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Abstract: The capability of poly(ethylene-co-methacrylic acid) (E/MAA) to self-heal is well known,
however, its mechanical properties are weak. In this study, composites with single and double layers
of unidirectional (UD) carbon fibers were prepared by compression molding. Even a low mass
fraction of fibers substantially improved the polymer. The flexural and tensile properties were tested
at 0◦, 45◦ and 90◦ fibers direction and compared to those of the matrix. The mechanical properties
in the 0◦ direction proved superior. Flexural properties depended on the reinforcement distance
from the stress neutral plane. The tensile modulus in the 0◦ direction was 13 times greater despite
only a 2.5% mass fraction of fibers. However, both tensile modulus and strength were observed to
degrade in the 90◦ direction. Dynamic mechanical analysis showed the dependence of both structure
and properties on the thermal history of E/MAA. Tensile tests after ballistic impact showed that the
modulus of the self-healed E/MAA was not affected, yet the strength, yield point, and particularly
the elongation at break were reduced. A composite with higher fiber content could be prepared by
mixing milled E/MAA particles in fibers prior to compression.

Keywords: E/MAA; composite; carbon fibers; mechanical properties; self-healing; dynamic mechan-
ical analysis; ballistic tests; thermal history; compression molding

1. Introduction

Given their unique ability to self-heal ballistic damage, materials based on the copoly-
mer of ethylene and methacrylic acid (E/MAA) are recognized as having enormous po-
tential for a wide range of uses in containment applications, such as aircraft fuel tanks,
protective barrier in oil tankers, pressure vessels, etc. [1,2]. Unfortunately, without re-
inforcement, they lack the adequate mechanical properties—in particular strength and
stiffness—that would assure the safety required for such applications. Fiber reinforced
composites with a thermoplastic matrix have been widely studied; however apart from [3],
where resistive heating through carbon fibers was found to induce healing of E/MAA,
there are no studies on fiber reinforced composites with an E/MAA matrix. Particulate
E/MAA added as a healing agent to a much stiffer epoxy resin has been investigated [4–6],
and it was found that mixing the thermoplastic particles into the thermoset matrix yields
several problems. The particles are too large to fit into the narrow gaps between carbon
fibers within the plies, while reducing the size to fit the plies (<10–50 µm) is not feasible
because such small particles have low healing performance [4]. Stitching the composite
with E/MAA filaments improves performance, particularly delamination resistance of the
composite. However, the higher the stitching density, the weaker the in-plane mechanical
properties will be, due mostly to the lower fiber content and damages in fibers caused by
stitching. A low amount of E/MAA reduces healing properties [5]. It was shown in [7]
that E/MAA reinforced with multiwall carbon nanotubes (MWCNT) can be 3D-printed.
The self-healing was not affected by adding 0.1 mass% of nanoparticles, and the mechanical
properties of the composite were improved. Still, the increase in modulus from 300 to
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350 MPa is insufficient for widespread industrial applicability. The market of thermoplastic-
based composites has been growing, mainly because they are already polymerized, and the
production cycle is shorter than for thermosets. Thermoplastic materials are generally recy-
clable and have a lower environmental impact [8]. Immiscible blends of epoxy resin with
E/MAA possess better mechanical properties than E/MAA alone, though the dominant
matrix material is a thermoset. New developments and enhancements in the field of long
fiber reinforced thermoplastics have identified a host of exciting applications, especially in
transport and the electro/electronics sector [9]. Novel 3D-printing methods for composites
with continuous carbon fibers are being developed, with a growing selection of available
matrix materials. Tian et al. developed a novel method of fused deposition modeling
3D-printing and investigated the influence of processing parameters on the interfaces and
performance of printed poly-lactic acid (PLA) based composites [10]. The same matrix
material was used in [11], where the novel method based on fused deposition modeling
allowed for direct composite production without the need for molds. Although this method
is promising, the matrix material is limited to PLA. A fused filament fabrication method
was applied to prepare a composite with a Nylon matrix [12]. The fused deposition mod-
eling of an acrylonitrile-butadiene-styrene (ABS) matrix with continuous carbon fibers
was investigated by Yang et al. [13]. Although 3D-printing methods are becoming more
successful, the number of matrix materials and fibers content remains limited and the
bending of the brittle continuous carbon fibers on product edges results in fiber damage.
These methods are appropriate for small production output, high product complexity,
product customization, and decentralized production [14], but not for mass production.
The effect of continuous fiber and fabric orientation on hot pressed composites made of
polyamide 6 (PA6) were examined by [15], where a relatively high fiber content and a suc-
cessful improvement in mechanical properties were achieved, indicating that composites
with sufficient fiber content resulting from pressing techniques have superior properties
compared to those that are 3D-printed. Traditionally, damaged polymers were repaired
through welding or patching, which was limited only to visible damage [16]. Thermoplas-
tics with self-healing properties are of great interest as a matrix material for products where
crack repairing is limited during usage or when damage arising during maintenance is
poorly visible, e.g., when a tool drops onto a surface. Traditionally, damaged polymers
were repaired through welding or patching which was only limited to visible damages [16].
Thermoplastics with self-healing properties are of great interest as matrix material for
products where repairing of cracks is limited during usage or where barely visible damage
appears during maintenance e.g., when a tool drops on a surface.

