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Abstract
Background: The study of protein-protein interactions is becoming increasingly important for
biotechnological and therapeutic reasons. We can define two major areas therein: the structural
prediction of protein-protein binding mode, and the identification of the relevant residues for the
interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are
considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately,
large-scale experimental measurement of residue contribution to the binding energy, based on
alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational
approaches for hot-spot prediction have been reported, but they usually require the structure of
the complex.

Results: We have applied here normalized interface propensity (NIP) values derived from rigid-
body docking with electrostatics and desolvation scoring for the prediction of interaction hot-
spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that
are comparable to other existing methods (up to 80% positive predictive value), and the advantage
of not requiring any prior structural knowledge of the complex.

Conclusion: The NIP values derived from rigid-body docking can reliably identify a number of hot-
spot residues whose contribution to the interaction arises from electrostatics and desolvation
effects. Our method can propose residues to guide experiments in complexes of biological or
therapeutic interest, even in cases with no available 3D structure of the complex.

Background
Protein-protein interactions are involved in the majority
of biological processes and their study from a structural
and energetic point of view is increasingly attractive, not
only for biological reasons but also for their therapeutic
interest [1-3]. Indeed, knowing the binding mode of two
interacting proteins, or even better, the residues directly
responsible for the interaction (so called 'hot-spots'),
could help to the long-awaited goal of disrupting the com-
plex with small molecules [3,4], which would open enor-

mous biological and therapeutic expectations. For this
reason, hot-spot residues, typically defined as those resi-
dues contributing in more than 1 or 2 kcal.mol-1 to the
total binding energy of the complex, are particularly
attractive to the pharmaceutical field. Experimental meas-
urement of the residue contributions to binding energy by
alanine-scanning is costly, as it requires production by
mutagenesis of hundreds of variants that have to be indi-
vidually analysed by biophysical methods [3,5].
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Consequently, the available data on hot-spot residues is
quite limited, and many groups have tried to make effi-
cient predictions based on sequence and structural analy-
sis of the known hot-spots.

Protein-protein interfaces are large and characterized by
the absence of cavities compared to small-molecule bind-
ing sites [6,7]. They are composed of a variety of residues
involved in the specificity of the interaction, with a group
of quite conserved hot-spot residues acting as binding site
anchors that are required in order to stabilize the com-
plex. As the interface gets bigger, the number of hot-spots
increases [8]. Hot-spots are surrounded by moderately
conserved and energetically less important residues form-
ing a hydrophobic O-ring responsible for bulk solvent
exclusion [5,9]. They appear to be clustered in tightly
packed regions in the centre of the interface [8]. However,
it has not been found any single attribute as shape, charge
or hydrophobicity that can unequivocally define a hot-
spot by itself [3,6,10,11].

Different scoring schemes for computational hot-spot
prediction have been reported, based on residue conserva-
tion [12,13], hydrogen bonding [14] or complete energy
binding [15-17]. Other approaches have tried a combina-
tion of all these parameters with machine learning tech-
niques [18]. Although hot-spot prediction from
sequences has been recently reported [10], most of the
methods described so far need information from the pro-
tein-protein complex structure.

We recently described the normalized interface propensity
(NIP) parameter [19] obtained from rigid-body docking
simulations, which represents the tendency of a given res-
idue to be located at the interface. Here, we will use a var-
iation of this parameter for the prediction of hot-spot
residues in a protein-protein interaction without any pre-
vious knowledge of the complex structure.

Results and discussion
Residue interface propensities from rigid-body docking 
scored by electrostatics and desolvation
We recently described the residue-based normalized inter-
face propensity (NIP) parameter, computed from an
ensemble of the 100 lowest-energy ICM (http://
www.molsoft.com[20]) docking solutions as sorted by a
rigid-body docking energy function. The NIP values
reflected the contribution of every residue to the interface
averaged over the lowest-energy docking orientations, and
thus could be used to identify surface residues potentially
involved in protein-protein interactions [19]. Indeed, a
NIP cut-off of 0.4 was reported to predict known protein-
protein interfaces with positive predicted value (PPV) as
high as 81%, but with quite low sensitivity [19]. This low
sensitivity for interface prediction would be compatible

with the hypothesis that the high NIP values are identify-
ing only the very few residues that are really important for
the interaction (i.e. the hot-spots). In a similar line of rea-
soning, a neural network previously developed to identify
interface residues, was recently applied for hot-spot pre-
diction from sequences [10]. Thus, the focus of the
present work is to explore whether such NIP values from
docking simulations could be used to predict hot-spot res-
idues in protein-protein interactions. The main advantage
is that, in contrast to other current methods, the NIP-
based predictions could be applied to cases in which no
information about the complex structure is available.

In the original NIP calculations, a rather time-consuming
docking approach was used: ICM-based pseudo-Brownian
rigid-body docking search with a complete energy func-
tion, including van der Waals, hydrogen bonding, electro-
statics and desolvation. Interestingly, we recently showed
that electrostatics and desolvation were by far the most
important energy terms for rigid-body docking, and they
could be successfully used with other faster FFT-based
docking methods, as implemented in pyDock [21]. Thus,
we have applied here our pyDock approach (fast docking
with electrostatics and desolvation scoring) in order to
obtain NIP values for hot-spot prediction. For that, we
first generated alternative docking poses with the known
FFT-based docking programs FTDock [22] and ZDOCK
[23], which were then scored by pyDock [21] and further
analysed with the pyDockNIP module to compute inter-
face propensities (see Materials and Methods). Ideally, for
a realistic test, one should use the unbound three dimen-
sional structures of the interacting proteins. In our dataset
of 21 cases (Table 1), unbound structures for both ligand
and receptor molecules are only available in a few cases
(1AHW, 1DFJ, 3HFM, 1JCK, 2PTC).

