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INTRODUCTION
Lumbar disc herniation (LDH) is a common cause of radic-

ular pain, typically manifested as hyperalgesia, allodynia, 
and sometimes spontaneous pain [1]. It compromises pa-
tients’ life quality and work capability, and thus becomes 
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Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, 
but the mechanism is not clear. In this study, we investigated the engagement of 
toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain 
and its possible mechanisms.
Methods: An LDH model was induced by autologous nucleus pulposus (NP) implan-
tation, which was obtained from coccygeal vertebra, then relocated in the lumbar 
4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were as-
sessed by using von Frey filaments and hotplate test respectively. The protein level 
of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis 
and immunofluorescence staining. Spinal microglia activation was evaluated by 
immunofluorescence staining of specific relevant markers. The expression of pro- 
and anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme 
linked immunosorbent assay.
Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased 
after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal 
microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal 
expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alle-
viated mechanical and thermal pain behaviors, inhibited spinal microglia activation, 
moderated spinal inflammatory response manifested by decreasing interleukin (IL)-
1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the 
spinal dorsal horn. 
Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular 
pain by encouraging spinal microglia activation and inflammatory response.

Key Words: Cytokines; Hyperalgesia; Intervertebral Disc; Microglia; Neuralgia; NF-
kappa B; Nucleus Pulposus; Pain; Toll-Like Receptor 4.
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a socioeconomic problem that needs immediate attention 
[1]. Currently, the mechanism of radicular pain is still ob-
scure. 

Toll-like receptor 4 (TLR4), which is involved in innate 
immune response, is a trans-membrane protein with 
both extracellular leucine-rich repeat domains and a cy-
toplasmic signaling domain [2,3]. When binding with an 
endogenous or exogenous ligand, TLR4 may induce pro-
inflammatory cytokines released by activating the nuclear 
factor-kappa B (NF-κB) or p38 pathway [4,5]. Previous 
studies found that TLR4 antagonist may relieve hyperalge-
sia induced by nerve injury, chemotherapy drugs or diabe-
tes [6-8] and a genetic defect of TLR4 or its accessory factor 
CD14 may inhibit activation of glia cells and inflammatory 
pain [9-11]. However, the role and mechanism of TLR4 in 
radicular pain from LDH is not clear. 

The present study was aimed at confirming the role of 
the TLR4/NF-κB pathway on radicular pain, and exploring 
the mechanism of spinal microglia activation and subse-
quent inflammatory response.

MATERIALS AND METHODS 
1.	Animals 

Sprague-Dawley rats (200-250 g, male) were provided by 
Guangdong Laboratory Animal Center. Rats were housed 
in separate cages under a 12-hour light/12-hour dark cycle 
with free access to food and water. The room temperature 
and humidity were constant. All animal experimental 
procedures were carried out in accordance with the guide-
lines of the International Association for the Study of Pain 
[12] and were approved by the Animal Care and Use Com-
mittee of Guangzhou Medical University (GD2019-143). All 
efforts were made to minimize animal number and their 
suffering.

2.	Drug administration 

TLR4 antagonist ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) 
sulfamoyl]-cyclohex-1-ene-1-carboxylate (TAK242, cat no. 
HY-11109; MedChemExpress, South Brunswick, NJ), which 
can effectively pass through the blood-brain barrier, was 
freshly prepared in saline with 5% dimethyl sulfoxide and 
5% Tween 80, administered intraperitoneally 1 hour before 
surgery, and then once daily for 5 days with concentration 
based on previous studies [13].

For intrathecal administration of drugs, rats were im-
planted with intrathecal catheters 2 days before surgery 
according to previously reports [14]. Under anesthesia, 
a sterile polyethylene-10 (PE-10; Becton, Dickinson and 

Company, Franklin Lakes, NJ) tube filled with saline was 
inserted through the L5-L6 intervertebral space upwards 
until reaching the lumbar enlargement. Any rats with hind 
limb paresis or paralysis after surgery were eliminated. 
NF-κB inhibitor pyrrolidinedithiocarbamic acid (PDTC, 
15 ng in 10 μL, P-8765; Sigma-Aldrich, St. Louis, MO) or 
vehicle was carefully injected from the distal inlet of the 
catheters for 5 consecutive days, beginning from 1 hour 
before surgery with the concentration based on previous 
studies [15,16]. Following the drug, sterile saline (7 μL) was 
given to ensure the drug reaching the subarachnoid space. 

