ca2+ dependent fashion (133, 139). Although addi-
tional studies are needed to ascertain the exact role of the N -
acylphosphatidylethanolamine phospho-lipase D in the ECBS, it
has been proposed that this enzyme might play a significant role in
the synthesis of AEA (140). The enzyme responsible for 2-AG syn-
thesis is the diacylglycerol lipase alpha (141). Upon depolarization
of post-synaptic neurons, the endocannabinoids released into the
synaptic cleft bind to and activate the presynaptic CB1 receptors,
which in turn suppress the release of both excitatory and inhibitory
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different neurotransmitters [see for review (142)]. Then, AEA and
2-AG are rapidly deactivated by cellular reuptake into both neu-
rons and glial cells and metabolized by specific enzymes (143).
AEA can be metabolized by either the FAAH (144), or monoacyl-
glycerol lipase (MAGL), which degrades specifically 2-AG (145). In
addition to MAGL, recent studies have suggested that the enzymes
ABHD6 and ABHD12 could also be involved in 2-AG metabolism
(146, 147). FAAH is over-expressed in the CNS and FAAH-positive
neurons are localized in proximity to CB1 receptor-containing
terminals, underlining the role for this enzyme in endocannabi-
noids inhibition (148). Thus, selective inhibition of FAAH (149)
and MAGL (150) can prolong the effects of endocannabinoids.
Pre-clinical studies have demonstrated that pharmacological inhi-
bition of FAHH with URB597 (149) or PF-3845 compounds (151)
induced-anxiolytic-like effects (152, 153) and anti-nociceptive
properties in mice (152, 154). Inhibition of MAGL with JZL184
inhibitor causes analgesia, hypothermia, and hypomotility (155).
However, chronic exposure to JZL184 impairs endocannabinoid-
mediated synaptic plasticity in mouse hippocampus and cere-
bellum via 2-AG upregulation. It also induces tolerance to the
analgesic effects, physical dependence, and persistent activation as
well as desensitization of brain CB1 receptors (156). Surprisingly,
MAGL knockout mice show enhanced learning behavior and have
normal locomotor activity, suggesting the possible role of MAGL
in cognitive function (157, 158).

EXOGENOUS CANNABINOIDS: ∆9-THC VS. CBD
Cannabis is the world’s most commonly used illicit drug (159,
160). Between 119 and 224 million people are cannabis users
worldwide (4). Cannabis contains over 85 different chemical
substances unique to the plant and termed phytocannabinoids.
Among them, ∆9-tetrahydrocannabinol (∆9-THC) and CBD are
the two main components of cannabis, which has been used for
thousands of years for both recreational and medicinal purposes.
Most studies regarding cannabis properties have focused on ∆9-
THC, which is the main psychoactive constituent in cannabis
extracts (161). Although ∆9-THC possesses a number of ther-
apeutic effects (e.g., on pain, spasms, inflammation), its negative
impact on the CNS has been highlighted in several clinical studies
on subjects smoking cannabis, documenting impulsive behavior,
cognitive impairment, consumption of addictive substances, and
psychiatric disorders (e.g., schizophrenia, depression, and anxi-
ety) (162–165). For example, ∆9-THC has been shown to induce
psychotic-like and anxiogenic effects when administered intra-
venously to healthy subjects (166,167). Other experimental studies
revealed that ∆9-THC injection in animal models causes hypolo-
comotion, catalepsy, antinociception, and hypothermia (168).

Pharmacological studies in animal models suggest that not
all therapeutic effects related to cannabis administration can be
ascribed to ∆9-THC [reviewed in Ref. (169)]. Indeed, CBD – the
second most abundant cannabinoid found in cannabis – acts as
an antidepressant and possesses anticonvulsant, antiemetic, anxi-
olytic, and sleep-promoting as well as neuroprotective properties
in humans (160, 170–176). CBD mediates its neuropharmacolog-
ical properties by acting as an inverse agonist on CB1 and CB2
receptors (177, 178); it also stimulates the TRVP1 and TRVP2
(179) which serve as so-called ionotropic cannabinoid receptors.

In addition, CBD inhibits FAAH, the main catabolic enzyme that
alters the hydrolysis of the endogenous cannabinoid neurotrans-
mitter AEA (180) (see above section), and is also an antagonist at
the putative GPR55 receptor. The clinical association of the mod-
ulation of the ECBS by CBD remains to be fully investigated; this
effect could arguably be related to DA uptake inhibition (181).
Interestingly, ECBS interacts closely with other neurobiological
structures which are implicated in the neural adaptations observed
during chronic use of drugs and vulnerability to addiction. For
example, CBD plays a role in the modulation of extracellular
levels of DA (182) as well as µ and δ opioid receptors (183); it
increases adenosine signaling through inhibition of uptake (184).
Moreover, µ opioid and CB1 receptors colocalized within neural
regions are known to modulate reward, goal-directed behavior,
and habit formation relevant to addiction including striatal out-
put projection neurons of the NAc and dorsal striatum (185,
186). While further studies are required to better understand the
impact of CBD on GLU neurotransmission, its protective effects
on GLU toxicity (187) and its psychopharmacologic interaction
with ketamine (188), a N -methyl-d-aspartic (NMDA) receptor
antagonist, are well documented. CBD activates also the sero-
toninergic receptors 5-HT1A (5-hydroxytryptamine) (171, 176,
189–193), which in turn diminishes vulnerability to stress and
has anxiolytic-like effects in animal models (170, 172, 189, 190,
192–195). Similar results were observed in humans, where CBD
administration decreases autonomic arousal and subjective anxi-
ety (196). Interestingly, these anxiolytic effects have been linked to
the modulation of core regions involved in the “emotional brain,”
including limbic system structures such as the AMG and the ACC
(197, 198). CBD’s anxiolytic effects were further confirmed by a
study indicating that the effective connectivity between ACC and
AMG is attenuated during the emotional processing of fearful
faces, while resting activity of the left parahippocampus gyrus is
increased. (196, 199). Remarkably, these neural structures are acti-
vated during drug craving in cocaine addiction (197, 200). It also
decreases compulsive behaviors in rodents, which is hypothesized
to be related to CB1-related mechanisms (201, 202).