Certain production problems are still slowing the growth of the market of thermoplas-
tic composites with continuous fibers. One issue is that thermoplastic polymers are solid
at room temperature and the matrix material must be melted for composite production.
Even above their melting temperature Tm, thermoplastic materials are rather viscous, hin-
dering fiber impregnation [17], while heating far above Tm to reduce viscosity can affect
the chemical and physical characteristics of the polymer matrix. Production parameters
such as temperature, pressure, and cooling rate may influence the order of macromolecules
and their oxidation and degradation, which is reflected in the material properties. Even the
details in mold construction, in particular the cooling system, influence the structure and
thus the final product properties.

E/MAA is a two-phase ionomer of ordered ionic clusters dispersed within a con-
tinuous semi-crystalline polymer matrix. When the temperature increases, a reduction
of order and strength of the ionic clusters takes place near the order-disorder transition
temperature Ti. With the further increase in temperature, the semi-crystalline polymer
matrix melts, even though the disordered clusters persist and continue to provide increased
melt strength [18].

The healing of the E/MAA is thermally activated. Ballistic tests on this ionomer have
shown that the material heals even when penetrated by a 9 mm bullet. The heat generated
during the test is sufficient for the holes to heal. The healing process is divided into three
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stages: (i) an initial elastic response during ballistic impact, (ii) a rapid transformation
into a highly elastomeric viscous polymer, and (iii) interdiffusion of polymer chains and
microstructure reformation [2]. Furthermore E/MAA is sensitive to thermal history [2].
DSC measurements have proven that there is a peak about 49 ◦C attributed to the ordering-
disordering of ionic domains present in the ionomer structure. According to [2], if E/MAA
is heated above the melting temperature, cooled, and immediately reheated, the order–
disorder peak is not present. As the material orders during aging at room temperature up
to several weeks, the peak appears, grows, and shifts to higher temperatures. The material
is physically cross-linked in two ways: (i) dominant ionic bonding and (ii) the weaker effect
of acid groups that associate by hydrogen bonding.

In this study, DMA measurements on E/MAA confirmed that the behavior of the
material is sensitive to its thermal history, though the effect observed here was different
than that described in [2]. The peak attributed to the order-disorder of ionic domains
shifted towards lower temperatures and the position, width, and intensity was dependent
on the maximum temperature in the first run. We compared the effect of heating slightly
below the melting temperature in the first run with the temperature at which the material
begins to melt.