3.	LDH model 

LDH was modeled by autologous nucleus pulposus (NP) 
implantation described by previous reports [17,18]. The 
transverse processes were exposed by dissecting the 
paraspinous muscles from the spinous processes. Hemi-
laminectomy was performed in the left L4-L5 segment and 
the lumbar nerve roots were exposed by carefully remov-
ing the facet joint. NP (about 10 mg) was collected from 
the coccygeal intervertebral discs which were exposed 
between two vertebral bodies ventrally, and was instantly 
relocated on the recently exposed nerve roots without any 
compression. For the sham group, rats experienced the 
same harvesting step, but the NPs were not implanted.

4.	Pain behavioral tests

Mechanical pain thresholds were measured by employ-
ing a set of Von Frey filaments (0.41, 0.70, 1.20, 2.04, 3.63, 
5.50, 8.51, and 15.14 g) with an up-down method described 
previously [19]. The first applied stimulus was 2.04 g, if 
there was no paw withdrawal, the next stronger stimulus 
was given. If the paw was withdrawn, a weaker stimulus 
was given. Stimuli were administered to the surface of the 
hindpaws, lasting 6-8 seconds. Brisk withdrawal or licking 
of the paw was regarded as a positive response. 

Thermal pain thresholds were assessed by a plantar test 
(cat no 7370; Ugo Basile, Gemonio, Italy) [20]. The plantar 
surface of the rat’s foot was placed on a glass floor over a 
radiant heat source. Three values of paw withdrawal la-
tency (PWL) were measured for each animal in each test 
course. The hindpaws were tested alternately with at least 
5 minutes intervals between sequential tests. The three 
values of PWL per animal were averaged as the result of 
the test. 

Baselines of mechanical and thermal thresholds were 
assessed repetitively 3 times (day -2, day -1, and day 0) be-
fore surgery. Those performing the behavioral tests were 
blinded to the groups of rats.
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5.	Western blotting analysis 

The L4-L5 spinal cords were harvested and flooded with 
liquid nitrogen immediately, then the ipsilateral dorsal 
horn quadrants were separated and homogenized in Tris 
buffer (15 mmol/L, pH 7.6) containing protease inhibitor 
cocktail (1:100, cat no. AR1183; Boster Biological Technol-
ogy, Wuhan, China) and phosphatase inhibitor (1:100, cat 
no. AR1182; Boster Biological Technology). After homog-
enization and sonication on ice, the samples were cen-
trifuged at 14,000 × g for 20 minutes at a low temperature. 
The supernatant was extracted and stored at –80°C before 
Western blotting. 

The total protein concentration of samples was calcu-
lated by bicinchoninic acid protein assay. Proteins were 
separated by gel electrophoresis (sodium dodecyl sulfate-
polyacrylamide gel electrophoresis) and then transferred 
onto a polyvinylidene fluoride membrane (cat no. 1620264; 
Bio-Rad Laboratories, Inc., Hercules, CA). After block-
ing for 1 hour at room temperature, the membranes were 
incubated with TLR4 (mouse, 1:1,000, cat no. sc-293072; 
Santa Cruz Biotechnology, Inc., Dallas, TX) or β-actin 
(rabbit, 1:1,000, cat no. 4967; Cell Signaling Technology, 
Danvers, MA), phosphorylated-p65 (p-p65, rabbit, 1:1,000; 
cat no. 3033; Cell Signaling Technology), or p65 (rabbit, 
1:1,000, cat no. 8242; Cell Signaling Technology) antibody 
overnight at 4°C. After being washed in phosphate-buff-
ered saline (PBS) repeatedly, the membranes were incu-
bated with goat anti-mouse or goat anti-rabbit horseradish 
peroxidase-conjugated immunoglobulin G (IgG) (1:5,000, 
cat no. ab205719 or ab205718; Abcam, Cambridge, UK) for 
1 hour at room temperature, then were washed again, as 
above. The immune complex was detected by ECL kit (cat 
no. 35055; Pierce Biotechnology, Rockford, IL). The band 
intensities were quantified by densitometry with a com-
puter-assisted imaging analysis system (IBAS 2.0; Kontron, 
Augsburg, Germany). 

6.	Immunofluorescence staining 

Rats were sequentially perfused with saline and cold 4% 
paraformaldehyde (PFA, cat no. 158127; Sigma-Aldrich) in 
phosphate buffer (0.1 M, pH 7.4). The L4-L5 spinal cords 
were taken out, post-fixed with 4% PFA solution for 1-3 
hours and then dehydrated in 30% sucrose solution for 
2 days at 4°C. The spinal cords were sliced into sections 
transversely with 25 μm thickness by a cryostat (–20°C, 
CM1900; Leica Biosystems, Wetzlar, Germany) and pro-
cessed for immunofluorescence staining.