While CBD has neuroprotective properties (187, 203, 204) and
∆9-THC administration have been shown to cause neurotoxic
effects (205), these opposing properties have been highlighted
in brain imaging studies where ∆9-THC and CBD activate dif-
ferent brain regions during tasks engaging verbal memory (206,
207), response inhibition (208), and emotional processing (196,
209–211). When given at appropriate doses, CBD counteracts ∆9-
THC properties. Thus, CBD can modulate the functional effects
of ∆9-THC (177, 178). Pre-clinical studies demonstrate that CBD
decreases ∆9-THC-induced conditioned place aversion and social
interaction of on operant behavior model (212, 213). In addi-
tion, CBD diminishes ∆9-THC-induced anxiety and psychotic-
like symptoms in humans (214, 215). Together, this data clearly
suggests that CBD limits ∆9-THC adverse effects. Thus, adminis-
tered together, CBD might increase ∆9-THC clinical efficacy (216,
217). It has been established that unlike, ∆9-THC, CBD possesses
therapeutic properties that could reduce withdrawal symptoms
often present in individuals with addictive disorders (e.g., anxiety,
psychotic, mood symptoms, insomnia, and pain). For example,
a recent pre-clinical study from Hurd’s group aimed at assessing
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the effects of cannabinoids on opioid-seeking behaviors in rats
indicates that while ∆9-THC potentiates heroin SA, CBD inhibits
cue-induced heroin-seeking behaviors for up to 2 weeks following
the last administration (218). In addition, CBD is well tolerated
and has no gross effects on motor function (such as locomotor
activity). CBD is also protects against damages caused by vari-
ous substances; it reverses binge ethanol-induced neurotoxicity
(219) and mitigates the cardiac effects of ∆9-THC (220, 221).
Together this data illustrates the different, and sometimes oppo-
site, neurobiological properties of the two main constituents of
cannabis – CBD and ∆9-THC – that are linked to neural circuits
which might play significant roles in addiction disorders. How-
ever, while numerous studies have highlighted the participation of
the ECBS in the rewarding and addictive properties of drugs of
abuse such as opioids, nicotine, and alcohol over the last decades,
relatively few studies have focus on the impact of this system on
addiction to psychostimulants.

INTERACTION OF THE eCBS WITH BIOLOGICAL AND
BEHAVIORAL CORRELATES OF PSYCHOSTIMULANTS
ADDICTION
HUMAN STUDIES
Human studies aimed at understanding the interaction of the
ECBS with biological and behavioral correlates of addiction to
psychostimulants have mostly focused on ECBS-related risk fac-
tors leading to drug dependence. Interestingly, cannabis use is
strongly associated with the abuse and/or dependence of several
class of drugs including psychostimulants such as cocaine (222).
Moreover, exogenous cannabinoids have been shown to modu-
late the acute rewarding effects of cocaine. These lines of evidence
may suggest an association between ECBS and liability to psychos-
timulant by pointing toward a possible involvement of the ECBS
in the motivational effects mediated by psychostimulants (223)
[reviewed in Ref. (224)]. Based on these observations, scientific
efforts have been devoted to investigate the influence of various
genetic (e.g., ECBS-related genes) and environmental characteris-
tics (e.g., previous or current exposure to cannabinoid agonists)
in individual progression from occasional use to psychostimulant
addiction.

“The gateway theory” and addiction to psychostimulants
Association of prior or concomitant cannabis consumption with
other illicit drugs including psychostimulants such as metham-
phetamine and cocaine, forms the basis of a well-known hypothe-
sis –“ the gateway theory,”which suggests a causal role for cannabis
in the development of subsequent drug use and addiction (225).
While data indicate that smoking cannabis is positively associated
with cocaine consumption, it would be inappropriate to assume
that cannabis per se leads to cocaine use. A study from Lynskey et al.
in human twins reveals that early cannabis use in life increases the
odds of subsequent cocaine use, supporting the causative model
of the “gateway theory.” However, results of this study have been
refuted by Kandel et al. (226) which argues that several additional
genetic, social, and environmental factors, such as life experiences,
might link cannabis use with subsequent cocaine consumption
(227, 228). Actual neurobiological causal mechanisms underlying
this “gateway theory” remain mostly unidentified. Interestingly,

Tomasiewicz and colleagues show that ∆9-THC exposure induces
epigenetic dysregulation of the endogenous opioid proenkephalin
in adolescents; these findings indicate that cannabis exposure, in
and of itself, can be considered as a risk factor that acts “above the
genome” and can “write” on the existing epigenetic background
of adolescent neurodevelopment. Thus, in adolescents, ∆9-THC
exposure-mediated epigenetic effects may act in concert with other
environmental or social factors to augment future behavioral
responses to drugs of abuse via stable and long-term regula-
tion of genes at the transcriptional level. However, while these
data establish a direct link between ∆9-THC-induced changes in
proenkephalin expression and susceptibility to opiate drugs, no
studies have confirmed that this mechanism can be applied to
psychostimulants (229).