For most of the complexes, the structure of only one of the
two partners is available in the unbound conformation.
And for three cases, no unbound structure is known for
any of the two partners (1FC2, 1JRH and 1AIE tetramer;
Table 1). For instance, in the case of p53 (1AIE), we only
have the tetramer conformation, since the monomer is
unfolded [24]. In any case, we repeated the docking sim-
ulations for the unbound cases but using the bound sub-
units instead, and did not observe major differences in
our results (data not shown). Actually, we always found
residues with NIP ≥ 0.4 except for 3 cases: one unbound/
unbound and two bound/unbound (so no clear prefer-
ences for bound or unbound can be seen here). In differ-
ent analysis in the sub-sections below, we will further
show that there is no significant difference between using
bound or unbound structures. This is somehow expected,
as NIP is a statistical value averaged over many different
low-energy orientations, and thus does not depend so
much on the (usually) small bound-unbound differences
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as it would do if it were based on one single orientation
such as the native one. Indeed, we checked that the
number of residues with NIP ≥ 0.4 for a given complex
does not depend at all on the existence of near-native ori-
entations in the ensemble of 100 docking poses (data not
shown).

NIP value as a predictor for hot-spot residues
Thus, we have analysed whether NIP predictions corre-
sponded with hot-spots, by comparing the experimental
binding energy (ΔΔG) versus the NIP values for the 586
residues with available data in our dataset. As can be seen
in Figure 1, we found that most of the predicted hot-spot
residues (initially, we consider a prediction when NIP ≥
0.4) were indeed experimentally identified as hot-spots
(we defined a hot-spot as a residue with ΔΔG ≥ 1.0
kcal.mol-1 upon mutation to alanine, as in Kortemme et
al. [15]), whereas the majority of the non-predicted resi-
dues were correctly identified as non-hot-spots. The over-
all results are shown in Table 2, and a χ2 test shows that
the predictions clearly differ from a random distribution
(P < 0.0001). While it is true that many hot-spots are left
unidentified (number of false negatives: 128 residues,
Table 2; overall sensitivity S= 24%, Table 3), we can still
observe high overall statistical significance due to the
large proportion of hot-spot predictions that are correct
(number of true positives: 40, Table 2; overall PPV = 78%,
Table 3) and the number of non-hot-spot residues that are
correctly identified (number of true negatives: 407, Table

2). As a matter of fact, the global accuracy of the predic-
tions is 76%. Table 4 details the prediction results for
those cases with positive predictions (NIP ≥ 0.4) also hav-
ing available experimental data (we have not included
here the remaining cases with positive predictions because
there is no available experimental data to compare with).
These results show that the correct predictions do not just
come from a few successful cases. The results did not show
any preference for the use of bound or unbound subunits,
and all kinds of PPV values can be found in either bound
or unbound cases. This is somehow not surprising since in
most of the cases the difference between the unbound and
bound conformations is around 1 Å RMSD (data not
shown). However, we also had good prediction results
even in those cases with higher flexibility upon binding
(e.g.: 1DN2 with 4.78 Å for unbound/bound receptor
RMSD; 1F47 with 2.59 Å for unbound/bound receptor
RMSD), which indicates that our method is tolerant to
conformational movements. This can be explained
because the NIP values are computed from the ensemble
of docking poses and not from any single orientation, as
we previously mentioned. In this line, we could neither
found any correlation between the prediction rates and
the number and quality of near-native docking solutions
(if any) in the docking pools (Table 4). For instance, the
1NMB complex shows the maximum PPV (100%) in spite
of not having any near-native conformation (RMSD ≤
10Å) within the 100 lowest energy docking poses. On the
contrary, the 1JRH complex shows one of the smallest

Table 1: Initial dataset of complexes used in this work

Complexa Resb Receptor Ligand Unbound receptor Resb Unbound ligand Resb Complex typec

1A22 2.60 Growth hormone 
receptor

Growth hormone - - 1HGU 2.50 B/U

1A4Y 2.00 Ribonuclease inhibitor Angiogenin - - 1UN3 1.70 B/U
1AHW 3.00 Fab 5G9 Tissue Factor 1K6Q 2.40 2HFT 1.69 U/U
1AIE 1.50 p53 p53 - - - - B/B
1BRS 2.00 Barnase Barstar 1A2P 1.50 - - U/B
1BXI 2.05 Colicin E9 Immunity protein Im9 1FSJ 1.80 - - U/B

1DAN 2.00 Tissue Factor Factor VII 2HFT 1.69 - - U/B
1DFJ 2.30 Ribonuclease A Ribonuclease inhibitor 1FS3 1.40 2BNH 2.30 U/U

1DN2 2.70 IgG1 Fc fragment DCAWHLGELV WCT-NH2 1H3V 3.10 - - U/B
3HFM 3.00 HYHEL-10 HEL 1GPO 1.95 3LZT 0.92 U/U
1GC1 2.50 CD4 gp120 1CDJ 2.50 - - U/B
1F47 1.95 Zipa FTSZ fragment 1F7W NMR - - U/B
1FC2 2.80 Fc fragment Protein A - - - - B/B
1FCC 3.50 Fc fragment Protein G 1H3V 3.10 - - U/B
1IAR 2.60 IL-4 receptor IL-4 - - 1HIK 2.60 B/U
1JCK 3.50 T-cell antigen receptor SEC3 1BEC 1.70 1CK1 2.60 U/U
1JRH 2.80 Antibody A6 Interferon-γ receptor - - - - B/B
1JTD 2.30 TEM-1 β-lactamase BLIP 1ZG4 1.55 - - U/B
1NMB 2.50 NC10 Neuraminidase N9 - - 7NN9 2.00 B/U
2PTC 1.90 Trypsin BPTI 1S0Q 1.02 1G6X 0.86 U/U
1VFB 1.80 Antibody D1.3 HEL - - 3LZT 0.92 B/U