Spinal sections were blocked with 3% donkey serum in 
0.3% Triton X-100 (X100; Sigma-Aldrich) for 0.5-1 hours at 
room temperature and incubated with TLR4 (rabbit 1:400, 

cat no. AF7017; Affinity Bioscience Pty Ltd, Scoresby, Aus-
tralia) or ionized calcium binding adaptor molecule-1 (Iba-
1, mouse 1:500, cat no. sc32725; Santa Cruz Biotechnology, 
Inc., Dallas, TX) antibody overnight at 4°C, followed by 
incubation with goat anti-rabbit Cy3-conjugated IgG (1:400, 
cat no. BA1032; Boster Biological Technology) or goat anti-
mouse fluoresceine isothiocyanate (FITC)-conjugated IgG 
(cat no. BA1101; Boster Biological Technology) for 1 hour 
at room temperature. For double immunofluorescence 
staining, primary antibodies for TLR4 (1:400) were incu-
bated together with anti-neuronal specific nuclear protein 
(NeuN, neuronal marker, mouse 1:500, cat no. ab104224; 
Abcam) or anti-glial fibrillary acidic protein (GFAP, astro-
cyte marker, mouse 1:500, cat no. sc33673; Santa Cruz Bio-
technology, Inc.) or anti-Iba-1 (microglia marker, mouse 
1:500, cat no. sc32725; Santa Cruz Biotechnology, Inc.) 
respectively, followed by a mixture of goat anti-mouse 
FITC- and goat anti-rabbit Cy3-conjugated IgG (1:400). 
The stained sections were examined with a fluorescence 
microscope (Leica Biosystems), and images were captured 
with a charge coupled device (CCD) spot camera (Leica 
Biosystems). To avoid error, the main parameters such as 
gain value and exposure time in image acquisition were 
standardized across sessions.

7.	Enzyme linked immunosorbent assay (ELISA) 

The dorsal quadrants of the L4-L5 spinal dorsal horn were 
rapidly harvested and homogenized in PBS followed by 
centrifugation at 4°C for 15 min at 14,000 × g. The superna-
tants were collected to detect the concentrations of TNF-α, 
IL-1β, IL-6, and IL-10 using corresponding ELISA kits (cat 
no. EK0526, EK0393, EK0412, EK0418; Boster Biological 
Technology). According to the manufacturer’s instruc-
tions, the absorbance was detected at 450 nm (A450) and a 
standard curve was delineated based on the absorbance of 
standards.

8.	Statistical analysis 

All data reported were means ± standard error of means, 
and were analyzed with SPSS 13.0 (SPSS Inc., Chicago, IL). 
Western blotting, immunofluorescence and ELISA data 
were analyzed by one-way analysis of variance followed 
by Tukey’s post hoc analysis. Data of behavioral tests were 
analyzed with the unpaired Student’s t-test. The criterion 
of statistical significance was P < 0.05.
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RESULTS 
1.	Spinal TLR4 and p-p65 expression was increased 

after NP implantation 

Western blotting analysis found spinal TLR4 and p-p65 
expression was significantly increased from day 3 NP im-
plantation and lasted up to day 14 (Fig. 1A, B: *P = 0.002, 
**P < 0.001, Fig. 1C, D: *P = 0.001, **P < 0.001). Immuno-
fluorescence staining also confirmed the up-regulation of 
TLR4 expression (*P = 0.001, **P < 0.001; Fig. 2E-I). More in-
terestingly, the up-regulation of TLR4 mainly appeared in 
the ipsilateral spine (Fig. 2A-C). Negative control sections, 
in which only the secondary antibody but not the primary 
antibody was incubated, were used for testing the anti-
body specificity (Fig. 2D). Double immunofluorescence 
staining showed that the TLR4 primarily coexisted with 
microglia (Fig. 2J-L), but not with astrocytes (Fig. 2M-O) or 
neurons (Fig. 2P-R). 