Genetic determinants of the ECBS and psychostimulant addiction
It is worth mentioning that not every subject who experiences
the pleasurable effects of psychostimulants will become a chronic
user. Indeed it is more likely that additional factors such as:
(1) genetic variabilities (e.g., polymorphisms in the catechol O-
methyltransferase gene (Val158met) and in the serotonin trans-
porter gene (5-HTTLPR) (230, 231); (2) monoamine receptors
deficiency – either genetically or as a result of their drug excesses –
also contribute to the psychostimulants addiction process (232–
235) (see Table 1). In the ECBS, different genetic variants of
the CB1 receptors – CNR1 – and FAAH genes have been asso-
ciated with increased susceptibility to drug addiction. Indeed,
genetic analyses demonstrate that the CNR1 gene exhibits elevated
numbers of (AAT)n triplet repetition in a sample of 192 non-
Hispanic Caucasian subjects. Interestingly, this CNR1 polymor-
phism increases the risk of intravenous drug use in this population,
with strongest correlation observed in cocaine, amphetamine, and
marijuana dependence (236). Similarly, a study from Ballon and
colleagues shows that detection of this CNR1 polymorphism in a
sample of 142 African-Caribbean individuals predisposed them to
cocaine addiction (237). Unfortunately, while single sequence rep-
etitions can alter transcriptional rates and thereby induced gene
overexpression or silencing (238), the functional nature of the
microsatellite polymorphism triplet repetition (AAT)n in modu-
lating CNR1 gene expression remains blurred (239). It has been
hypothesized that the presence of long alleles with high numbers
of AAT triplets alter CNR1 transcriptional gene expression, ulti-
mately leading to low levels of CNR1 protein synthesis (240). A
recent meta-analysis of 11 studies aimed at investigating the con-
tribution of three CNR1 polymorphisms (rs1049353, rs806379,
and the AAT triplet repetitions) to drug dependence vulnerabil-
ity confirmed the presence of (AAT)n repeats, but only in the
Caucasian population [reviewed in Ref. (239)]. Unfortunately, the
effect of the three CNR1 polymorphisms appeared to be insignif-
icant and showed high heterogeneity. Important caveats have to
be considered when looking at these studies. First, the ethnicity
of the different subjects may prove important, as some studies
included several ethnic groups in their samples, and in some
cases, these groups were not even mentioned (241, 242). Some
reports also examined CNR1 gene polymorphisms in connec-
tion with a different phenotype or stage of drug addiction such
as craving, drug consumption, dependence, or drug withdrawal
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Table 1 | ECBS and factors contributing to vulnerability to psychostimulants in humans.

Aspect Conclusion Reference

Genetic risks factors CNR1 (AAT)n repeat polymorphism associated with IV drug use, including

amphetamine and cocaine, in a non-Hispanic Caucasian population and

with cocaine dependence in an African-Caribbean population

Comings et al. (236), Ballon et al. (237)

CNR1 gene single nucleotide polymorphisms associated with cocaine

addiction in an African-American population

Clarke et al. (244)

FAAH gene mis-sense mutation associated with drug dependence Sipe et al. (245), Flanagan et al. (246)

Cannabis effect in addiction

to psychostimulants

Self-reported of cannabis smoking by crack-cocaine abusers alleviates

withdrawal symptoms and drug-craving

Labigalini et al. (90)

Post-discharge use of cannabis by American cocaine addicts increases risk

of relapse

Aharonovich et al. (91)

Cannabis use correlates with syringe sharing in injection drug users Jutras-Aswad et al. (22)

Recent cannabis use decreases activation of frontal cortices area during

emotional stress stimulation in cocaine-dependent individuals

Li et al. (247)

(243). Furthermore, a detailed description of the repercussions of
CNR1 polymorphisms on CB1 function from a neurobiological
standpoint is lacking from the reviewed studies.

Polymorphisms in the gene coding for the endocannabinoid-
inactivating enzyme FAAH may constitute another risk factor for
problematic drug use, as described by initial reports identifying
C385A, a mis-sense single nucleotide polymorphism (SNP) caus-
ing reduced FAAH enzymatic activity (245, 246). Indeed, a study
from Sipe et al. reveals significant association between C385A
SNP and street drug abuse in a sample of 1737 Caucasian sub-
jects with addictive disorders. Neuroimaging studies combined
with genetic analysis reveal that low FAAH activity enhances AEA
protein expression levels which, in turn, modulate brain regions
implicated in drug addiction and reward circuitry such as the
OFC, AC gyrus, and NAc (242). Additional neuroimaging stud-
ies show that C385A carriers exhibit increased ventral striatal
reactivity – a correlate for heightened impulsivity and reward
sensitivity. C385A carriers display low threat-related amygdala
reactivity – a pattern observed in individuals with high famil-
ial risk of alcoholism. Moreover, C385A polymorphism-reduced
FAAH functional activity increases risk-taking behavior associ-
ated with addiction through abnormal impulsivity and threat
perception [reviewed in Ref. (224, 243)]. Contribution of SNPs
that modulate FAAH functions to stimulant addiction remain
to be explored as the aforementioned data were not obtained in
individuals specifically addicted to stimulants.

Effect of exogenous cannabinoids on psychostimulant reward
As mentioned previously (see The Endocannabinoid System), an
intriguing characteristic of psychostimulants abuse is the concur-
rent consumption of cannabis. Parallel to studies on the long-term
effects of cannabis exposure on subsequent psychostimulant use,
researchers also examined the acute rewarding effects of cannabis
use on concurrent psychostimulant addiction (91, 222). However,
studies aimed at investigating such interactions are sparse. Con-
flicting results from Foltin et al. and Lukas et al. provide evidence
that cannabinoids modulate cocaine-mediated euphoric actions.

First, data from Foltin and colleagues show that human volunteers
who smoked cannabis prior to intravenous cocaine experience a
prolongation of the “high” sensation (248). Second, a study from
Lukas and colleagues reveals that smoking ∆9-THC, 30 min prior
to intranasal cocaine decreases the latency to onset of cocaine-
induced euphoria significantly, from 1.87 to 0.53 min, as well as
the duration of cocaine-induced dysphoria, from 2.1 to 0.5 min
(249). Interestingly, when both drugs are administered concomi-
tantly, no changes are observed in cocaine- and ∆9-THC-induced
positive subjective properties. Furthermore,∆9-THC increases the
peak plasma levels and bioavailability of cocaine considerably. This
increase might be the result of ∆9-THC-induced vasodilation of
the nasal mucosa which, in turn, reduces cocaine-induced vaso-
constriction, thereby increasing cocaine’s absorption. In addition,
the discrepancies between these two studies might be also due to
pharmacodynamic mechanisms including differences in cocaine
absorption or in the ratio of CBD/∆9-THC levels found in the
type of cannabis used for each study.