In this study thermoplastic composites are prepared using several heating cycles. First,
polymer pellets were pressed above Tm to form sheets. Then, fibers were placed between
solid sheets, heated once again above Tm, and repressed. Both the sheets and composites
were cooled slowly in the mold at ambient temperature. To ensure uniform thermal histo-
ries, composites of E/MAA and carbon fibers were prepared and their properties compared
to those of neat polymer sheets that were twice heated and pressed in the same manner as
the composites. The dependence of composite properties on stress directions with respect
to fibers orientation and on different fiber mass fractions was tested. Additionally, the
effect of fiber position with respect to the stress neutral plane was analyzed with flexural
bending tests. The high viscosity of the melt caused by persisting ionic clusters hindered
the impregnation of fibers necessary for load transfer from the matrix to the reinforcement.
Hence, the fibers content was rather low, though mechanical properties of the matrix were
still greatly improved. The conductivity of carbon fibers enables heating the composite and
thus self-healing by connecting the fibers to a direct current source as described in [3]; this
feature presents high potential for maintenance.

In this study, the effect of high-velocity bullet perforation on the tensile properties of
the neat polymer was tested with two calibers: 9 and 5.56 mm.

The aim of the study was to support the development of numerical constitutive
models for self-healing composites. Therefore, fibers are unidirectionally oriented and the
test parameters of composite specimens were selected to facilitate the validation of the
numerical models.

2. Materials and Methods
2.1. Matrix Material

The ionomer Surlyn 8940 donated by DuPont was used for the preparation of trans-
parent polymer sheets. This is a random copolymer containing 5.4 mol% of the methacrylic
group. Acid groups are 30% neutralized with sodium atoms. The amount of methacrylic
acid groups and neutralization level were optimized for good transparency and stiffness
compared to other Surlyn types.

2.2. Fibers

The carbon fibers used here were commercially available HS 15/100 DL produced by
G.Angeloni S. R. L., Quarto d’Altino (Italy), which are double layered (DL) unidirectional
high strength (HS) fibers. The laminate of 0.095 mm thickness consists of two identical
layers of Grafil 15K 1000 dtex fibers bound with glue. The amount of the carbon fibers is 94
mass% with 6 mass% is the glue and the areal mass is 100 g/m2. No surface treatment was
performed after purchasing.
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2.3. Processing Parameters

In the present study, neat E/MAA sheets were reinforced with UD carbon fibers by hot
compression molding in a vacuum bag. Prior to the preparation of the sheets, pellets were
dried at 50 ◦C for at least 24 h. The melting interval was determined using a polarizing
microscope with a heating system in the procedure described in EN ISO 3146:1985. Melting
started at 91 ◦C and ended at 93 ◦C, which is in agreement with the melting interval
declared in the data sheet given by DuPont. Given that there are persisting disordered
ionic clusters in the melt of E/MAA, the processing temperature needed to be markedly
higher than the melting interval.

Prior to selecting processing parameters, a short investigation of the different parame-
ters was conducted. The problems of trapped bubbles in the polymer matrix, sliding fibers,
and impregnation were reduced by varying the temperature, compression pressure and
duration of pressure application (Table 1). The first composite (Case 1) was prepared at
130 ◦C with the goal of minimizing the heat effect on the polymer. The resulting laminate
had many trapped bubbles. Increasing the temperature led to fewer bubbles; however, the
fabric slid when pressure was applied (Case 2). Extending the annealing time and reducing
both the intensity and duration of the pressure applied gave the best results (Case 3),
as the bubbles had enough time to leave the matrix and the melt impregnated the fibers.
One plate was prepared with only manual pressing instead of using the machine press.
These parameters were comparable to those described in [3]. In this way, the fewest bubbles
were visible, though the bonding of carbon fibers with the matrix was very weak (Case 4).

Table 1. Parameters for preparation of the composite plates with a single fiber layer. Testing was
performed on composites made using the parameters applied in Case 3.

Parameter Case1 Case2 Case3 Case4

Annealing temperature [◦C] 130 160 160 160
Annealing time [min] 15 15 20 15

Pressure [bar] 40 40 10 Manual pressing
Compression time [min] 15 15 2 -

The composites prepared with the parameters described in the Case 3 were selected
for testing in the present study.