aPDB Code, bResolution in Å; cB, Bound; U, Unbound
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PPV values (50%), in spite of having as many as 10 near-
native conformations in the docking ensemble. All these
results reinforce the fact that NIP values come from some
general features of the low-energy docking ensemble and
not from any single conformation in particular. These
docking ensembles are driven by our pyDock docking
energy, favouring docking orientations where most con-
tributing residues (i.e. hot-spots) can form similar interac-
tions to those in the native state (even though these

docking orientations do not necessarily correspond with
near-native binding modes). In this way, our predicted
hot-spots are likely to be those residues that have favour-
able desolvation upon binding independently on the
partner interaction region (i.e. apolar and aromatic resi-
dues), but not those exposed residues involved in specific
hydrogen bonding or electrostatics interactions, especially
when become buried upon binding (in which case, our
method cannot precisely describe the favourable interac-
tions and thus cannot compensate the high desolvation
penalty). Thus, our method predicts 52% of the Tyr and
46% of the Phe hot-spot residues in our database. How-
ever, it predicts only 7% of the Arg hot-spots, in spite of
being one of the most abundant residue types in hot-spots
[9]. Other polar hot-spots (Glu, Lys) are also poorly pre-
dicted (8% and 0%, respectively).

Given that perhaps the most important contribution to
our docking energy is the desolvation term [21], we have

Experimental binding energy vs. computer predictionsFigure 1
Experimental binding energy vs. computer predictions. Distribution of ΔΔG data vs. NIP values from rigid-body dock-
ing (FTDock+ZDOCK).

Table 2: Comparison between NIP predictions (cut-off 0.4) from 
rigid-body docking and the experimentally known hot-spot 
residues

NIP ≥ 0.4 NIP < 0.4 Total

ΔΔG ≥ 1a 40 128 168
ΔΔG < 1a 11 407 418

Total 51 535 586

a in kcal.mol-1
Page 4 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:447 http://www.biomedcentral.com/1471-2105/9/447
also analysed whether desolvation alone (which can be
calculated on the individual molecules without actually
performing the docking simulations) could be a good pre-
dictor for hot-spots. However, we found no correlation at
all between the known hot-spots and the ASA-based des-
olvation calculated either per individual residue or as in
the ODA method [25] (data not shown). As it happened
for rigid-body docking results [21], it seems that the opti-
mal hot-spot prediction comes from the combination of
desolvation and electrostatics energy terms. Additional
terms, such as van der Waals, do not actually improve the
hot-spot prediction results (data not shown). This is prob-
ably due to the fact that docking poses generated by
FTDock and ZDOCK have already some level of shape-
complementarity (within the extent of the rigid-body

approach), so only desolvation and electrostatics are
required to describe the optimal docking ensemble.

On the other side, given that our NIP calculations are
applied to all protein surface residues without applying
any restraints, a number of hot-spot predictions might
incorrectly appear away from the interface and thus con-
tribute to the false positive rate. However, when we only
consider interface residues (i.e. that have at least one atom
at <5Å from any atom of the partner molecule in the
known complex), our predictions (NIP ≥ 0.4) do not sig-
nificantly change (data not shown). This further shows
that our method does not need extra experimental infor-
mation about the native interface or the complex struc-
ture.

NIP threshold for optimal predictions
Using the original cut-off of NIP ≥ 0.4 yields quite reliable
predictions, but this somehow limits the number of pre-
dicted residues, and consequently, the sensitivity value
can never be too high. Different cut-off values have been
tested in order to find the optimal predictive rates (Figure
2).

Interestingly, as the NIP cut-off value increases, the PPV
systematically improves, although the sensitivity
decreases as expected. On the other side, as the NIP cut-off
value gets lower, the number of cases with hot-spot pre-
diction expectedly increases. Thus, a NIP cut-off of 0.2
could give a good compromise between PPV and sensitiv-
ity. The overall results of these predictions (NIP ≥ 0.2) are
shown in Table 5, and a χ2 test shows that the predictions
clearly differ from a random distribution (P < 0.0001).
With this NIP cut-off of 0.2, the PPV decreases slightly to
68%, but the sensitivity improves up to 43%, while the
global accuracy also improves to 78% (Table 3). In sum-
mary, as a general rule, one could base the hot-spot pre-
diction on any of these two cut-off values, depending on
the aim of the work. If the goal is to identify a significant
number of possible hot-spots, a reasonable option is to
use the general cut-off of NIP ≥ 0.2. On the other side, if
the aim is to detect a few residues with optimal reliability,
for instance in order to guide site-directed mutagenesis
experiments, it would be much more sensible to use the
stricter criteria of NIP ≥ 0.4.

Comparison to other hot-spot prediction methods
A recently reported method, ROBETTA [15], showed a
PPV of 71% and a sensitivity of 69% on a set of 19 cases
(a sub-set of our 21 cases) for the prediction of hot-spots
(with ΔΔG ≥ 1.0 kcal.mol-1 upon mutation to alanine), as
can be seen in Table 3. Our method (NIP ≥ 0.2) gives
worse sensitivity (S = 43%) than ROBETTA, while the PPV
is similar (PPV = 68%). A stricter cut-off of NIP ≥ 0.4
yields much better PPV (78%), although fewer residues