Using fMRI technology combined with script-guided imagery
paradigm in which subjects imagined being in a real-life stressful
situation, Rajita Sinha’s group found that cannabis abuse con-
tributed to stress-induced blood-oxygen-level-dependent (BOLD)
contrast in a group of cocaine-dependent individuals. More
specifically, cannabis consumption decreases emotional stress cue-
induced frontal and cingulate activation in cocaine-dependent
individuals (247). These findings suggest an abnormal cognitive
control mechanism during affective processing in association with
heavy cannabis use. An important caveat to consider in the lat-
ter study is that cocaine-dependent individuals were abstinent for
several weeks prior to the neuroimagery session and were not cur-
rent users of cannabis. Thus the study did not allow to examine
the acute effect of cannabis on neural and behavioral responses.
However, the fact that this cannabis-induced alteration in stress-
response can be translated to cocaine craving and relapse vulnera-
bility has definitely piqued further interest, and initial data on this
matter already exists. Indeed, the effects of cannabis consumption
on abstinence and relapse to cocaine use have been provided in a
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study from Labigalini and colleagues, in which 25 cocaine-crack
dependent individuals reported to smoke cannabis in order to
get relief from abstinence mediated-cocaine-withdrawal symp-
toms. From this sample, 68% of addicts achieved crack-cocaine
cessation while using cannabis during the 9 months duration of
the study (90). However, the self-reported nature of this study
and its limited duration suggest cautiousness in interpreting its
outcome. In a more recent study, Aharonovich et al. drew oppo-
site conclusions on the consequences of smoking cannabis on
cocaine relapse. In this study, researchers investigated whether
cannabis use after the discharge of 144 drug-addicts from inpa-
tient treatment program could help them to maintain abstinence
and thereby preventing relapse to cocaine use. Results from this
study suggest that smoking cannabis reduced the achievement of
sustained remission and increased relapse to cocaine use (91) (see
Table 1). Surprisingly, a study from Jutras-Aswad et al. supports
the assumption that irregular cannabis use increases risky behav-
iors (syringe sharing) of cocaine and opioid users, as opposed to
regular cannabis use, suggesting a complex dose-effect relationship
between cannabis and addictive behaviors (22). The possibility
that cannabis use by recently abstinent cocaine-dependent individ-
uals influences relapse to drug and other related behaviors remains
poorly documented.

ANIMAL STUDIES
Over the last decades, development of animal models have allowed
a better understanding of psychostimulant effects and addiction-
related behaviors. These studies would not be available through
clinical studies for ethical and practical reasons. Notably, inva-
sive measures such as catheter installation for drug administration
and surgical brain procedures for assessment of drug-induced
neurobiological changes, as well as strictly controlled condition-
ing protocols involving restrictive environments, have extended
the knowledge of psychostimulants effect on neurotransmission.
These methods have also allowed observations of specific behav-
ioral aspects of psychostimulant addiction. Thus, studies on ani-
mal models of psychostimulants abuse have provided tremendous
insights on the role of ECBS in various aspects of psychostim-
ulant addiction, spanning from drug reward, acquisition, and
relapse.

Influence of ECBS on psychostimulants-induced behavioral and
reinforcing effects
As mentioned above (see Neurobiology of Psychostimulants),
substantial evidence indicates that behavioral and addictive prop-
erties of psychostimulants come from the interactions of psy-
chostimulants with brain monoamines. Specifically, increase of
extracellular levels of DA through promotion of DA release by
amphetamine and MDMA, as well as inhibition of DA reup-
take by cocaine, represent the primary mechanisms involved in
rewarding effects mediated by psychostimulants (224). In ani-
mal models of intracranial self-stimulation (ICSS), the rewarding
properties of drugs of abuse typically translate into lowering of
the so-called reward threshold established after operant train-
ing [see Ref. (250) for description]. Initial experiments showed
no effect of CB1 antagonist SR141716A on cocaine’s ability to
lower ICSS threshold in rats (251), although careful data analysis

suggests a tendency toward attenuation. However, different results
were obtained when using a more potent antagonist – AM251.
This antagonist proves CB1 blockade’s effectiveness in inhibiting
cocaine’s action on brain stimulation reward (250). Paradoxi-
cally, the non-selective cannabinoid agonist – WIN55, 212-2 – and
the endocannabinoid transmission enhancer – AM404 – are also
able to abolish cocaine’s reinforcing effects as assessed by ICSS
(252). Whether these apparently contradictory findings may indi-
cate an inverse U-shape effect of CB1 stimulation function on
rewarding properties of stimulants is not entirely clear. However,
these results clearly indicate that cannabinoids might interfere
with brain systems responsible for psychostimulants rewarding
effects, and the mechanism underlying this phenomenon should
be further explored.