2.4. Preparation of Composites

UD fibers were placed between previously pressed solid polymer E/MAA sheets
in a steel mold. The mold was placed in a vacuum bag and the air was evacuated for
30 min at ambient temperature using a rotary vane pump. The mold in the vacuum bag
was placed in the press, where the polymer was melted at 160 ◦C. Gases were evacuated
from the melt for 20 more minutes to avoid gas bubbles. Following this, a pressure of 10
bar was applied for 2 min. The pressure in the vacuum bag was 0.1 bar throughout the
process. Finally, the mold was slowly cooled down at ambient temperature. Composites
with single or double layers of fibers are prepared, where the fiber content was 2 mass%
and 2.5 mass%, respectively. Fiber content was measured using the resin burn-off test.
Composite specimens were heated to 550 ◦C for two hours in air to decompose the matrix
material. According to [19], these conditions caused very little oxidation and mass loss to
carbon fibers.

For comparison with the composites, the non-reinforced matrix material was prepared
in the same manner as the composites, i.e., two sheets were pressed separately and then
pressed together under the same conditions, to ensure uniform thermal histories between
the matrix material and the composite. The thickness of sheets was regulated using a steel
frame as a distance holder in the mold. The thickness of polymer sheet was 1.6 ± 0.05 mm
and for the composite it was 2.3 ± 0.15 mm.
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2.5. Dynamic Mechanical Analysis (DMA)

The goal of DMA was to determine the impact of thermal history on the mechanical
properties of E/MAA. For these tests, the polymer sheets were not heated twice during the
preparation as described above. Stripes (approximately 20 mm × 3 mm) were cut from the
approximately 1.6 mm thick polymer sheet, with a jaw span of 8.3 mm. Two successive
runs were performed on polymer samples, starting at 25 ◦C. The upper temperature limit
in the first cycle varied: in the first case it was 89 ◦C, which is near the melting start
temperature of 91 ◦C, and in the second case it was 98 ◦C, which is above the melting end
temperature Tm. Even at 5 ◦C above Tm there is still enough elastic response for the DMA
to be performed, thanks to the ionic clusters in the melt. The tests were performed on
the TTDMA, Triton Technology in tensile mode, with a frequency of 1 Hz, amplitude of
0.002 mm, and a heating rate of 2 ◦C/min.

2.6. Flexural Properties and Apparent Interlaminar Shear Strength

Flexural and tensile properties were tested on a universal testing machine with a
crosshead speed of 7 mm/min. The tests were performed on samples with single or
double layers of reinforcement and compared to those of the neat polymer. The double
layer composite was tested in three directions (0◦, 45◦, and 90◦) with respect to the UD
fiber orientation. Flexural properties were obtained from the three-point bending test in
accordance with EN ISO 178:2003. The apparent shear interlaminar strength was tested
according to EN ISO 14130:1997. The setup of the shear strength test is the same as for
the three-point bending test, with a difference in span, i.e., 16 times the average height
of the tested samples in the bending test vs. 5 times in the apparent interlaminar shear
strength test.

2.7. Tensile Properties

All tensile properties were tested according to EN ISO 527-4:1997 with dog-bone
samples and the crosshead speed was 7 mm/min. The only exception was the test on the
E/MAA before and after ballistic impact. The bars with one damaged spot included in the
middle were cut as simple bars around scars that remained in the middle, with a width
of 15 mm, thickness of 4 mm, and length of 130 mm. The initial controlled length l0 was
50 mm. The tests were performed with the crosshead speed of 50 mm/min.

2.8. Ballistic Tests

Ballistic tests were performed on neat E/MAA. To avoid target deformation, 4 mm
thick plates were prepared. Tests were performed with two calibers (9 and 5.56 mm)
outdoors under winter conditions, at an air temperature of about 0 ◦C.

Tensile tests were conducted on E/MAA before and after ballistic impact with the
9 mm caliber.

3. Results
3.1. Dynamic Mechanical Analysis

The DMA is a powerful tool for observing structural changes in a material and their
influence on mechanical response. The effect of thermal history can be observed through
changes in the loss factor tan δ and storage modulus E’ in temperature scans.