Table 3: Benchmarking NIP hot-spot predictions on different 
datasets

PPV S

Initial dataset (21 cases)a

NIP ≥ 0.2 68% 43%
NIP ≥ 0.4 78% 24%
FOLDEF 73% 46%
ROBETTAb 71% 69%

Li's dataset (15 cases)c

NIP ≥ 0.2 75% 42%
NIP ≥ 0.4 91% 26%
FOLDEFd 70% 45%
ROBETTAd 64% 60%

Additional dataset (all 22 cases)e

NIP ≥ 0.2 59% 34%
NIP ≥ 0.4 78% 15%

Additional dataset (X-ray subunits)e

NIP ≥ 0.2 73% 44%
NIP ≥ 0.4 80% 19%

Additional dataset (NMR subunits)e

NIP ≥ 0.2 0% 0%
NIP ≥ 0.4 0% 0%

Additional dataset (modeled subunits)e

NIP ≥ 0.2 59% 33%
NIP ≥ 0.4 75% 15%

Comparison to ROBETTA and FOLDEF
a Our initial dataset (Table 1); b Values from Kortemme and Baker,14 

on a sub-set of 19 complexes from our initial dataset; c Dataset 
compiled by Li et al.;28 d Values from Li et al.;28 e Our additional dataset 
(Table 6).
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are predicted. The main advantage of our method is that it
does not require the atomic 3D structure of the complex
while ROBETTA does.

Another reported method to compute in silico alanine-
scanning on protein-protein complexes is FOLDEF [26].
Since in their original publication they do not give hot-
spot predictive rates nor detailed data to calculate them,
we have run this program through a server (http://
foldx.crg.es/about.jsp[27]) in order to compare the
results. On our 21-complexes dataset (Table 1), FOLDEF
yielded a PPV of 73%, with a sensitivity of 46% for the
prediction of hot-spots (ΔΔG ≥ 1.0 kcal.mol-1 upon muta-
tion to alanine). These values are comparable to the ones
obtained with our predictions using NIP cut-off ≥ 0.2
(Table 3). Again, the results are encouraging as our
method does not need the complex structure while FOL-
DEF does.

A more recent benchmark has been reported on a set of 15
complexes [28], in which ROBETTA had slightly worse
predictive rates (PPV = 64%; S = 60%) for the prediction
of hot-spots (with ΔΔG ≥ 1.0 kcal.mol-1) than in the larger
set of 19 cases, while FOLDEF gave similar results (PPV =
70%; S = 45%) to the ones in the larger set of 21 com-
plexes. Our predictions (NIP ≥ 0.2) gave a PPV of 75% and
a sensitivity of 42%, more in line with FOLDEF (Table 3).
Interestingly, with stricter cut-off (NIP ≥ 0.4) our method
obtained an excellent PPV (91%) at the expense of sensi-
tivity.

Thus, our method is comparable to ROBETTA and FOL-
DEF, with the advantage that ours does not require the
structure of the complex. To the best of our knowledge,
the only other hot-spot prediction method that does not
require the complex structure is actually based on
sequence analysis alone [10]. They reported a reasonable
performance (PPV = 60%; S = 66%), although the true

positives were defined as those predicted residues with
experimental ΔΔG > 2.5 kcal.mol-1 whereas the false posi-
tives were defined as those predicted residues with exper-
imental ΔΔG = 0 (thus the "true" PPV, i.e. when using
ΔΔG < 2.5 to define false positives, will be probably lower
than that reported in that work).

We could compare our results with interface prediction
methods, many of which can be applied on the individual
proteins without performing docking. Although they have
not been specifically developed for hot-spot prediction,
we could still evaluate their performance for the sake of
comparison. As an example, our ODA algorithm [25] is
one of the most successful binding site prediction meth-
ods, and is precisely using the same desolvation energy as
pyDock. We have already mentioned that prediction of
hot-spots with our ODA method is worse than that of the
NIP-based predictions. For instance, when we use the rec-
ommended cut-off for interface prediction (ODA = -10),
we obtain a good PPV of 75% but a quite low sensitivity
of 7%. It seems that the ODA method is identifying a few
hot-spot residues with highly favourable desolvation
upon binding but is clearly missing other residues that can
be better identified by the NIPs from the docking ensem-
bles. We have also analysed one other well-known bind-
ing site prediction method, ProMate [29]. We used the
ProMate server (http://bioportal.weizmann.ac.il/pro
mate/[30]) according to the default parameters, and we
considered as predicted interface residues as those with
the 10% of highest scores, but only if the score was above
0.7 (as their authors suggested in the publication). We
evaluated the performance as hot-spot predictor in our
dataset of 21 cases, and the results were also clearly worse
than those of the NIP predictions (PPV = 49%; S = 19%).

The standard binding site prediction methods identify res-
idues involved in the interaction, independently on
whether they are hot-spots or not (as expected, given that

Table 4: Detailed results for hot-spot predicted residues (NIP ≥ 0.4) with available experimental data.

Complex Number of predicted residues(NIP ≥ 0.4) hot-spot prediction success(PPV) Number of near-native posesa

1BRS 5 100% 25
1BXI 6 67% 6
1DFJ 3 100% 8
1DN2 1 100% 5
1F47 3 67% 1
1JCK 7 100% 0b

1JRH 2 50% 10
1NMB 1 100% 0c

1VFB 9 67% 1
3HFM 3 100% 0d

1IAR 7 71% 1
1AIE 4 50% 3

a Number of near-native solutions (RMSD ≤ 10 Å) within the ensemble of 100 lowest-energy docking orientations used to calculate the NIP values; 
bbest RMSD within the ensemble is 22.0 Å; cbest RMSD is 20.9 Å; dbest RMSD is 12.2 Å.
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these methods were not developed to focus on the most
energetically contributing residues). However the NIP val-
ues, derived from energy-based docking ensembles, are
able to detect the residues that are energetically important
for the interaction. Perhaps it would be interesting to
combine several of the binding site prediction methods in

order to better identify hot-spots, however this is beyond
the present study.