2.	TLR4 antagonist and NF-κB inhibitor alleviated 
pain behaviors of rats with NP 

The role of TLR4 and NF-κB in pain behaviors were tested 
by successive delivery of TLR4 antagonist TAK242 (intra-
peritoneal [i.p.], 3 mg/kg) or NF-κB inhibitor PDTC (intra-
thecal [i.t.], 15 ng in 10 μL), beginning from 1 hour before 
implantation and once daily for 5 days. NP implantation 
significantly decreased the mechanical PWT and thermal 
PWL of the ipsilateral, but not contralateral, hindpaws (*P 
= 0.001, **P < 0.001; Fig. 3A, B) which indicating that NP 
implantation induced unilateral mechanical allodynia 
and thermal hyperalgesia. Both TAK242 and PDTC in-
creased the PWT and PWL of rats with NP implantation (vs. 
vehicle, #P = 0.002; Fig. 3C-F). Therefore, TLR4 and NF-κB 
may be involved in radicular pain from NP implantation.

3.	TLR4 antagonist TAK242 inhibited NF-κB 
activation 

TLR4 antagonist TAK242 (i.p., 3 mg/kg) was delivered for 
5 days and spinal tissues were harvested on day 7 and day 
14 after surgery for western blotting analysis. TAK242 evi-
dently weakened spinal p-p65 expression on day 7 and day 
14 (**P < 0.001; Fig. 4C, D), without changing TLR4 protein 
levels (Fig. 4A, B). It indicated NF-κB may be a down-
stream molecule of TLR4 in the radicular pain model. 

4.	TAK242 and PDTC inhibited spinal microglia 
activation and inflammatory response

Spinal tissues were harvested on day 7 after surgery for 
assessing the effect of drugs on microglia activation and 
inflammatory response. Microglia-specific marker Iba-
1 positive areas in the NP and NP+ vehicle group were 
significantly increased (vs. sham, **P < 0.001; Fig. 5B, C, D, 
F, H); TAK242 and PDTC distinctly reduced Iba-1 positive 
areas (vs. vehicle, ##P < 0.001; Fig. 5D-H). Antibody speci-
ficity was also tested (Fig. 5A). Spinal expression of pro- 
and anti-inflammatory cytokines in different groups was 
detected by ELISA kits. IL-1β, IL-6, and TNF-α expression 
was decreased by TAK242 and PDTC (**P < 0.001; Fig. 6A-
C), and both drugs increased anti-inflammatory cytokine 
IL-10 expression (**P < 0.001; Fig. 6D). The data indicated 
that TLR4/NF-κB activation may promote spinal microglia 
activation and inflammatory response.

DISCUSSION 
In the present study, LDH was induced by autologous NP 
implantation. Spinal expression of TLR4 and p-p65 was 
significantly increased after NP implantation, lasting up 
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to 14 days. TLR4 was mainly expressed in spinal microglia, 
but not in astrocytes or neurons. Successive delivery of 
TLR4 antagonist TAK242 decreased spinal p-p65 expres-
sion. TAK242 or NF-κB inhibitor PDTC alleviated pain be-
haviors and inhibited both spinal microglia activation and 
spinal inflammatory response. The results demonstrated 
that the TLR4/NF-κB pathway may be involved in radicu-
lar pain through promoting spinal microglia activation 
and inflammatory response.

Typical symptoms of radicular pain from LDH are uni-
lateral long-lasting low back pain and pain radiating into 
the leg and foot [21,22]. Initially, it was believed that her-
niated discs may mechanically compress the nerve roots 
or spinal cord, which was the source of pain [23]. But this 
poorly explained the fact that the degree of compression 
to the nerve roots was not positively correlated with the 
severity of pain sensation for some patients [23], thus other 
mechanisms other than compression may be involved in 
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radicular pain. Data from our reports as well as our peers’ 
reports revealed that levels of spinal pro-inflammatory cy-
tokines and neuroinflammation marker 18 kDa transloca-
tor protein were increased after LDH, which demonstrated 
that neuroinflammation response may be a potential rea-
son of radicular pain [16,24,25]. However, the mechanism 
of neuroinflammation needs to be further investigated.

TLR4 is a transmembrane protein that is predominantly 
expressed in microglia of the central nervous system 
[26,27]. Involvement of TLR4 initiates intracellular signal-
ing pathways, leading to the synthesis and secretion of 
inflammatory cytokines and chemokines, typically by 