The dependence of tan δ on temperature is presented in Figure 1. The first peak in
the spectrum measured from the ambient temperature is attributed to the order-disorder
transition of ionic domains present in ionomer structure [2], who reported in [2] that
the peak disappeared when heated above the melting point, cooled, and then reheated.
However, the DMA tests performed here did not give this result. Regardless of whether
the maximum temperature in the first cycle was below or above the melting interval,
the peak measured in the second cycle broadened and shifted to lower temperatures.
The peak position was dependent on the maximum achieved in the first run. After cooling
from 98 ◦C, it was positioned nearer to thee values in the first cycle. This means that the
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first run to 89 ◦C which is less than Tm had a greater effect on the order-disorder peak.
The material is physically less cross-linked with greater mobility of molecules participating
in the relaxation process.

Figure 1. Tan δ of the neat polymer. In the first run the samples were heated either to 89 ◦C (Sample 1)
or 98 ◦C (Sample 2).

The reduction of cross-linking density after heating below Tm (Sample 1) is also
evident in Figure 2, where the modulus in the second run was lower, and the shape of
the curve more continuous than in the first cycle. Near Tm, the moduli and tan δ are of
comparable values since the lower viscosity allows for the rearrangement of molecules
(Table 2). The measurement at which the Tm is reached (Sample 2) had a much weaker
effect since the higher temperature and lower viscosity enabled reordering of molecules.
Compared to the first run the resulting storage modulus in the second run was higher
below 75 ◦C and the continuous shape remained observable. The increase in modulus after
cooling from T > Tm was due to the development of secondary polyethylene crystallites
during the first run, where the material had already melted and cooled from the melt [20,21].
Just below the melting of the primary crystallites, the ionomers are described as two-phase
composites of crystallites and ionically cross-linked rubber [20], hence the secondary
crystallites melt below Tm and the modulus values approach the same values as in the first
cycle (Table 2). The effect of melting of smaller secondary crystallites is also observed in
tan δ, since melting starts at lower temperatures. The existing secondary crystallites melted
in the first run of both samples; however, they did not have time to form in the case where
the Tm was not reached in the first run.

Table 2 provides an overview of the storage moduli at certain temperatures taken
from Figure 2. Heating Sample 2 to the melting temperature and slow cooling increased
the modulus at 25 ◦C by 34.5%, which was observed in the second run. Above 75 ◦C, the
values for all measurements are comparable.

The mechanical spectra show that the thermal history had a significant influence on
the matrix material. In the production of composites, the matrix material was heated twice,
the first time for polymer sheets preparation and the second time for composite production.
Therefore, in the comparison of the composite with the matrix, the matrix material was
also heated twice in the same manner as the composite.
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Figure 2. Storage modulus of the neat polymer. In the first run, samples were heated either to 89 ◦C
(Sample 1) or 98 ◦C (Sample 2).

Table 2. Storage modulus of the neat polymer at different temperatures. All values in MPa.

Modulus E’ (25 ◦C) E’ (40 ◦C) E’ (55 ◦C) E’ (75 ◦C) E’ (80 ◦C) E’ (89 ◦C)

Sample 1
1st run to 89 ◦C 275.2 162.5 25.4 9.2 6.9 3.0

Sample 1 2nd
run 241.8 94.7 24.0 6.4 5.5 2.9

Sample 2
1st run to 98 ◦C 250.3 142.9 24.2 8.1 6.7 2.8

Sample 2 2nd
run 370.2 182.0 43.6 8.8 6.3 2.5

3.2. Flexural and Tensile Properties

When the samples are bent, the stress is compressive at the top and it is tensile on the
bottom. Near the midplane, there is a neutral plane where there is neither the compressive
nor tensile stress. In the case of the single fibers layer, the reinforcement is placed between
two polymer sheets near the neutral plane, while in the case of the double layer, the fibers
are positioned symmetrically with the respect to the neutral plane. Hence, one ply is in
the tension region and the other in the compression region, with approximately the same
offset from the neutral plane. Due to the low modulus and thus large deflection, the neat
polymer samples did not break during the bending test, and therefore flexural strength
could not be tested. The same behavior was observed for the composite with the single
layer reinforcement, since the reinforcing fibers were near the neutral load plane.