Successful hot-spot predictions
We report here two examples, corresponding to the SEC3
super antigen in complex with T-cell receptor β-chain
(complex PDB 1JCK), and D1.3 IgG1 in complex with
HEL (complex PDB 1VFB). The two binding sites have
long been well studied, and plenty of experimental data
concerning both hot-spots and non-hot-spots are availa-
ble, which make these cases particularly interesting for the
evaluation of our predictions. The method is able to find
correctly the crystallographic interface in both cases (Fig-
ure 3), as expected from our previous study [19]. Compar-
ing the experimental hot-spot data (Figure 3A) with the
predictions (NIP ≥ 0.4; Figure 3B) for the SEC3 super anti-

Global performance of hot-spot predictionFigure 2
Global performance of hot-spot prediction. Evaluation of prediction results according to the NIP cut-off value: global PPV 
(open squares), global sensitivity (diamonds), and percentage of cases with prediction (triangles).

Table 5: Comparison between NIP predictions (cut-off 0.2) from 
rigid-body docking and the experimentally known hot-spot 
residues

NIP ≥ 0.2 NIP < 0.2 Total

ΔΔG ≥ 1a 73 95 168
ΔΔG < 1a 34 384 418

Total 107 479 586

a in kcal.mol-1
Page 7 of 13
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1JCK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1VFB


BMC Bioinformatics 2008, 9:447 http://www.biomedcentral.com/1471-2105/9/447
gen, we correctly predicted seven residues as hot-spots
(N23, T20, Y26, N60, Y90 -T90 in the complex-, V91 and
F176 -P176 in the complex-), two residues as non-hot-
spots (G102 and K103 -L103 in the complex-), while only
one hot-spot was incorrectly predicted as non hot-spot
(Q210). This corresponds to a PPV of 100% and a sensi-
tivity of 87.5%. Concerning the D1.3 antibody (Figure
3E), 13 residues were correctly predicted (six as hot-spots:
L-Y32, L-W92, H-W52, H-D54, H-D100, H-Y101 and
seven as non-hot-spots: L-H30, L-Y49, L-Y50, L-T53, H-
T30, H-Y32, H-R99) whereas four residues were badly pre-
dicted (one hot-spot incorrectly predicted as non not-

spot: H-E98 and three non-hot-spots incorrectly predicted
as hot-spots: L-S93, H-N56, H-D58), which corresponds
to a PPV of 66.6% and a sensitivity of 85.7%. The NIP val-
ues are thus able to predict hot-spots with a global accu-
racy of 90% for the SEC3 super antigen, and 76.5% for the
D1.3 Igg1. Interestingly, we predicted as hot-spots two res-
idues in the SEC3 super antigen (V104 and G22) and
another two in D1.3 IgG1 (L-F91 and H-G53) for which
there is no available experimental data. Although valine,
glycine and phenylalanine are not especially abundant
residues in hot-spots [9], according to our predictions

Examples of hot-spot predictionsFigure 3
Examples of hot-spot predictions. Selected complex examples: SEC3 super antigen/T-cell β-chain (A to C) and HEL/D1.3 
IgG1 (D to F). (A, D) Experimental data: hot-spots in red (ΔΔG ≥ 1 kcal.mol-1); non hot-spots in blue (ΔΔG < 1 kcal.mol-1). 
Only residues with available experimental data have been shown with labels. L- and H- in IgG1 labels indicate residues belong-
ing to the light and heavy antibody chain respectively. (B, E) Computer predictions. Residues predicted to be hot-spots (NIP ≥ 
0.4) are shown in red; the remaining residues are shown in a scale from red to blue. Only residues with NIP ≥ 0.4 have been 
labelled. (C, F). Complex X-ray structures (PDB codes 1JCK and 1VFB, respectively). Receptor residues are coloured accord-
ing to the NIP values. Ligand is represented as a grey ribbon.
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they could be interesting for future alanine-scanning
experiments.

Cases with incorrect predictions in our dataset
Most of the false negative hot-spots come from a few par-
ticular complexes. For instance, the method (with NIP ≥
0.4) was not able to find any of the 18 known hot-spots
for the Interferon (IFN)-γ Receptor in complex with the
AntiBA6 antibody. The formation of this complex is
believed to be more complicated than a simple rigid-body
docking in a lock-and-key-like process. Indeed, the overall
backbone structure of IFN-γ Receptor in complex with
AntiBA6 antibody (complex PDB 1JRH) differs from that
of the same receptor in complex with its natural ligand
IFN-γ (PDB 1FYH) on the CC' surface loop [31]. However,
we used here the coordinates of IFN-γ Receptor and
AntiBA6 as directly taken from the reference complex
(PDB 1JRH) since unbound structures are not available,
so conformational change upon binding does not seem to
explain the poor predictions in this case.

The most dramatic false negative, with ΔΔG = 10 kcal.mol-

1 (Figure 1), corresponds to the BPTI residue K15 in the
BPTI-Trypsin complex (complex PDB 2PTC). Actually, the
unbound BPTI (PDB 1G6X) that we used in the simula-
tions has precisely this residue mutated to Arg, which
could (at least partially) explain the highly incorrect pre-
diction. However, we found other significant false nega-
tives in different cases that cannot be explained by the
existence of a mutation in the unbound molecule. Many
of these residues are involved in highly specific hydrogen
bonding or electrostatics interactions with the partner
molecule. Actually, interactions with very specific geomet-
ric requirements are less likely to be predicted by our
method. As we have discussed in previous sub-sections, a
residue with high NIP value is typically involved in many
different docking poses with good binding energy, inde-
pendently on the orientations that these docking poses
may have. Thus our method is more likely to predict apo-
lar and aromatic hot-spot residues that have favourable
desolvation upon binding independently on the partner
interaction region, and thus can be reproduced in other
orientations in a similar way to that of the native state. On
the other side, it will be more difficult to predict hydrogen
bonding or electrostatics interactions from exposed resi-
dues that are buried upon binding. The binding contribu-
tion of these residues arises from a fine balance between a
favourable hydrogen bond or electrostatics interaction
and the strong desolvation penalty of burying charged
atoms. But these specific favourable interactions are diffi-
cult to describe in other conformations different from the
native one, so the global contribution will be underesti-
mated by our method. In accordance to this, we have seen
above that our method predicts quite well the Tyr and Phe

hot-spot residues, but very badly the Lys, Arg, and Glu
hot-spot residues.