Li and colleagues recently found significant reductions in DA
levels in striatum of mice lacking the CNR1 gene, when com-
pared to their wildtype counterparts following acute cocaine
administration and during the basal state (253). This observa-
tion shows consistency with above-cited ICSS studies and with a
previous report on the inhibition of cocaine-induced DA release
in rats by CB1 antagonist SR141716A (254). In contrast, initial
findings suggested that neither basal levels nor cocaine-induced
increases in extracellular NAc DA of CB1 knockout mice dif-
fered from that of normal mice (255), and that CB1 inactiva-
tion by antagonists AM251 and SR141716A failed to alter the
increase in extracellular NAc DA responsible for cocaine-mediated
rewarding effects in rats (256, 257). Differences in experimen-
tal methods used to measure DA levels (voltammetry vs. in vivo
microdialysis) and in the genetic background of the knockout
animals (C57BL/6J vs. CD1) could account for such discrep-
ancies. Notably, compensatory neurobiological changes due to
lack of CB1 receptors could explain the subnormal basal DA
levels observed in Li et al. study. This subnormal basal DA lev-
els could also have contributed to apparent attenuation of DA
levels enhancement produced by cocaine. Overall, the extent to
which ECBS interaction with psychostimulants-mediated reward
effects depends on DA transmission seems limited, especially
when CB1 is targeted. It remains a controversial issue, with sub-
sequent reports of attenuation of cocaine-enhanced extracellu-
lar NAc DA activity by CB2 agonists JWH133 and GW405833
in mice (258), but not by the pharmacological FAAH inhibitor
URB597 in rats (259) adding to the complexity of the matter (see
Table 2).

The increase of DA neurotransmission in the NAc and other
striatal regions responsible for psychostimulant-induced reward-
ing parallels the stimulation of locomotor activity following acute
drug administration. Sensitization to hyperlocomotor responses
produced by psychostimulants occurs after chronic treatment,
reflecting adaptive changes in DA transmission and potentially
correlating with drug-seeking and reinstatement behavior (254,
262). In various studies, neither genetic deletion (262–264) nor
pharmacological inhibition of CB1 receptors by SR141716A (265,
266) altered cocaine’s ability to induce acute motor effects or
behavioral sensitization in rats and mice. However, a compara-
ble number of reports described contradictory results, showing
attenuation of both of these outcomes in CB1 knockout mice
(253, 267) (see Table 3) as well as impairment of sensitization
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Table 2 | Pharmacological inhibition of FAAH inhibition and properties of psychostimulants.

FAAH inhibitors Drug Animal Outcome Effects Reference

AM404 Cocaine Rat Drug-induced lowering of brain reward/self-stimulation threshold Impaired Vlachou et al. (252)

Drug-induced acute hyperlocomotion Attenuated Vlachou et al. (252)

URB597 Cocaine Monkey SA – effect of agonist after drug-taking extinction No effect Justinova et al. (260)

SA – drug-taking behavior No change Justinova et al. (260)

Rat Cocaine-induced increase in VTA DA activity Preserved Luchicchi et al. (259)

Cocaine-induced alterations in firing of NAc shell spiny neurons Attenuated Luchicchi et al. (259)

URB597, PMSF Cocaine Rat SA – drug-seeking responses/intake No change Adamczyk et al. (261)

SA – drug-induced reinstatement Attenuated Adamczyk et al. (261)

SA – cue-induced reinstatement Attenuated Adamczyk et al. (261)

in animals pretreated with SR141716A (254, 268) or AM251
(267). Interestingly, although chronic cocaine use still induced
sensitization in mice with invalidated CB1 receptors, sensitized
response appeared somewhat changed when compared to control
animals. Corbille et al. also found that AM251, unlike SR141716A
(269), only impaired sensitization to cocaine after a single expo-
sure, but not upon repeated administration. Similar experiments
with cannabinoid agonists showed mixed results, as non-selective
WIN 55,212-2 reduced cocaine’s motor effects, probably in a
non-CB1 mediated fashion (252, 270). Likewise, CB2 agonists
JWH133 and GW405833 decreased both acute hyperlocomotion
and sensitization in rats (258), which parallels findings observed
in mice genetically overexpressing CB2 (271). ∆9-THC failed
to alter cocaine’s motor effects in rats (268, 272). Similarly,
cannabinoid-amphetamine interactions studies demonstrate that
acute cannabinoid exposure antagonizes amphetamine’s locomo-
tion effects in a dose-dependent manner in rats. On the other hand,
chronic exposure to ∆9-THC induces sensitization to the psy-
chomotor effects mediated by amphetamine in rats (273). Taken
together, these experiments suggest that the acute motor stimulant
effects of psychostimulant and the induction of cocaine sensiti-
zation may not depend on endocannabinoid tone, even though
CB1 receptors could play a minor modulating role in this regard
[reviewed in Ref. (274)].

Overall, while some evidence of ECBS involvement in the neu-
robiological and behavioral correlates of psychostimulant rein-
forcing properties exists, influence of ECBS on acute psychostim-
ulant reward is modest and probably involves a combination of
mechanisms which may not directly involve DA activity in the
NAc or CB1 receptors.

Influence of ECBS on acquisition and maintenance of
psychostimulant-induced seeking behaviors
Models of conditioning such as the SA paradigm and the condi-
tioned place-preference (CPP) procedure illustrate the reinforc-
ing properties of drugs of abuse and demonstrate their ability
to induce and maintain drug-seeking behaviors. Consistent with
findings showing the limited involvement of the ECBS in the rein-
forcing properties of psychostimulants (see Influence of ECBS on
Psychostimulants-Induced Behavioral and Reinforcing Effects),

modulation of the ECBS appears to have a modest influence on
acquisition and maintenance of psychostimulant-taking behavior
in animals. In CPP experiments, while CB1 receptor deletion did
not affect psychostimulant-induced place conditioning in mice,
SR141716A impaired cocaine-, methamphetamine-, and MDMA-
induced place conditioning in both rats and mice (262–265, 281,
286, 287). Difference in species, compensatory changes in the
knockout animals due to the lack of CB1 receptors, as well as
use of more intense conditioning and higher doses of drugs in
the genetic deletion studies may have contributed to this discrep-
ancy. This suggests that intensity of conditioning could overcome
the effects of blocking ECBS signaling [reviewed in Ref. (274)].
It is important to note that the weaker cannabinoid antagonist
CBD did not affect establishment of amphetamine-induced CPP
in rats (290) and that the genetic overexpression of cannabinoid
receptor CB2 impaired acquisition of both cocaine-induced CPP
and SA (271). Thus the CPP model indicates that, although not
directly interfering with the rewarding properties of psychostimu-
lant drugs, ECBS could play a role in the perception and memory
of psychostimulant reward, depending on environment-related
factors.