The stress-strain measurements for the composites reinforced with a double fiber
layer in all three directions are shown in Figure 3. Deflection data could not be measured
completely, due to limitations of the testing machine. Therefore, the maximum stress visible
in diagrams is not equal to the flexural strength shown in Table 3. The strength values for
the neat resin and the single layer composite were not determined in the experiment and
are therefore not included in Table 3. The same limitation exists in the data presented in
Figures 4 and 5.
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Figure 3. Results of flexural bending tests on composite reinforced with a double layer of fibers in three directions: (a) in the
90◦, (b) in the 45◦ direction and (c) in the 0◦direction, with respect to UD fibers orientation (four samples tested for each
direction, each data set is presented with a different symbol).

Table 3. Flexural modulus Ef and flexural strength Rmf of the four samples of the double layer (2L)
composite cut in three directions with respect to the fibers orientation and the modulus for single
layer (1L) composite and for neat polymer samples. All values are in MPa.

2L—90◦ 2L—45◦ 2L—0◦ 1L—0◦ Neat Polymer

Ef Rmf Ef Rmf Ef Rmf Ef Rmf Ef Rmf

1 407.6 17.5 751.3 34.2 2375.8 38.1 236.9 - 206.9 -
2 479.6 13.5 382.6 28.5 2274.5 40.2 232.2 - 119.2 -
3 459.5 13.1 1046 39.4 2031.8 33.5 250.3 - 264.5 -
4 362.4 15.5 871.0 33.0 2560.8 47.7 - 196.8 -
M 427.3 14.9 762.7 33.8 2310.7 39.9 239.8 - 196.9 -
SD 52.9 2.0 280.8 4.48 220.5 5.92 9.4 - 73.2 -

Figure 4. Results of tensile tests on the double layer reinforced composite in three directions: (a) in the 90◦, (b) in the 45◦

direction and (c) in the 0◦direction, with respect to UD fibers orientation (a data set for each tested specimen is presented
with a different symbol).
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Figure 5. Results of tensile tests on the neat polymer.

The flexural modulus of E/MAA is 196.9 MPa and a single layer of UD fibers in 0◦

direction improved this by only 22% (Table 3). However, stiffness was more effectively
increased with the double layer of fibers pressed between three matrix sheets, although
both composites had a low mass fraction of fibers. This effect is caused by the placement
of fibers further from the neutral midplane and thus in a region of higher stresses, thus
playing a more important role. The flexural modulus in the 0◦ direction was 11.7 times
higher than that of the matrix material, at 45◦ it was 3.9 times higher, and at 90◦ it was 2.2
times higher. The moduli of the composite with a 45◦ orientation were rather scattered and
the testing results for this direction were the least reliable.

The flexural strength for 0◦ was the highest of all three directions, though a higher
impact of fibers orientation was expected. The difference between the 45◦and 0◦ orientation
was 18%, which could be due to the stress (σ) as calculated according to the Euler–Bernoulli
Equation as:

σ = 3Fl/(2bh2), (1)

where F is the force, l is the span, b is the width, and h is the height. The 45◦ direction is
anisotropic and, in addition to tensile and compression stress in the sample, includes a
shear stress, and hence this case is not well described by the equation.

The tensile tests presented in Figures 4 and 5 and Table 4 prove that even the low fiber
content contributed very efficiently to the mechanical properties in the tensile direction
when the load was applied in the fibers’ direction (0◦). The modulus was 13 times higher
than that of the neat polymer and the strength was 4.2 times higher. However, the tensile
properties in the transverse direction (90◦) degraded in comparison with those of the matrix
material, especially tensile strength which decreased by 36.8% while the tensile modulus
decreased 5%. The fibers barely take over the load and the effect of flaws in the composite is
dominant. When fibers were rotated by 45◦, the same effect of scattered data was observed
as in the flexural tests. The average tensile modulus increased by 21% and the tensile
strength by 28.9%.
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Table 4. Tensile modulus Ef and tensile strength Rmf of the four samples of double layer (2L) compos-
ites cut in three directions with respect to fibers orientation, and of the neat polymer. All values are
in MPa.