In several cases, our method predicted residues that were
located far from the considered complex interface, in
regions that were actually involved in binding to other
proteins. For example, in the complex between Tissue Fac-
tor and Fab 5G9, the residue F50 was predicted as hot-
spot for Tissue Factor but it was situated exactly to the
other side of the protein-Ab interface. Interestingly, we
found that this residue was located in the interface of Tis-
sue Factor in complex with Factor VII (PDB code 1DAN),
although it is not described as hot-spot (ΔΔG = 0.4
kcal.mol-1).

In the case of SEC3 super antigen in complex with T-cell
receptor β-chain, the residues A102, Q106, F107, F108
were predicted as hot-spots for T-cell receptor, but instead
of being located in the interface of interest, they were actu-
ally situated in the interface between the α and β chains
(PDB 1D9K). A few predictions for immunoglobulin Fc
fragments in their CH2-CH3 domains were identical
between the complexes 1FCC and 1FC2 (with Protein G
and Protein A respectively). Interestingly R301, which has
been predicted as hot-spot in both complexes, is impli-
cated in the interaction of Fc fragment with the Fcγ Recep-
tor, as proved by the fact that R301A immunoglobulin
mutant shows a decrease in binding to several Fcγ Recep-
tor types [32].

As a final comment, experimental alanine-scanning muta-
genesis results must be taken with caution. Indeed, if a
given mutation introduces a dramatic conformation
change in the unbound interacting protein affecting the
overall complex stability, then a ΔΔG variation above 1
kcal.mol-1 could be observed, even if the residue involved
is not directly participating in the interaction with the
partner [3]. These cases should not be strictly considered
as hot-spots for binding, and in any case, they would be
impossible to predict by our method.

Additional benchmarking on an extended dataset
We also benchmarked the docking and hot-spot predic-
tions on an additional dataset (Table 6), different from
our initial test set (see Materials and Methods), and where
the 3D structure of the complex is not available for most
of the cases. When using a NIP cut-off of 0.4, the overall
predictions on this additional dataset yielded a PPV of
78%, similar to that of the initial data set (Table 3).

However, only a few of the 94 known hot-spots were
detected, so the corresponding sensitivity (S = 15%) was
lower than that of the initial dataset (S = 24%). When NIP
≥ 0.2, the overall predictions gave a PPV of 59% and a sen-
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sitivity of 34%, slightly worse values than those of the ini-
tial dataset (Table 3).

This additional dataset was more heterogeneous than the
initial one, in the sense that the coordinates of the
unbound subunits were in some cases taken from X-ray
structures, in other cases from NMR models, and in some
other cases they needed to be modelled based on homol-
ogy (see Materials and Methods). In order to minimize
the effect of the input structures quality on the predic-
tions, we classified this dataset on three different groups
and analysed the predictive results accordingly (Table 3).
On the one side, when we considered only the cases in
which we used the crystallographic structure of the inter-
acting subunits, we had an overall PPV of 73% and a sen-
sitivity of 44% (with NIP ≥ 0.2; Table 3), very similar to
the results obtained in the initial dataset (when using NIP
≥ 0.4, the results were also similar to those of the initial
dataset). It is interesting that in this sub-set all cases are
unbound-unbound (except for one bound/unbound),
while in the initial dataset there were five unbound/

unbound, 13 bound/unbound and three bound/bound
cases. Again, the fact that we obtained very similar results
in both datasets shows that the predictions do not depend
on whether we used the bound or unbound subunits, as
discussed before. On the other side, when we considered
only the cases with modelled subunits, the overall PPV
was 59% and the sensitivity 33% (NIP ≥ 0.2), values that
were slightly worse than those of the initial dataset. This is
somehow expected, as modelled structures will have more
uncertainty than unbound X-ray structures. Finally, when
we considered only the cases with unbound NMR struc-
tures, the results were strikingly poor, with a PPV of 0%
and a sensitivity of 0%, either with NIP ≥ 0.2 or NIP ≥ 0.4.
For some reason our method is not working correctly on
NMR structures. For the molecule IGF-1, we used the min-
imized average NMR structure (PDB 2GF1). As for the rest
of NMR structures, there were not minimized average
structures provided in the PDB, so we used instead the
first model of the NMR ensemble. A similar behaviour of
our desolvation energy on NMR structures was already
previously reported [25].

Table 6: Additional dataset of complexes used in this work

Complexa Resb Receptor Ligand Receptor PDB Res (Id)b Ligand PDB Res(Id)b Complex typec

X-ray subunits

1CBW 2.60 Chymotrypsin BPTI 4CHA 1.68 4PTI 1.50 U/U
1PM9 1.70 IL-6R IL-6 1N26 2.40 1ALU 1.90 U/U
N/A N/A KDR VEGF 2P2H 1.95 1VFP 2.50 U/U
N/A N/A trkC Neurotrophin-3 1WWC 1.90 1NT3 2.40 U/U
2BTF 2.55 Rabbit actin Bovine profilin I 1J6Z 1.54 1PNE 2.00 U/U
1DVF 1.90 E5.2 D1.3 - - 1VFA 1.80 B/U
N/A N/A sHIR Insulin 2DTG 3.80 2C8Q 1.95 U/U