In general, CB1 receptor invalidation does not seem to affect
SA of psychostimulants. Experiments with genetic deletion of CB1
show conflicting results, as both knockout and SR141716A-treated
mice still acquired amphetamine- and cocaine-taking behavior in
restrained mobility conditions (266, 275), whereas knockout mice
showed impaired SA behavior in other protocols (255, 258). Over-
all, results suggest that learning SA behavior might not require
extensive ECBS involvement. Maintenance of such behavior may
not depend on CB1 either, as drug-taking responses under a fixed-
ratio schedule in animals that had already acquired cocaine SA
remained unaffected after CB1 blockade by SR141716A in mice
(266, 283), monkeys (280), and rats (250, 256, 269, 283) and by
AM251 in rats (250, 277). Only one contradicting report exists
in which AM251 decreased methamphetamine SA in conditioned
rats (278). Cannabinoid signaling enhancement by the pharma-
cological FAAH inhibitors – URB597 and PMSF – also failed
to affect maintenance of fixed-ratio drug-taking behavior in rats
(261) and monkeys (260). On the other hand, cannabinoid stimu-
lation by CB1 agonists had significant effects in several studies.
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Table 3 | Effects of CB1 cannabinoid receptor deletion and properties of psychostimulants; CB1 receptor antagonists and properties of

psychostimulants.

Genotype Drug Animal Outcome Effects Reference

CB1 KO Cocaine Mouse Drug-induced acute hyperlocomotion Preserved Martin et al. (262), Houchi et al. (263),

Miller et al. (264)

Drug-induced acute hyperlocomotion Attenuated Corbille et al. (267), Li et al. (253)

Drug-induced motor sensitization Preserved Martin et al. (262)

Drug-induced motor sensitization Attenuated Corbille et al. (267)

Drug-induced increase in NAc DA levels Preserved Soria et al. (255)

Drug-induced increase in NAc DA levels Attenuated Li et al. (253)

CPP – behavior acquisition under chronic

unpredictable stress exposure

Preserved Martin et al. (262), Houchi et al. (263),

Miller et al. (264)

Enhanced Miller et al. (264)

SA – behavior acquisition in restrained mobility

protocol

Impaired Soria et al. (255), Xi et al. (258)

Preserved Cossu et al. (275)

SA – breaking point under PR schedule Decreased Soria et al. (255)

Amphet. Drug-induced acute hyperlocomotion Preserved Houchi et al. (263)

Drug-induced acute hyperlocomotion Attenuated Corbille et al. (267)

Drug-induced motor sensitization Attenuated Corbille et al. (267)

SA – behavior acquisition in restrained mobility

protocol

Preserved Cossu et al. (275)

Antagonist Drug Animal Outcome Effects Reference

AM251 Cocaine Mouse Drug-induced acute hyperlocomotion Attenuated Corbille et al. (267)

Drug-induced motor sensitization (induction) Attenuated Corbille et al. (267)

Drug-induced motor sensitization (expression) Preserved Corbille et al. (267)

CPP – drug-induced reinstatement Preserved Vaughn et al. (276)

CPP – stress-induced reinstatement Impaired Vaughn et al. (276)

Rat Drug-induced lowering of brain

reward/self-stimulation threshold

Attenuated Xi et al. (250)

Drug-induced increase in NAc DA levels Preserved Xi et al. (257)

Drug-induced increase in NAc glutamate Attenuated Xi et al. (257)

SA – drug-induced reinstatement Attenuated Xi et al. (257), Adamczyk et al. (277)

SA – cue-induced reinstatement Attenuated Adamczyk et al. (277)

SA – drug-seeking responses/intake No change Xi et al. (250), Adamczyk et al. (277)

SA – breaking point under PR schedule Decreased Xi et al. (250)

METH Rat SA – drug-seeking responses/intake Decreased Vinklerova et al. (278)

SR141716A Amphet., cocaine Gerbils Drug-induced acute hyperlocomotion Decreased Poncelet et al. (279)

Reinstatement of drug-seeking Decreased Poncelet et al. (279)

Cocaine Monkey SA – drug-seeking responses/intake No change Tanda et al. (280)

Mouse Drug-induced acute hyperlocomotion Attenuated Gerdeman et al. (268)

Preserved Lesscher et al. (266)

Drug-induced motor sensitization (induction) Attenuated Gerdeman et al. (268)

Preserved Lesscher et al. (266)

(Continued)
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Table 3 | Continued

Antagonist Drug Animal Outcome Effects Reference

Drug-induced motor sensitization (expression) Preserved Gerdeman et al. (268)

Drug-induced motor sensitization

(maintenance – specific to a drug-paired

environment)

Reversed Gerdeman et al. (268)

CPP – behavior acquisition Impaired Yu et al. (281)

CPP – drug-induced reinstatement Impaired Yu et al. (281)

SA – behavior acquisition Preserved Lesscher et al. (266)

SA – “extinction burst responding” Attenuated Ward et al. (282)

SA – time for behavior extinction Decreased Ward et al. (282)

SA – cue-induced reinstatement Attenuated Ward et al. (282)

SA – drug-seeking responses/intake No change De Vries et al. (283), Lesscher et al.