2L—90◦ 2L—45◦ 2L—0◦ Neat Polymer

Et Rmt Et Rmt Et Rmt Et Rmt

1 463.0 9.5 767.1 22.6 4835.9 34.7 515.4 14.9
2 445.6 10.8 604.1 21 7047.7 78.6 495.5 15.3
3 486.9 9.6 413.3 15.1 7241.7 68.7 467.5 15.3
4 468.9 8.3 6363.8 72.2 487.6 15.2
M 466.1 9.6 594.8 19.6 6372.3 63.6 491.5 15.2
SD 17.0 1.0 177.1 4.0 1091.3 19.7 19.8 0.18

The apparent shear interlaminar strength was tested only for the 0◦ orientation.
The values were calculated as:

τ = 3F/(4bh). (2)

The apparent shear interlaminar strength was calculated as 5.4 MPa for the single
layer composite and 4.7 MPa for the double layer composite. These similar values indicated
that the prepared composites are of comparable quality.

3.3. Ballistic Tests

Outdoor ballistic tests at an air temperature of 0 ◦C showed that the material heals
instantaneously. After the ballistic tests, scars were visible, and some impurities remained
in the targets but were not analyzed (Figure 6). In the case of 9 mm bullets with copper
jackets, copper particles were visible under a light microscope (Figure 7). The material
managed to self-heal after 40 shots, yet with 80 shots, target disintegration occurred.

Figure 6. Ballistic tests with different calibers, (a,c) 9 mm and (b,d) 5.56 mm. The tests (a,b) were
performed with 40 shots and (c,d) with 80 shots (the scale in the lower right corner shows 1 cm.
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Figure 7. Scar after the ballistic test—transparency of the material is lost and there are visible copper
particles.

The tensile properties of E/MAA were tested before and after the 9 mm caliber ballistic
test. The width of testing bars was 15 mm, or about 60% of the cross-section surface was
damaged. The samples broke at the site of the scar. Figure 8 shows that the tensile modulus
was not affected. However, the initial controlled length was 50 mm and the scar affected
only 18% of the total controlled length. The tensile strength was reduced, and the values
were scattered, though the fracture strain was mainly affected by the damage. The weak
reproducibility of results was partially due to sample imperfections and the impurities
included in the holes, and therefore, it is difficult to predict the strength and elongation at
the break after healing.

Figure 8. Tensile tests on samples before and 9 mm caliber ballistic tests.

4. Discussion

The experimental investigation of appropriate processing parameters was based on
previous studies, where neat E/MAA was processed either at 150 ◦C [2], or at 160 ◦C [22]
and composites with E/MAA matrix reinforced with carbon fibers were prepared at
160 ◦C [3]. In [7], E/MAA reinforced MWCNTs was extruded at 135 ◦C.

The DMA tests showed that thermal history affected the structure and properties
of E/MAA. Heating to a sufficiently high temperature, above Tm, and allowing time
for molecules to reorganize resulted in the secondary crystallization of polyethylene as
described in [20,21]. This was reflected in the changes in the temperature scans of damping
properties and storage modulus. In this study, the disappearance of the relaxation peak
could be attributed to the lack of an order-disorder transition of ionic domains as described
in [2]. The position and intensity were found to be dependent on the maximum temperature
achieved in the previous heating.