NMR subunits

N/A N/A GPIIbIIIa Kistrin 1TYE 2.90 1N4Y NMR U/U
N/A N/A bFGF FGFR1b 4FGF 1.60 1WVZ NMR U/U
N/A N/A IGF-1R IGF-1 1IGR 2.60 2GF1 NMR U/U
N/A N/A IGF-1bp IGF-1 1ZT3 1.80 2GF1 NMR U/U

Homology-based modeled subunits

N/A N/A E9 DNase Im2 1FSJ 1.80 1FR2d (66%) U/M
N/A N/A AChR Erabutoxin 2BG9 4.00 5EBX 2.00 cryo- EM/U
N/A N/A AChR NmmI 2BG9 4.00 1V6P 0.87 cryo- EM/U
1Z92 2.80 IL-2 receptor IL-2 (human) 2B5Id (100%) 1M47 1.99 M/U
N/A N/A IL-2 beta receptor(human) IL-2 (murine) 2B5Id (99%) 1M48d (64%) M/M
N/A N/A IL-2 alpha receptor(murine) IL-2 (murine) 1NWVd (22%) 1M48d (64%) M/M
N/A N/A IL-4/IL-4bp GammaC 1IAR 2.30 2B5Id (99%) U/M
N/A N/A gp75 Neurotrophin-3 1LNLd (18%) 1NT3 2.40 M/U
N/A N/A CD48 CD2 2DRUd (39%) 1CDC 2.00 M/U
N/A N/A Calcineurin CaM 1AUId (59%) 1LKJ NMR M/U

2D9Q 2.80 hG-CSFbp hG-CSF 2D9Qd (99%) 1RHG 2.20 M/U

a PDB Code; N/A, Not Available; b Resolution in Å or (Id): sequence identity with template in case of model; c B, Bound; U, Unbound; M, Model; 
cryo-EM, cryoelectron microscopy structures classified as modeled structures because of the low resolution compared to crystallographic or NMR 
structures, d PDB code of the template structure used for modelling
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When using the stricter NIP cut-off of 0.4, we obtained
predictions for the following four cases with experimental
data: D1.3/E5.2 (docking unbound/bound), Im2/E9
DNase (docking model/unbound), Erabutoxin/AChR
(docking model/unbound) and the murine complex IL-2/
IL-2 alpha receptor (docking model/model). Concerning
the D1.3/E5.2 complex, a total of 8 hot-spots were cor-
rectly detected on D1.3 on both light and heavy chains
but there were no predictions for the E5.2 antibody.
Regarding the Im2/E9DNase interaction, the model
shared 66% of sequence identity with its template and
permitted correct predictions of three hot-spots, with two
of them displaying a ΔΔG variation above 5.8 kcal.mol-1.
As for the Erabutoxin/AChR complex, we considered the
AChR subunit as a model given that the structure comes
from low-resolution cryo-electron microscopy experi-
ments. Most of the predicted residues had actually high
experimental ΔΔG variation residues; indeed, among the
12 hot-spots with a ΔΔG above 4 kcal.mol-1, five of them
were correctly predicted. Regarding the IL-2/IL-2 alpha
receptor complex, although sequence identities with the
templates were only of 68% and 22% respectively, our
method predicted successfully the strongest hot-spot of
the interaction. What is interesting is that our predictions
seem to work almost equally well when using homology-
based modelled structures than with X-ray structures.
Moreover, the good predictive results in this additional
set, in which most of the cases do not have available the
3D structure of the complex, proves the capabilities of our
method and opens the possibility of large-scale hot-spot
predictions.

Conclusion
We present here the application of docking simulations to
predict hot-spots for protein-protein interaction without
prior knowledge of the complex structure. The NIP values,
computed from docking ensembles as scored by electro-
statics and desolvation, can be used to identify with high
reliability (around 80% positive predictive value) a
number of hot-spots that are directly contributing to the
interaction, due to electrostatics and water-to-interface
desolvation effects. On the down side, the method is not
exhaustive and cannot predict all possible hot-spots in an
interaction, especially those that are not directly involved
in the interface or that arise from the formation of highly
specific interactions. In summary, our method can pro-
pose residues to guide mutational experiments in com-
plexes of biological and therapeutic interest, even if the
3D structure of the complex is not available.

Methods
Dataset description
We used two different hot-spot datasets for our analysis.
The first one is derived from 21 complexes with available
3D structure that have already been used in previous hot-

spot prediction studies [14,26]. This dataset (Table 1)
includes enzymes-ligand/inhibitor complexes (PDB code:
1JTD, 1BRS, 1BXI, 1A4Y, 1DFJ, 2DAN, 2PTC), antibody-
antigen complexes (PDB code: 1DN2, 1FCC, 3HFM,
1FC2, 1NMB, 1AHW, 1VFB, 1JRH, 1JCK) and other types
of interaction (PDB code: 1IAR, 1AIE, 1F47, 1CG1, 1A22).
This set has a total number of 8168 surface residues, from
which 888 are interface residues. Among them, there have
been described 168 hot-spot residues (ΔΔG ≥ 1 kcal.mol-1

when mutated to alanine) and 418 non-hot-spot residues
(ΔΔG < 1 kcal.mol-1), as can be seen in Table 2. All the
available mutational data can be found on the Alanine
Scanning Energetics database (http://nic.ucsf.edu/
asedb[33], Thorn and Bogan [34]) or in already published
hot-spots studies for 1DN2, 1NMB, 1JRH, 1F47, 1FCC
[14], 1JTD and 1AIE [26].