(266)

SA – breaking point under PR schedule Decreased Soria et al. (255)

Rat Drug-induced acute hyperlocomotion Preserved Chaperon et al. (265)

Attenuated Cheer et al. (254)

Drug-induced motor sensitization (expression) Attenuated Filip et al. (269)

Drug-induced lowering of brain

reward/self-stimulation threshold

Preserved Vlachou et al. (251), Xi et al. (250)

Drug-induced decrease in VP GABA efflux Preserved Caille and Parsons (256)

Drug-induced increase in NAc DA levels Preserved Caille and Parsons (256)

Suppressed Cheer et al. (254)

Drug discrimination Preserved Filip et al. (269)

SA – drug-seeking responses/intake No change De Vries et al. (283), Caille and Parsons

(256), Filip et al. (269), Xi et al. (250)

SA – breaking point under PR schedule No change Xi et al. (250)

Decreased Orio et al. (284)

SA – drug-induced reinstatement Attenuated De Vries et al. (283), Filip et al. (269)

SA – HU210-induced reinstatement Attenuated De Vries et al. (283)

SA – cue-induced reinstatement Attenuated De Vries et al. (283), Filip et al. (269)

SA – stress-induced reinstatement Preserved De Vries et al. (283)

CPP – behavior acquisition Impaired Chaperon et al. (265)

CPP – behavior expression Preserved Chaperon et al. (265)

MDMA Mouse CPP – drug-induced reinstatement Increased Daza-Losada et al. (285)

CPP – behavior acquisition Impaired Rodriguez-Arias et al. (286)

Rat CPP – behavior acquisition Impaired Braida et al. (287)

SA – drug-seeking responses/intake Increased Braida and Sala (288)

METH Mouse CPP – behavior acquisition Impaired Yu et al. (281)

CPP – drug-induced reinstatement Impaired Yu et al. (281)

Rat Drug-induced reinstatement of drug-seeking

behavior

Attenuated Anggadiredja et al. (289)

Cue-induced reinstatement of drug-seeking

behavior

Attenuated Anggadiredja et al. (289)
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Indeed, WIN 55,212-2 increased acquisition of MDMA SA in
mice (286) and exposure to CP55,940 enhances development of
cocaine SA in female rats (291). THC failed to alter acquisition
of cocaine SA and amphetamine SA in monkeys (272) and rats
(290), respectively. In regard to maintenance of drug intake in
animals with SA behavior, cannabinoid agonists decreased drug-
taking responses in rats – CP55,940 diminished MDMA intake
(288) and WIN55,212-2 decreased cocaine administration (292) –
and in monkeys – ∆9-THC also decreased cocaine intake (272).
Fattore et al. first interpreted the shift in psychostimulant intake
produced by CB1 agonists as indicative of a synergistic action
of CB1 stimulation on reinforcing properties of the drugs, which,
incidentally, could account for the frequent use of cannabis among
human psychostimulants users (292). Complementary experi-
ments using progressive-ratio schedules also reveal interaction of
CB1 receptors with psychostimulant-induced reinforcing prop-
erties. In PR schedules, both genetic deletion and antagonist
treatment of CB1 receptors produce a decrease in the maximal
effort mice provided to self-administer cocaine, as made apparent
by decreases in breaking point measures induced by SR141716A
(255, 277, 284) and by AM251 (250) (SR141716A producing no
effect in this specific report). This adds to the evidence that the
CB1 receptors, while not indispensable for acquisition or main-
tenance of cocaine-seeking behavior, may exert a specific mod-
ulation on motivation and reward salience in psychostimulant
addiction.

Role of ECBS in extinction and reinstatement of drug-taking
behaviors
Although the mechanism used by endocannabinoid signaling to
modulate psychostimulant reward and acquisition or maintenance
is still the subject of debate, some form of consensus exists in the
literature about the pivotal role of the ECBS in extinction and
reinstatement in animal behavioral models of psychostimulant
addiction [reviewed in Refs. (89) and (274)]. In conditioning pro-
cedures, extinction refers to the learning phase that follows the
removal of the reinforcer (i.e., psychostimulant drugs), during
which rates of conditioned responses (i.e., SA or CPP) progres-
sively decline back to pre-conditioning levels. After drug-seeking
behavior becomes extinct, several behavioral phenomena can rein-
state drug-seeking behavior. These include not only re-exposure to
the abused drug itself, but also exposure to contextual cues asso-
ciated with previous drug administration and to environmental
stressors (274, 293).

In a recent study from Ward et al. mice treated with SR141716
after removal of cocaine in a SA paradigm altered the burst
in cocaine-seeking observed in the initial phase of extinction
learning, while decreasing the time required to achieve complete
extinction of cocaine-seeking behavior when compared to vehicle-
treated mice (282). CB1 blockade by SR141716A also significantly
decreases cue-induced reinstatement of cocaine SA behavior fol-
lowing extinction, supporting similar reports of attenuation of
cue-induced reinstatement of cocaine-seeking by CB1 antagonism
in rats (269, 277, 283). Evaluation of reinstatement of SA behav-
ior induced by drug-priming produced similar results: SR141716A
blocks cocaine-induced reinstatement (269,283), and both AM251

(257, 277) and SR141716A inhibit methamphetamine-induced
reinstatement (289). It is worth noting that CB2 antagonism
also has an anti-reinstatement effect in cocaine-primed, but not
in cue-exposed rats (277). In CPP models, CB1 blockade by
SR141716A, but not by AM251 (276), impaired drug-induced
reinstatement in cocaine-conditioned mice (281). SR141716A
also impaired methamphetamine-induced reinstatement of CPP
(281). Few studies focused on stress-induced reinstatement of
psychostimulant-seeking.Vaughn et al. recently found that AM251
reverses stress-induced CPP (276). De Vries et al. could not find
an impact of SR141716A on stress-induced SA reinstatement
(283).