Disordered ionic clusters in the E/MAA melt contributed to the elastic response
to mechanical stress. The resulting viscosity created an obstacle for the impregnation
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of continuous fibers in E/MAA based composites, making it a challenge to prepare a
composite with a reasonable fiber content. Nevertheless, even 2.5 mass% of carbon fibers
substantially improved the mechanical properties of the matrix, particularly for stresses
in the 0◦ direction. Tensile modulus and strength in the 0◦ direction increased 13 times
and 4.2 times, respectively. Zhang et al. reinforced PA6 with 30 vol% or approximately
40 mass% carbon fibers using a similar method and reported an increase in the modulus
by approximately 50 times and in tensile strength by 13 times [15]. Their reinforcement
fraction was 16 times higher than in the present study, though their mechanical properties
were not improved 16 times. Mixing fibers with E/MAA particles milled to a size of 10
to 50 µm prior to lamination could improve impregnation, thus enabling a higher fiber
fraction that would be much more efficient. Melting the matrix material would also melt
the particles and since the matrix and particles are of the same material, there should be no
issues in binding and obtaining a continuous matrix. This would thereby sidestep the issue
of reduced healing efficiency of small particles described for epoxy-based composites [4]
with E/MAA mixed as a healing agent. When tensile stress was applied to samples with
reinforcement rotated by 90◦ with respect to load, the mechanical properties degraded,
indicating the presence of voids between fibers and the matrix. Higher impregnation
should improve the properties even in the worst case when the load is perpendicular to
fiber orientation. A detailed analysis of these voids is needed.

Novel 3D-printing methods are excellent tools for complex, customized, and small
series products. However, they still result in composites with weaker mechanical properties.
The direct 3D fabrication of PLA reinforced with 6.6 mass% of continuous carbon fibers
improved the tensile modulus of PLA by 599% and strength by 435% [11].

A limited mass fraction of fibers in the composite prepared by pressing leads to
a heterogeneous cross-section of the material. A superior composite is achieved when
fibers are placed near the composite surface, instead of in the middle near the neutral
stress plane. Comparing the results for flexural behavior of the composite with single
or double layers (Table 3), it is obvious that when the cross-section is non-uniform, the
mechanical properties are more dependent on fiber position than on fiber content. Since
the fibers in the cross-section of specimens were not uniformly distributed, these flexural
properties should be understood as reference values and cannot be compared to other
studies. Nevertheless, in a study where PLA was reinforced with continuous carbon fibers
using the fused deposition modeling 3D printing process (FDM), a composite with the
lowest fiber fraction of approximately 7.5 mass% showed a flexural modulus of 7.5 GPa
and flexural strength of 130 MPa [10]. In the present study, with a 2.5 mass%, the flexural
modulus was 2.3 GPa and the strength was 39.9 MPa. The properties of the composite
based on ABS with a 10 mass% of continuous carbon fibers produced by FDM compared
to those of injection molded material showed that the interface performance of the former
were inferior [13].

E/MAA can be 3D-printed, however, there are no published studies on 3D-printed
E/MAA with continuous fibers, only reports concerning 0.1 mass% MWCNTs where the
tensile modulus increased by only 16% [7].

Ballistic tests cause local damage with heat development in the material that is neces-
sary for self-healing. The molecular structure was affected by heating, cooling, mechanical
impact, and by the impurities present within the material. Tensile tests after ballistic impact
showed that the fracture occurred at the site of bullet penetration through the material,
showing a reduction in the mechanical properties of the self-healed material. The results
indicate that the ballistic tests did not reduce elastic modulus. Yet, yield point, tensile
strength, and particularly elongation at break were reduced and the test results were scat-
tered. The outcome in properties depends on the thermal history of E/MAA and impurities
of the materials, and therefore, it is difficult to predict the properties of the healed material
in application. Since only a part of the tested samples self-healed, the conducted tensile
tests were not representative. They only indicate that the site of bullet penetration was the
weakest in tensile tests. Future mechanical tests on E/MAA and continuous carbon fiber
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reinforced E/MAA are required, with a larger fraction of self-healed matrix material and
with an impact that does not leave impurities in the material, under controlled heating
conditions using resistive heating through carbon fibers, as described in [3].

Flexural tests on self-healed E/MAA were not performed in this study, since the
samples did not break during the three-point bending test prior to the ballistic testing. Ad-
ditionally, during the three-point bending test, the force was applied exactly in the middle,
at the site of the scar. The flexural modulus was highly influenced by the behavior of the
intact E/MAA. This suggests the need for development of a new method of performing
this study using a higher fraction of healed material and without material impurities.
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