We compiled later a second dataset (Table 6), in order to
test our method on a higher number of cases, which is
composed of 22 additional complexes found on the
Alanine Scanning Energetics database (most of them with-
out available 3D complex structure), and includes 94 hot-
spot and 267 non-hot-spot residues. It comprises enzyme/
inhibitor complexes (BPTI/chymotryspin, Im2/
E9DNase), toxin/receptor complexes (Erabutoxin/AChR,
Nmmi/nAChR), cytokine/receptor complexes (IL-6/IL-
6R, IL2 (human)/IL-2 receptor, IL-2 receptor beta
(human)/IL-2 (murine), IL-2 (murine)/IL-2 alpha recep-
tor (murine), IL-4/IL-4bp/Gamma C, h-CSF/hG-CSFbp),
growth factor/receptor or binding protein complexes
(bFGF/FGFR1b, VEGF/KDR, IGF-1/IGF-1R, IGF-1/IGF-
1bp, BMP type IA receptor/BMP-4), and other complexes
(bovin profilinI/rabbit actin, kistrin/GPIIbIIa, D1.3/E5.2,
sHIR/Insulin, CD2/CD48, CaM/calcineurin, neuro-
trophin-3/gp75, neurotrophin-3/trkC). In the cases with
no experimental structure for any of the unbound subu-
nits, we used for docking the homology-based models
generated from MODBASE, when available (http://mod
base.compbio.ucsf.edu/modbase-cgi/index.cgi[35],
Pieper et al. [36]). In order to avoid redundancy, we have
removed all the numerous cases involving hGH bound to
different antibodies.

Prediction of hot-spots from docking simulations
We have explored the use of a variation of our previously
described Normalized Interface Propensity (NIP) values
[19] derived from rigid-body docking simulations, for the
prediction of hot-spots. The rigid-body docking procedure
is divided in two steps. The sampling of the ligand around
the receptor was first achieved using two known FFT-
based programs: FTDock 2.0 [22], which generates 10.000
different solutions (or docking poses), and ZDOCK 2.1
[23], which gives 2000 solutions. All docking poses from
both programs were then ranked together, based on an
optimized scoring function formed by electrostatics and
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desolvation energy, as implemented in the PyDock algo-
rithm [21]. The 100 lowest-energy solutions (this number
of solutions was previously shown to be adequate for
computing the NIP values) [19] were next selected to be
analysed by pyDockNIP, which is an implementation of a
previously described method able to predict interface pro-
pensities from the distribution of docking poses [19].

The Averaged Buried Surface (ABSi) for each residue was
calculated from the 100 lowest-energy solutions:

where  is the solvent-accessible surface area for the

receptor residue i before ligand binding,  is the

solvent-accessible surface area for the same residue after
ligand binding according to the docking pose k.

These ABS values were normalized in order to obtain a
Normalized Interface Propensity:

where &#x3008;ABS&#x3009; is the average ABS value,
and ABSMAX the maximum expected ABS value (ABSMAX =
1).

A Normalized Interface Propensity (NIP) value of 1 would
indicate that the corresponding residue is involved in all
predicted interfaces of the 100 lowest energy docking
solutions whilst a value of 0 would mean that it appears
as expected from random. A negative value would mean
that the residue appears less often than expected from ran-
dom. A threshold of 0.4 was tested previously and found
to be the best compromise between detection and positive
predictive value (PPV) for binding site prediction using a
different dataset [19]. Accordingly, in this article we have
considered as hot-spot predictions those residues with
NIP values higher or equal to 0.4.

Statistical significance of hot-spot prediction
In order to analyse whether the residues predicted as hot-
spots differ significantly from a random prediction, a χ2

test was performed. The distribution of predicted hot-
spots for all complexes was compared with that of the
known hot-spot residues. A 2 × 2 contingency table was
built by computing the number of predicted residues (NIP
≥ 0.4 or NIP ≥ 0.2) that are experimentally known hot-
spots and the ones that are not hot-spots, as well as the
number of not predicted residues (NIP < 0.4 or NIP < 0.2)
that are known hot-spots and the ones that are not hot-

spots. The P significance obtained by applying this χ2 test
represents the probability to obtain these predictions just
by chance. The lower the value of P, the higher our confi-
dence that the predictions are significantly different from
random.

Comparison to other methods for hot-spot prediction
To compare our results with the ones than can be
obtained using different existing methods, we used the
dataset composed of 15 different complexes (1A4Y,
1AHW, 1BRS, 1BXI, 1CBW, 1DAN, 1DFJ, 1DVF, 1FC2,
1GC1, 1JCK, 1VFB, 2PTC, 3HFM, 3HHR) from the work
of Li et al. [28] We compared our method with ROBETTA
[15] and FOLDEF [26] for 294 residues (N293A and
W45A from 3HHR and 1DAN respectively, originally in
Li's dataset, were removed due to mutations in unbound
structures used for docking with pyDock). Unlike our
method, the 3D structure of the complex is a prerequisite
for ROBETTA and FOLDEF, which consist in complete
energy binding calculations. Additionally, the FOLDEF
server (version 1.10) was used to compute all the ΔΔG val-
ues of our dataset (Table 1).

Assessment of predictions: sensitivity and positive 
predictive value
To analyse further the relevance of our predictions, the
statistical parameters of positive predictive value (PPV),
sensitivity (S) and global accuracy have been computed.

with TP the number of True Positives, FP the number of
False Positives, TN the number of True Negatives and FN
the number of False Negatives.

The positive predictive value (PPV) was defined as the
fraction of predicted residues that were correctly described
as hot-spots, and the sensitivity (S) was the fraction of real
hot-spot residues that were actually predicted.

Abbreviations
NIP: normalized interface propensity; ASA: accessible sol-
vent area; ASP: atomic solvation parameters; ODA: opti-
mal docking area; PPV: positive predictive value; S:
sensitivity; SEC3: staphylococcal enterotoxin C3; HEL:
hen egg lysozyme; IFN-γ: interferon-γ; BPTI: bovine pan-
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