Stimulation of CB1 receptors produced opposite results to
those obtained in pharmacological blockade experiments (see
Table 4). WIN55,212-2 increases time for extinction of CPP
and enhances drug-induced reinstatement in MDMA-conditioned
mice (285, 286). Similarly, ∆9-THC increases cue-induced rein-
statement of methamphetamine SA in rats (289). However, studies
from Parker et al. and Adamczyk et al. complexify the interpreta-
tion of these results (290). Indeed, Adamczyk’s group showed that
FAAH inhibition impairs cue- and drug-induced reinstatement
of cocaine SA. Using the place-preference conditioning paradigm,
Parker et al. have assessed the potential of both exogenous cannabi-
noids – ∆9-THC and CBD – to potentiate the extinction of
cocaine- and amphetamine-induced CPP (290). After the estab-
lishment of cocaine-induced and amphetamine-induced place
preference, rats were given an extinction trial, 30 min prior to
which they were injected with a low dose of ∆9-THC, CBD, or
vehicle. During conditioning trials, researchers also injected rats
with cannabinoids, or vehicle, prior to an amphetamine injection,
to determine the effects of ∆9-THC or CBD on the establish-
ment and expression of a place preference. Results indicate that
∆9-THC and CBD potentiate the extinction of stimulant-CPP
learning, which is not mediated by an alteration of learning or
retrieval. CBD does not have a reinforcing or hedonic prop-
erty on its own, suggesting that it does not have the addictive
potential of ∆9-THC, a significant advantage in terms of ther-
apeutic use. The non-reinforcing aspect of CBD has been repli-
cated in studies looking at the co-administration of CBD and
∆9-THC (212, 294). These discrepancies probably result from
the lack of receptor selectivity in the methods used to enhanced
cannabinoid signaling. Nonetheless, these experiments support a
significant involvement of ECBS in the extinction and reinstate-
ment of behaviors related to psychostimulant addiction. Over-
all, the positive results of CB1 antagonists on extinction and
prevention of reinstatement of psychostimulant SA, combined
with their lack of reinforcing properties, suggest a therapeutic
potential for CB1 modulation in treatment of psychostimulant
addiction.

CONCLUSION
A growing number of studies have investigated the neurobiological
and behavioral mechanisms leading to psychostimulants depen-
dence. A key feature of drug dependence is the relapse to drug
use even after long period of abstinence. While greatly improved
in recent years, treatment strategies for psychostimulants have
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Table 4 | CB1 receptor agonists and properties of psychostimulants.

Agonists Drugs Models Outcome Effects Reference

CP55,940 Cocaine Mouse SA – effect of agonist after drug-taking extinction No effect Vaughn et al. (276)

Rat SA – behavior acquisition following exposure during

adolescence in female specimen

Enhanced Higuera-Matas et al. (291)

MDMA Rat SA – drug-seeking responses/intake Decreased Braida and Sala (288)

HU210 Cocaine Rat SA – effect of agonist after drug-taking extinction Reinstatement De Vries et al. (283)

∆9-THC Amphet. Rat CPP – behavior acquisition Preserved Parker et al. (290)

CPP – behavior extinction Potentiated Parker et al. (290)

Cocaine Monkey SA – effect of agonist after drug-taking extinction Reinstatement Justinova et al. (260)

Mouse Drug-induced motor sensitization Preserved Gerdeman et al. (268)

Rat Drug-induced acute hyperlocomotion Preserved Panlilio et al. (272)

Drug-induced motor sensitization Preserved Panlilio et al. (272)

Drug-induced anxiety Increased Panlilio et al. (272)

SA – behavior acquisition Preserved Panlilio et al. (272)

SA – drug-seeking responses under PR schedule Decreased Panlilio et al. (272)

CPP – behavior extinction Potentiated Parker et al. (290)

METH Rat SA – cue-induced reinstatement Increased Anggadiredja et al. (289)

SA – drug-induced reinstatement Attenuated Anggadiredja et al. (289)

WIN-55 Cocaine Rat Drug-induced acute hyperlocomotion Attenuated Przegalinski et al. (270),

Vlachou et al. (252)

Drug-induced lowering of brain reward/self-stimulation

threshold

Impaired Vlachou et al. (251)

SA – drug-seeking responses/intake Decreased De Vries et al. (283)

MDMA Mouse CPP – behavior acquisition Increased Rodriguez-Arias et al. (286)

CPP – time for behavior extinction Increased Rodriguez-Arias et al. (286)

CPP – drug-induced reinstatement Increased Rodriguez-Arias et al. (286),

Daza-Losada et al. (285)

yet to address effectively drug-seeking behaviors linked to high
rates of relapse, persistent drug use as well as subsequent health,
mental, and social problems. There is consequently an urgent
need for researchers to identify compounds that might help
patients (1) initiate abstinence and (2) avoid relapse. The ECBS
appears to play a critical role in dependence to psychostimu-
lants and experimental studies are now providing evidence that
while it does not participate in the primary reinforcing proper-
ties of psychostimulants, it reliably modulates relapse to drugs.
Interestingly, emerging human data supports a role for ECBS
modulation in vulnerability to psychostimulant addiction, and
more significantly in addictive behaviors among dependent indi-
viduals. Accumulating evidence thus points to the ECBS as a
critical target for the development of pharmacotherapies for the
treatment of addiction to psychostimulants. Given the various
neuropharmacological actions of exogenous cannabinoids, and
their ability to modulate the acute reinforcing effects of drugs,
data on ∆9-THC and CBD is particularly promising as to the

potential use of cannabinoids in relapse prevention strategies
for psychostimulant-dependent individuals. The effects of these
compounds on stimulant use outcomes in humans remains to
be clearly established and could be assessed with well-designed
controlled trials. The neurobiological correlates of cannabinoids’
impact on stimulant-seeking behaviors could also be examined
with neuroimaging studies in stimulants dependent individuals.
Among potential barriers, social and scientific acceptability of
cannabinoid-based therapy, side effects profiles, as well as addic-
tive potential of certain cannabinoid such as ∆9-THC, have to be
taken into consideration.
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