activating NF-κB and subsequent gene transcription and 
protein synthesis [4,28]. TLR4 mediated inflammatory 
response is involved in multiple neurodegenerative dis-
eases such as Parkinson’s disease, Alzheimer disease, and 
depression [29-32]. The role of TLR4 in neuropathic pain 
has attracted more attention in recent years. It has been 
reported that TLR4 antagonist may relieve hyperalgesia 
induced by nerve injury, chemotherapy drugs, or diabetes 
[6-8], and a genetic defect of TLR4 or its accessory factor 
CD14 may inhibit glia cells activation, as well as moder-
ate inflammatory pain [9-11]. In the present study, the role 
and mechanism of TLR4 on radicular pain is first reported 
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in a rat model of LDH. We find that TLR4 and its down-
stream molecule NF-κB are upregulated in the ipsilateral 
spinal dorsal horn of rats with NP implantation (Figs. 1, 2). 
Successively delivery of TLR4 antagonist or NF-κB inhibi-
tor for 5 days significantly elevate mechanical and thermal 
pain thresholds that are reduced by NP implantation, and 
the analgesia effect lasted up to 14 days (Fig. 3). These re-
sults clearly confirm the engagement of the TLR4/NF-κB 
pathway in radicular pain. Interestingly, western blotting 
analysis finds that intraperitoneal delivery of TLR4 an-

tagonist TAK242 significantly reduces p-p65 expression, 
but doesn’t change the TLR4 level itself (Fig. 4). As proved 
by other scientists, TAK242, with high permeability to the 
blood brain barrier, has evident analgesia effect after both 
intraperitoneal and intrathecal administration [33,34]. 
The present result also reveals that TAK242 acts as an an-
tagonist that may block downstream signal of TLR4, but 
not an inhibitor which inhibits or hydrolyzes TLR4 itself. 
And this viewpoint is consistent with other reports which 
revealed that TAK242 decreased TLR4 downstream mol-
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ecules without changed TLR4 expression in brain tissues 
in the rat model of migranee [34]. As TLR4 is exclusively lo-
cated in microglia, we deduce that this pathway may effect 
microglia activation. 

 Microglia, acting as resident macrophages in the cen-
tral nervous system, could release pro-inflammatory cy-
tokines such as TNF-α, IL-1β, and IL-6 when activated in 
neuropathic pain conditions [35]. Data from our team and 
other teams has proved microglia activation contributes to 
radicular pain from LDH [17,36,37]. However, the mecha-
nism of microglia activation is still obscure. The morpho-
logical specifics of microglial activation were cell body hy-
pertrophy, thickened and retracted processes, increased 
cell numbers, and increased staining of microglial specific 
markers, such as Iba-1 and CD11b [38]. Previously, we 
proved that spinal microglia were activated mainly in the 
ipsilateral spine of rats with NP implantation, paralleled 
with pain behaviors which always appear in the ipsilateral 
hindpaws [17,37]. In the present study, TAK242 or PDTC 
obviously alleviate pain behaviors and synchronously 
decrease the Iba-1 positive area in the ipsilateral spinal 
dorsal horn, demonstrating that the TLR4/NF-κB pathway 
may be an important reason for pain development and mi-
croglia activation. 

What’s more, we find spinal levels of pro-inflammatory 
cytokines (IL-1β, IL-6, and TNF-α) are reduced and anti-

inflammatory cytokine IL-10 expression is elevated by 
TAK242 and PDTC. The pro-inflammatory cytokines may 
directly sensitize neurons in the dorsal root ganglion or 
spinal dorsal horn, which exaggerates pain sensation 
[16,39-41]. On the contrary, IL-10 down-regulates sodium 
channels in dorsal root ganglion neurons [42]. Clinical 
studies found that the serum levels of TNF-α, IL-6, and 
IL-8 in patients with radicular pain were significantly 
higher [43-45], and anti-inflammatory cytokine IL-10, but 
not IL-4, was lower than that of healthy subjects [43]. In 
an animal model of LDH, expression of IL-1β, TNF-α, and 
IL-6 in the spinal dorsal horn or dorsal root ganglia was 
increased [17,46]. The mechanical allodynia was attenu-
ated by inhibition of pro-inflammatory cytokines or using 
the neutralizing antibody in rats with NP implantation or 
nerve root compression [47-49]. These reports suggested 
the imbalance between anti- and pro-inflammatory cy-
tokines may be a crucial reason for radicular pain and 
restoring balance from upstream molecules may the ben-
efit of relieving radicular pain. Together with the present 
study, we may deduce that targeting spinal microglia acti-
vation and inflammatory response by inhibiting upstream 
signals such as TLR4 may benefit radicular pain relief.

In summary, our study demonstrates that the spinal 
TLR4/NF-κB pathway is involved in radicular pain by acti-
vating microglia and promoting inflammatory response.
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Fig. 6. Both TAK242 (TAK) and pyrro-
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